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Abstract 
The article synthesizes and presents the results regarding the stability of posi-
tive homogeneous systems that have been researched and published in recent 
years. Next, we provide a sufficient condition for global exponential stability 
in the case of discrete-time positive homogeneous systems with an order less 
than one with time-varying delays. 
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1. Introduction 

Positive dynamical systems are systems in which their state variables remain 
non-negative at all times in the future, given non-negative initial conditions. 
This class of systems finds numerous applications in various fields of science, 
engineering, and economics, such as biology, chemistry, communication systems, 
economics, and more [1] [2]. 

Time delay is a prevalent occurrence in most dynamical systems, particularly 
in technical and information-related fields such as mechanical control, electron-
ics, and telecommunications [1] [2] [3]. It stands as one of the factors impacting 
system stability, reducing operational performance. In general, time delay has a 
negative impact on the system and needs to be taken into consideration when 
analyzing the stability of dynamical systems. Linear systems have been studied 
extensively and have yielded rich results from early on. The class of positive li-
near systems has also been actively researched in recent years by mathematicians 
[4] [5] [6] [7]. Various stability criteria for this class of systems have been pro-
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posed, including necessary and sufficient conditions for positive linear systems 
without delays and with constant delays. A notable result is that the stability of 
positive linear systems without delays and with constant delays is equivalent, 
meaning that stability does not depend on the delay. This result has also been 
extended to positive linear systems with time-varying delays. 

There is a truth that important real-world systems are often nonlinear. 
Therefore, a natural question arises: do the non-sensitive properties of linear 
positive systems with respect to time delay still hold for nonlinear positive sys-
tems? In [8], a specific class of nonlinear positive systems with these properties 
was identified, namely, the class of homogeneous cooperative positive systems. 
Systems without delays or with constant delays are indeed an ideal scenario be-
cause delays typically depend on time. Specifically, the authors in [9] demon-
strated that the global asymptotic stability of homogeneous cooperative systems 
is independent of a constant delay, meaning that homogeneous cooperative sys-
tems with a constant delay are globally asymptotically stable if and only if the 
corresponding delay-free systems are globally asymptotically stable. This result is 
purely qualitative and does not provide any quantitative information, such as 
decay rates in exponential functions, polynomial functions, or exponential func-
tions. Therefore, there is relatively limited research on this class of systems at 
this point, and one of the reasons is that Lyapunov-Krasovskii function tech-
niques, while very useful for stability analysis in classes of delay-free positive 
systems or those with constant delays, cannot be applied to classes of positive 
systems with time-varying delays or lead to overly conservative results. 

The stability analysis of a positive system with global asymptotic stability is 
inherently qualitative, whereas practical requirements often demand a quantita-
tive assessment of system stability. An evaluation of the rate of decay in expo-
nential functions (for discrete-time systems) or in polynomial and exponential 
functions (for continuous-time systems) provides us with more information, 
such as real-time state bounds, finite-time constraints, predefined time horizons, 
ultimate bounds, reachable sets, invariant bounded sets, etc. [10]. In recent years, 
there have been numerous studies and quantitative findings on the stability of 
the class of homogeneous cooperative systems with delays. By developing a nov-
el evaluation technique, Feyz and colleagues published various results in [11] 
and synthesized and presented them in the thesis “Performance Analysis of Pos-
itive Systems and Optimization Algorithms with Time-delays” in 2014 [12]. Al-
though Feyz has established global exponential stability criteria for homogene-
ous cooperative systems with delays in both continuous and discrete-time cases, 
these criteria are limited to homogeneous systems of degree one. Inspired by the 
techniques developed by Feyz, Dong conducted research on the class of coopera-
tive systems with arbitrary degrees of homogeneity and time-varying delays. In 
[13], through the analysis of cases regarding the degree of homogeneous vector 
fields, Dong achieved certain results such as 1) providing necessary and suffi-
cient conditions for global polynomial stability of non-linear positive systems 
(continuous-time) and establishing local exponential stability (discrete-time) 
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with delays dependent on time when the vector field is cooperatively homoge-
neous with a degree greater than one, and 2) for vector fields with a degree less 
than one, giving necessary and sufficient conditions for finite-time global stabil-
ity of cooperative homogeneous systems without delay (continuous-time case). 
Dong’s results are independent of the system’s delay but are contingent upon 
the corresponding vector fields. However, Dong still leaves several cases unex-
plored, such as global exponential stability for the class of positive systems 
with time-varying delays and vector fields that are cooperatively homogeneous 
of degree less than one (both in continuous-time and discrete-time cases). Re-
cognizing the limited research outcomes for the case of positive systems with 
vector fields cooperatively homogeneous of degree less than one, Q. Xiao and 
colleagues in [14] delved deeper into this scenario and achieved notable results, 
such as 1) analyzing and extending results from [12] regarding the global expo-
nential stability of the class of positive homogeneous systems with time-varying 
delays in the case of vector fields having a degree less than one and 2) addressing 
one of the missing results from [13], which is establishing a finite-time stability 
criterion for delay-free systems with vector fields that are cooperatively homo-
geneous of degree less than one, where the stability time interval and an upper 
bound for the states are determined. To the best of our knowledge, Q. Xiao’s 
findings are the most recent for the class of positive cooperative homogeneous 
systems, and Q. Xiao has yet to resolve the case of global exponential stability for 
the class of positive systems with time-varying delays and vector fields that are 
cooperatively homogeneous of degree less than one in discrete-time. 

In addition to reviewing the results previously researched and published by 
other authors, our article presents a sufficient condition for assessing global ex-
ponential stability for the class of positive cooperative systems with time-varying 
delays, where the vector fields are cooperatively homogeneous of degree less 
than one in discrete-time.  

2. Notations, Model, and Preliminary  
2.1. Notations  

Recall that , , nn +    denote the set of real numbers, n-dimensional real vec-
tor space, and non-negative n-dimensional real vector space, correspondingly. 
For x∈ , let x    be the smallest integer not less than x. For an arbitrary 
vector nx∈ , ix  is its i-th component. Given two vectors , nx y∈ , we write: 
x y≥  ( x y> ) if and only if i ix y≥  ( i ix y> ) for all 1 i n≤ ≤ , and x is said to 

be positive if x > 0 , with [ ]T0 0 0 n= ∈ 0 . Given a positive vector 
nv∈ , the weighted l∞  norm of a vector nx∈  is defined by  

1
max .v i

i n
i

x
x

v∞ ≤ ≤
=  

A matrix n n
ijA a × = ∈    is said to be nonnegative if 0ija ≥  for 1 ,i j n≤ ≤ . 

The matrix A is said to be Metzler if it satisfies 0ija ≥  for every i j≠ . Give a 
real interval [ ],a b , [ ]( ), , na b   denotes the space of all real-valued contin-
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ous functions on [ ],a b  taking values in n .  

2.2. Model  

We consider the nonlinear homogeneous system with time-varying delays  

 
( ) ( )( ) ( )( )( )
( ) ( ) [ ]max

, 0

, ,0

x t f x t g x t t t

x s s s

τ

ϕ τ

 = + − ≥


= ∈ −



                (1) 

where ( ) nx t ∈  is the state vector of system, , : n nf g →   are the charac-
terizes vector fields for nonlinear dynamical systems, the delay function ( )tτ  is 
continuous and is such that ( ) max0 tτ τ≤ ≤  for 0t ≥  and  
( ) [ ]( )max ,0 , ntϕ τ +∈ −  . 
The discrete-time analog (1) takes the form  

 
( ) ( )( ) ( )( )( )
( ) ( ) { }max

1 ,

, , ,0

x k f x k g x k d k k

x s s s dϕ
+

 + = + − ∈


= ∈ −





            (2) 

2.3. Preliminary  

Here, we introduce the fundamental concepts regarding cooperative, homoge-
neous, and order-preserving vector fields. These definitions and results can be 
referenced in detail in [2].  

Definition 1.1. System (1) is called positive if for any non-negative initial 
conditions, its state trajectory ( )x t  satisfies ( ) 0x t ≥  for all 0t ≥ .  

Definition 2.2. A continuous vector field : n nf →   which is continuously  

differentiable on { }\n 0  is called cooperative if the Jacobian matrix ( )f a
x
∂
∂

 

is Metlzer for all { }\na +∈ 0 .  

Definition 2.3. A vector field : n nf →   is called homogeneous of degree 
0α >  if ( ) ( )f x f xαλ λ=  for all nx∈  and all 0λ > .  

Definition 2.4. A vector field : n ng →   is called order-preserving on n
+  

if ( ) ( )g x g y≥  for any , nx y +∈  such that x y≥ .  
Lemma 2.5. Let f be a cooperative vector field, then for any { }, \ 0nx y +∈  

satisfying x y≥  and ,1i ix y i n= ≤ ≤ , we have ( ) ( )i if x f y≥ .  
The research findings and results presented in the following section are ob-

tained by imposing the following assumptions on system (1). 
Assumption 1. f and g are continuous on n  and continuously differentia-

ble on { }\n 0 , and homogeneous of degree 0α > . 
Assumption 2. f is cooperative and g is order-preserving on n

+ . 
Assumption 1 ensures the existence and uniqueness of solutions for system (1) 

for all non-zero initial functions [15] and Assumption 2 ensures its positively 
[2].  

3. Review of Results  

In this section, we review the results that have been published in recent years. 
The results are organized by the degree of the homogeneous vector field.  
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3.1. The Case of Degree α = 1  

By developing a novel technique, Feyz, in [12], has achieved preliminary results 
in quantifying the stability of the class of cooperative positive systems with ho-
mogeneous vector fields of degree one.  

Theorem 3.1 (Continuous-time case). Consider the system (1) that satisfies 
Assumption 1 and Assumption 2. The following statements are equivalent:  

i) There exists a vector 0v >  such that  

( ) ( ) .f v g v+ < 0  

ii) System (1) is globally exponentially stable for all bounded time delays. Spe-
cifically, every solution ( )x t  of (1) satisfies  

( ) e , 0,
v tx t tηϕ −
∞
≤ ≥  

where ( )
max 0
max

v

s
s

τ
ϕ ϕ

∞− ≤ ≤
= , ( )1

0,min ii n
η η

≤ ≤
∈ , and iη  is the unique positive so-

lution of the equation  

( ) ( )
maxe 0, 1,2, , .ii i

i
i i

f v g v
i n

v v
η τ η+ + = =   

This result can be readily extended to the case of multiple delays of the form  

( ) ( )( ) ( )( )( )
1

.
p

k
k

x t f x t g x t tτ
=

= + −∑  

In this case, the exponential stability condition is  

( ) ( )
1

.
p

k
f v g v

=

+ <∑ 0  

A specific instance of system (1) with homogeneous vectors f and g of degree 
one corresponds to continuous-time linear systems in the following form  

 
( ) ( ) ( )( )
( ) ( ) [ ]max

, 0

, ,0

x t Ax t Bx t t t

x s s s

τ

ϕ τ

 = + − ≥


= ∈ −



              (3) 

Theorem 3.2. (Continuous-time case). Consider the system (3) that satisfies 
A is Metlzer and B is nonnegative. The following statements are equivalent:  

i) There exists a vector 0v >  such that  

( ) .A B v+ < 0  

ii) System (3) is globally exponentially stable for all bounded time delays.  
Theorem 3.3. (Discrete-time case). Consider the system (2) that satisfies 

Assumption 1 and Assumption 2. The following statements are equivalent:  
i) There exists a vector 0v >  such that  

( ) ( ) .f v g v v+ <  

ii) System (2) is globally exponentially stable for all bounded time delays. Spe-
cifically, every solution ( )x t  of (2) satisfies  

( ) , ,
v kx k kϕ γ +∞
≤ ∈  
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where ( )
max 0
max

v

d s
sϕ ϕ

∞− ≤ ≤
= , 

1
max ii n

γ γ
≤ ≤

= , and ( )0,1iγ ∈  is the unique positive 

solution of the equation  

( ) ( )
max 0, 1,2, , .i i d

i i
i i

f v g v
i n

v v
γ γ−+ − = =   

Theorem 3.4. (Discrete-time case). Consider the system  

 
( ) ( ) ( )( )
( ) ( ) { }max

1 ,

, , ,0

x k Ax k Bx k d k k

x s s s dϕ
+ + = + − ∈


= ∈ −





             (4) 

that satisfies A and B are nonnegative. The following statements are equivalent:  
i) There exists a vector 0v >  such that  

( ) .A B v v+ <  

ii) System (4) is globally exponentially stable for all bounded time delays.  

3.2. The Case of Degree α > 1  

Inspired by the new techniques presented in [12], Dong continued the research 
for the case of homogeneous vector fields of degree greater than one and achieved 
some noteworthy results. Detailed proofs can be found in [13].  

Theorem 3.5 (Continuous-time case). Consider the system (1) that satisfies 
Assumption 1 and Assumption 2. The following statements are equivalent:  

i) There exists a vector 0v >  such that  

( ) ( ) .f v g v+ < 0  

ii) System (1) is globally polynomially stable for all bounded time delays. 
In addidion, if any of the two equivalent statements is satisfied, then  

( ) ( )( )
1

1 11 , 0,
v

x t t tα αϕ α η
−− −

∞
≤ + − ≥  

where ( )
max 0
max

v

s
s

τ
ϕ ϕ

∞− ≤ ≤
= , ( )1

0,min ii n
η η

≤ ≤
∈ , and iη  is the unique positive so-

lution of the equation  

( ) ( ) ( )( )1
max1 1 0, 1,2, , .i i

i i
i i

f v g v
i n

v v
αα ϕ τ η η−+ + − + = =   

Theorem 3.6 (Discrete-time case). Consider the system (2) that satisfies 
Assumption 1 and Assumption 2. The following statements are equivalent:  

i) There exists a vector 0v >  such that  

( ) ( ) .f v g v v+ <  

ii) System (2) is locally exponentially stable for all bounded time delays. 
In addition, if any of the two equivalent statements is satisfied, then for any 

initial function satisfying 1ϕ γ −< , we have  

( )
1max1 , ,

k
dv

x k kαγ ρ
 
 + −

+∞
≤ ∈  

where ρ ϕ γ= , ( )
max 0
max

v

d s
sϕ ϕ

∞− ≤ ≤
= , 

1
max ii n

γ γ
≤ ≤

= , and ( )0,1iγ ∈  is the 
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unique positive solution of the equation  

( ) ( ) 1 0, 1,2, , .i i
i

i i

f v g v
i n

v v
αγ −+ − = =   

3.3. The Case of Degree 0 < α < 1  

In [13], Dong presented two results for systems with no delay and constant delay. 
Subsequently, Xiao and colleagues extended Feyz’s results in [11], improved 
some of Dong’s findings in [13], and introduced new results for systems with 
time-varying bounded delays and homogeneous vector fields of degree less than 
one. Detailed proofs can be found in [14].  

Theorem 3.7 (Continuous-time case). Consider the delay-free positive sys-
tem  

 
( ) ( )( ) ( )( )
( )

, 0

0 n

x t f x t g x t t

x +

 = + ≥


∈




               (5) 

that satisfies Assumption 1 and Assumption 2. The following statements are 
equivalent:  

i) There exists a vector 0v >  such that  

( ) ( ) .f v g v+ < 0  

ii) System (5) is globally stable in finite time. 
In addidion, if any of the two equivalent statements is satisfied, then the upper 

bound of the convergence time T  is given by  

( )( )
( )

1
0

,
1

v
x

α

η α

−

∞≤
−

T  

where 
1
min ii n

η η
≤ ≤

=  with iη  is the unique positive solution of the equation  

( ) ( ) 0, 1,2, , .i i
i

i i

f v g v
i n

v v
η+ + = =   

Theorem 3.8 (Continuous-time case). Consider the positive system with 
constant delay  

 
( ) ( )( ) ( )( )
( ) ( ) [ ]

, 0

, ,0

x t f x t g x t t

x s s s

τ

ϕ τ

 = + − ≥


= ∈ −



              (6) 

that satisfies Assumption 1 and Assumption 2. The following statements are 
equivalent:  

i) There exists a vector 0v >  such that  

( ) ( ) .f v g v+ < 0  

ii) System (6) is globally asymptotically stable for all 0τ ≥ .  
Theorem 3.9 (Continuous-time case). Consider the system (1) that satisfies 

Assumption 1 and Assumption 2 and 0 1α< ≤ . If there exists a vector 0v >  
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such that  

( ) ( ) ,f v g v+ < 0  

then system (1) is globally exponentially stable for all bounded time delays. Spe-
cifically, each solution ( )x t  of (1) satisfies  

( ) e , 0,
v tx t tηϕ −
∞
≤ ≥  

where ( )
max 0
max

v

s
s

τ
ϕ ϕ

∞− ≤ ≤
= , ( )1

0,min ii n
η η

≤ ≤
∈ , and iη  is the unique positive so-

lution of the equation  

( ) ( )
max 1e 0, 1,2, , .ii i

i
i i

f v g v
i n

v v
αη τ ϕ η−+ + = =   

Theorem 3.10 (Continuous-time case). Consider the system (1) that satisfies 
Assumption 1 and Assumption 2. If there exists a vector 0v >  such that  

( ) ( ) ,f v g v+ < 0  

then solution of system (1) is bounded in any fix time. Specifically, for any given 
constant 0>T , the solution ( )x t  satisfies  

( ) ( )
1

1 1 ,
v

x t tα αϕ η− −
∞
≤ −  

for all ( )0,t∈ T  and ( )
max 0
max

v

s
s

τ
ϕ ϕ

∞− ≤ ≤
= , ( )1

0,min ii n
η η

≤ ≤
∈ , where  

1

0,i

αϕ
η

− 
∈ 
 
 T

, 1,2, ,i n=   is restricted by  

( )
( )

( )
( )

1
max

11 1 1 0.
1

i i i i

i i i

f v g v
v v

α
α

αα α α α

τ η η
αϕ η

−

−− −

 
 + + + ≤
  −− T

 

Theorem 3.11. (Continuous-time case). Consider the system (5) that satis-
fies Assumption 1 and Assumption 2. If there exists a vector 0v >  such that  

( ) ( ) ,f v g v+ < 0  

then system (5) is finite-time stable. In particular, its solution ( )x t  satisfies  

( ) ( )( ) ( )( )

( )
( )( )

1
1

1 1

1

0
0 ,

0
,

v

v

v

x
x t x t t

x
x t t

α

α α

α

η
η

η

−

− − ∞

∞

−

∞


  ≤ − <   


 = ≥

0

 

where ( )1
0,min ii n

η η
≤ ≤

∈ , and iη  is the unique positive solution of the equation  

( ) ( )
1 1

1 0, 1,2, , .
1

i i
i

i i

f v g v
i n

v vα α η
α− −+ + = =

−
  

Thus, the case of positive discrete-time systems with homogeneous vector 
fields of degree less than one has not been previously examined and studied by 
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earlier authors.  

4. Main Result  

In this section, we provide a sufficient condition for global exponential stability 
for the case discrete-time of positive systems with homogeneous vector fields of 
degree less than one.  

Theorem 4.1 (Discrete-time case). Consider the system (2) that satisfies 
Assumption 1 and Assumption 2 and 0 1α< < . If there exists a vector 0v >  
such that  

( ) ( ) ,f v g v+ < 0  

then system (2) is globally exponentially stable for all bounded time delays. Spe-
cifically, each solution ( )x t  of (2) satisfies  

( ) , ,
v kx k kϕ γ +∞
≤ ∈  

where ( )
max 0
max

v

d s
sϕ ϕ

∞− ≤ ≤
= , 

1
max ii n

γ γ
≤ ≤

=  with iγ  is the is the unique positive 

solution of the equation  

( ) ( )
max 1 0, 1,2, , .di i

i i
i i

f v g v
i n

v v
αγ ϕ γ−−+ − = =   

Proof. For 1λ ≥ , we observe that the function varies with the variable iγ   

( ) ( ) ( ) max 1 1d
i i i i i ih f v g v v α αγ γ ϕ λ γ−− −= + −  

which has ( ) ( )0 0ih f v= > , due to the order-preserving property of ( ).f . 
Furthermore, when 0iγ >  the function ( ).h  is strictly decreasing. Therefore, 
there exists a unique 0iγ >  such that ( ) 0ih γ = . 

Let 
1
max ii n

γ γ
≤ ≤

= , then  

( ) ( ) max 1 1 0, 1,2, , .d
i i if v g v v i nα αγ ϕ λ γ−− −+ − ≤ =   

Define  

( ) ( ) .i k
i

i

x k
z k

v
λ ϕ γ= −  

We will prove ( ) 0,iz k k≤ ∈  by induction on k. When 0k = , according to 
the definition of ϕ , we have ( ) v

x k ϕ λ ϕ
∞
≤ ≤ , with 1λ ≥ . Therefore,  

 ( ) ( )0 1 0.iz ϕ λ ϕ λ ϕ≤ − = − ≤  

Assume that ( ) 0iz k ≤  holds for all k m≤ , i.e., ( ) kx k vλ ϕ γ≤ . Since ,f g  
are order-preserving and homogeneous of degree 0α > , we get  

( )( ) ( ) ( )m mf x m f v f vαα αλ ϕ γ λ ϕ γ≤ =  

( )( )( ) ( )( )
( )( ) ( )

( ) ( )max

m d m

m d m

m d

g x m d m g v

g v

g v

α αα

α αα

λ ϕ γ

λ ϕ γ

λ ϕ γ

−

−

−

− ≤

=

≤

 

Therefore  
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( ) ( )( ) ( )( )( )

( ) ( ) ( )

( ) ( )

max

max

1 1

1

1 11

1

1

1

i i i
i i

m dm
i i

i

dm
i i

i

m
i

i
m

x m f x m g x m d m
v v

f v g v
v

f v g v
v

v
v

α α αα α α

αα α

α αα α α

α

λ ϕ γ λ ϕ γ

λ ϕ γ γ

λ ϕ γ ϕ λ γ

λ ϕ γ

−

−

− −

+

 + = + − 

 ≤ + 

 = + 

≤

=

 

Since 0 1γ< <  then  

( ) ( ) ( )1 11
1 1 0,i m m

i
i

x m
z m

v
α αλ ϕ λ ϕ γ λ ϕ λ ϕ γ+ ++

+ = − ≤ − = − ≤  

i.e., ( )1 0iz m + ≤  holds. Thus ( ) v kx k λ ϕ γ
∞
≤ , k +∀ ∈ . Let 1λ +→ , we 

obtain a true statement.                                            □ 
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