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Abstract 
This paper investigates the use of Artificial Neural Networks (ANN) to enhance 
Group Owner (GO) selection in Mobile Ad hoc Networks based on Wi-Fi Direct 
technology. These networks are decentralised, with no fixed access point, and 
require optimal GO selection to ensure group persistence with maximum sta-
bility. Traditional GO selection methods, based on a single criterion such as In-
tent Value, can lead to inappropriate GO selection and fail to consider the het-
erogeneous and the dynamic nature of the network. To overcome this issue, we 
design a classification model and a regression model, both based on Artificial 
Neural Network techniques. The classification model identifies the most suita-
ble node to act as the GO based on several parameters. It enables fast, efficient 
decision-making by directly selecting the GO from the available nodes, based on 
a binary output (0 for GO or 1 for noGO). The regression model provides a 
continuous estimate of Intent Value of each node based on several parameters 
collected on the node, offering a finer measure of a device’s willingness to be-
come a GO. These models were trained with a weighted dataset and evaluated 
using the performance metrics recommended for classification and regression 
in Artificial Neural Networks. The results show that these ANN models offer a 
promising solution for improving the management of ad hoc networks by 
providing more adaptive and intelligent GO selection decisions. Our approach 
ensures that the most capable node is elected as group owner. 
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1. Introduction 

Mobile Ad hoc Networks (MANETs) have emerged as a cornerstone of modern 
wireless communication, enabling mobile devices to establish autonomous, infra-
structure-free connections. These decentralized networks are particularly valuable 
in scenarios where traditional network infrastructure is unavailable or impracti-
cal, such as disaster recovery, military operations, or remote areas [1]. The self-
organizing and self-configuring natures of MANETs and their dynamics make 
them well-suited for various applications, but they also introduce challenges re-
lated to resource allocation, topology management, and network stability. 

Within the broader scope of MANETs, Wi-Fi Direct has gained prominence as 
a specialized protocol designed to facilitate Peer-to-Peer (P2P) communication 
between devices. Wi-Fi Direct eliminates the need for a traditional central Access 
Point, relying instead on the selection of a Group Owner (GO) to coordinate com-
munications within a P2P group [2] [3]. The role of the GO is negotiated during 
the group formation phase and remains unchanged until the group is destroyed 
or reconfigured. The GO selection process is dynamic and essential for network 
performance and quality of service. Once elected, the GO acts like an access point, 
the only difference being that it is not fixed, therefore it is called Soft Access Point 
(SoftAP). In a group, the GO is responsible for resource management (channel 
access scheduling, power measurements), data routing (capability of forwarding 
messages between nodes), and maintaining network stability (coordination of in-
tra and inter-group communications). Work and traffic are centralized at the GO 
since he is the only node allowed to cross connect nodes and he has knowledge of 
all node labels within a group. Consequently, the selection of the GO must be op-
timal to elect the best equipment with sufficient resources to manage the group. 
Knowing that groups are generally heterogeneous, where different types of equip-
ment with different characteristics may be included. A number of studies have 
already been carried out to improve GO selection and the WiFi Direct group for-
mation process [1] [4]-[7], but most of these studies are based on a single param-
eter and do not take into account all the factors that can influence device’s ability 
to manage the group. 

To overcome these limitations, there are a number of advanced techniques, 
such as Artificial Neural Networks (ANN), which are being developed as general-
izations of mathematical models of human cognition or neural biology [8]. They 
offer promising solutions to complex problems thanks to their ability to learn and 
adapt [9]. The models used in ANNs make it possible to combine several input 
parameters to categorise objects (classification) or to predict a result (regression). 
Deep Learning and Artificial Neural Networks have already been used to solve 
cluster head election problems in Wireless Sensor Networks [10]-[14]. 

In this paper, we are exploring the use of ANNs to optimise the selection of GOs 
in Wi-Fi Direct groups. By addressing the limitations of traditional methods, the 
proposed approach consists to make two types of deep learning models (classifi-
cation and regression) whose incorporates dynamic factors like signal strength, 

https://doi.org/10.4236/cn.2025.173003


A. A. Goggo Petel et al. 
 

 

DOI: 10.4236/cn.2025.173003 57 Communications and Network 
 

battery level, the amount of equipment supported, the degree of mobility, proces-
sor clock frequency, and Intent Value as input. Based on these parameters the 
classification model identifies the most suitable node to act as the GO. The regres-
sion model computes the Intent Value of each node based on the same parameters 
and compare it to the Intent Value chosen during the negociation to predict the 
node’s ability to become GO. 

The proposed classification and regression models are designed to work in syn-
ergy. The classification model enables fast, efficient decision-making by directly 
selecting the GO from the available nodes, based on a binary output (0 or 1). The 
regression model, on the other hand, provides a continuous estimate of Intent 
Value, offering a finer measure of a device’s willingness to become a GO, so the 
node with the highest Intent Value is selected as the GO. This holistic approach, 
based on Machine Learning, provides a better response to the challenges of mod-
ern ad hoc networks, as it integrates multiple criteria and continuous evaluations 
for optimal designation of the GO in a group. By taking advantage of the learning 
capabilities of neural networks, our solution aims to ensure that the right GO is 
chosen, which will improve the overall performance of netwoks, ensuring smooth 
and reliable communication in various usage scenarios. To validate these models, 
we also propose in this paper an approach for electing the GO from among a set 
of neighbouring devices that are all within communication range. 

The rest of the paper is organized as follows: Section 2 presents the overview of 
Wi-Fi Direct and related work on the GO selection; in Section 3, we provide the 
proposed models scheme; Section 4 provides theorical evaluation of the proposed 
models; Section 5 presents our GO selection approach based on the proposed 
models; conclusion and future works are presented in Section 6. 

2. Overview of Wi-Fi Direct and Related Work  

Wi-Fi Direct, also named Wi-Fi P2P, is a popular wireless communication tech-
nology that enables compatible devices such as laptops, smartphones, printers, 
smart TVs, cameras and other appliances to connect directly to each other with-
out the need for an intermediate Access Point (AP) [15]. Unlike traditional in-
frastructure mode, where devices connect to a central access point, it allows Wi-
Fi Direct-enabled divices to dynamically negotiate and select one of the mobile 
devices as Group Owner. The Group Owner, once elected for a group, must play 
the same role as an access point as in Wi-Fi infrastructure mode [16]. So the 
choice of GO must be optimal enough to build a sustainable group and keep the 
group running smoothly. In the subsequent sections, we provide a technical 
overview of Wi-Fi Direct and recent developments for the group formation and 
GO selection. 

2.1. Technical Overview 

According to [17], the Wi-Fi Direct protocol is based on the standard WLAN in-
frastructure mode. This network known as a P2P Group is a topology consisting 
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of a mandatory P2P Group Owner (GO) and zero or more P2P Clients. A P2P 
Group is functionally equivalent to a Basic Service Set (BSS) in legacy Wi-Fi net-
work and the GO takes over all the functions of a real Access Point. In this archi-
tecture, a P2P device, if implemented with multiple MAC functionality, can also 
support simultaneous operation by connecting to a P2P Group and to a conven-
tional Wi-Fi Access Point [18]. Figure 1 illustrates the Wi-Fi Direct architecture 
[18]. 

 

 
Figure 1. Wi-Fi direct architecture [18]. 

 
Several features have been implemented in Wi-Fi Direct technology such as: 

Device Discovery, Service Discovery, Group Formation, Power Saving Schemes 
and Security [3] [15]-[18]. 

The P2P Device Discovery procedure enables two devices to find each other in 
their wireless range and establish a connection. It is based on the standard discov-
ery method used in traditional Wi-Fi, involving the scanning and finding phases 
denoted in the IEEE 802.11-2012 standard [19]. During the scanning phase, a P2P 
device performs traditional Wi-Fi scan (passive scan) through all supported chan-
nels in order to collect information on existing P2P groups and Wi-Fi networks. 
In the finding phase, the P2P Device alternates between two states (Search and 
Listen) in order to come to a common channel for the communication. 

Service Discovery is an optional procedure in Wi-Fi Direct. The procedure 
starts after the Device Discovery and prior to the Group Formation procedure. By 
using Generic Advertisement Service (GAS) protocol [20]. It allows a P2P Device 
to limit the search to specific P2P devices or types and to connect to the latter only 
if they offer the intended service [15]. 

After successfully completing the Device Discovery procedure, which is man-
datory, and the optional Service Discovery procedure, P2P Devices can establish 
the P2P Group. During the Group Formation, the device that will act as GO is 
determined. Three types of P2P Group Formation schemes are possible in Wi-Fi 
Direct: Standard Group Formation, Autonomous Group Formation and Persis-
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tent Group Formation.   
• In Standard Group Formation, two P2P Devices negotiate the role of the P2P 

GO. The GO Negotiation is a three-way handshake (GO Negotiation Re-
quest/Response/Confirmation). During the handshake, the two devices send 
to each other a randomly chosen numeric value called Intent Value. The Intent 
Value ranges from 0 to 15. It measures the desire of the P2P Device to be the 
P2P GO. The P2P Device sending the higher Intent Value shall become GO. 
In case both P2P devices send equal GO Intent values, a tie breaker bit is used 
for decision and the device with tie breaker bit set to 1 shall become GO. Figure 
2 illustrates the native procedure for the GO selection, based on the Intent 
value comparison between two P2P devices during Standard Group For-
mation. 

 

 
Figure 2. Native procedure for GO selection. 

 
• In Autonomous Group Formation, the role of GO is not negotiated. Instead, a 

P2P Device announces itself as GO and starts sending Beacons. This process is 
very similar to the legacy Wi-Fi in which an AP directly sends Beacons into 
the network to become discoverable.  

• In Persistent Group Formation, by using P2P invitation procedure, a P2P De-
vice sends an invitation to another P2P Device, which was previously con-
nected to it in a P2P Group, in order to reinstantiate the P2P Group. Thus, the 
group should first be declared as persistent so that if a P2P device recognizes 
that it has established a persistent group with another corresponding device in 
the past, either P2P device can quickly re-establish the group.  

In Wi-Fi Direct, the P2P GO, which acts as a Soft-AP, must be a battery pow-
ered device and have limited lifetime. Hence, Wi-Fi Direct introduces two novel 
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schemes for power saving in the P2P Devices. These schemes are: Opportunistic 
Power Save (OppPS) [17] and Notice of Absence (NoA) [17]. 

Wi-Fi Direct requires all P2P Devices to implement Wi-Fi Protected Setup 
(WPS) [21] in order to secure the connection establishment process and commu-
nication in the P2P Group. In WPS scheme, the P2P GO implements the internal 
Registrar whereas the P2P Client implements Enrollee. The internal Registrar gen-
erates and issues the network credentials to Enrollee. The Enrollee (P2P Client) 
reconnects to the internal Registrar (P2P GO) using the new credentials. 

2.2. Related Work on Group Formation and GO Selection 

Several studies have been carried out on Group Formation and GO selection, 
which is a critical aspect directly affecting the performance of Wi-Fi Direct net-
works, including latency, power consumption, quality of service, throughput and 
so on. 

Authors in [22] proposed multi-hop communication in Wi-Fi Direct using P2P 
Concurrent Device and Ad-hoc On Demand Distance Vector (AODV) reactive 
routing protocol [23]. Routing is established during Device Discovery phase to 
allow multi-hop communication. 

In [24], authors proposed EMC (Efficient Multi group formation and Commu-
nication) protocol for Wi-Fi Direct. In EMC scheme, the P2P GO is elected based 
on remaining battery status of the device. 

In [5], authors proposed a dynamic election of P2P GO in Wi-Fi Direct. The 
elected leaders can be replaced dynamically based on clustering strategy such as 
battery status, speed of the user and direction of motion etc. The authors also pre-
sented a template for writing clustering algorithms for efficient Group Formation. 

Authors in [18] proposed a combined metric approach to select the P2P GO 
based on several parameters. The parameters are normalized and weighted to 
compute Intent Values of each device. An election algorithm is then used to select 
the P2P GO. The same idea is explored in [7], but the authors go further by pro-
posing a framework for multi-hop ad hoc networking using Wi-Fi Direct in An-
droid smart devices. The framework includes a connection establishment protocol 
and a group management protocol. 

The work carried out in [16] proposes a modified group formation scheme 
among multiple devices. The proposed scheme formulates the GO selection prob-
lem as an optimization problem which is solved using integer programming (IP). 
The GOs are selected based on link capacities with the objective to maximize the 
overall network throughput. 

In [25], authors proposed an alteration to the standard Group Formation. In 
their proposed scheme, during GO Negotiation, each device sends an flag bit set 
to 1, to indicate its willingness to serve as the so called Emergency Group Owner 
(EGO). The EGO is present in the group after the GO is selected. The EGO takes 
over the group and assumes GO role if the GO leaves voluntarily or involuntarily. 

In [26] the authors propose the GO selection method by maximizing bit rate. 

https://doi.org/10.4236/cn.2025.173003


A. A. Goggo Petel et al. 
 

 

DOI: 10.4236/cn.2025.173003 61 Communications and Network 
 

However, the performance of the proposed system is severely acted when GO se-
lection is required for Internet connectivity via a Wi-Fi access point or a cellular 
base station (BS). Wi-Fi access point or a cellular base station (BS). One of the 
reasons for the poor performance of this method is that the quality of the link 
between the GO and the AP/BS imposes a bottleneck on the average network 
throughput. Furthermore, the work is limited to the formation of a single group, 
and the proposed scheme cannot be used to create several P2P groups to connect 
users with high population density [16]. 

Another method is proposed by [27]. This method is particularly useful during 
the device discovery phase. WD2 applies a parameter to control the number of 
messages sent. Before sending the probe packets, each device generates copies 
which are sent consecutively. Assuming there are N devices that can discover each 
other, receiving multiple packets enables the devices to discover each other [27]. 
Despite its advantages, WD2 introduces an additional overhead due to the in-
creased number of messages exchanged to accurately measure RSSI and calculate 
the intent value. 

None of the works presented above explores the possibility of using techniques 
based on Artificial Intelligence (AI), in particular Artificial Neural Networks 
(ANN), to elect the GO. 

3. Proposed ANN Models  

Our principal aspect in this research is the need to improve GO selection to ensure 
stable connectivity and energy efficiency in Wi-Fi Direct networks. Traditional 
methods, often based on simple criteria such as Received Signal Strength Indicator 
(RSSI), do not take into account the complexity and dynamics of modern ad hoc 
networks. They can lead to sub-optimal GO choices, resulting in reduced quality 
of service, increased energy consumption, and network instability. Faced with 
these limitations, our aim is to design models based on Artificial Neural Networks 
(ANNs) for optimized GO election and calculation of the Intent Value, a quanti-
tative measure of a device’s willingness to become a GO. In this section, we present 
the parameters used to collect the data and the proposed architecture for the clas-
sification and regression models. 

3.1. Dataset Preparation  

Data quality is essential for effective training of Artificial Neural Network models. 
Machine Learning techniques are designed to identify and exploit hidden patterns 
in data for predicting the outcome of future events for classification and regres-
sion problems [28]. Data collection is an important step since Machine Learning 
require representative data, possibly without bias, to build an effective Machine 
Learning model for our problem. In this section we describe the key steps in data 
preparation, which include data collection, pre-processing and division into train-
ing and test sets.   

1) Data collection: The data used to train our models come from simulations, 
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real measurements in ad hoc network environments and synthetic data obtained 
from various repositories [29]-[32]. Features collected from our dataset include:   

(a) ID: This feature simply refers to the device ID.  
(b) Received Signal Strength Indicator (RSSI), which measures the quality of 

the signal received by a device. The data rate of the wireless link is badly affected 
by low RSSI. If the P2P group is used for content distribution for example, the 
strong connection between the group members and the GO is more crucial. The 
RSSI of GO to group members have significant impact on the P2P group perfor-
mance.  

(c) Battery level, indicating the amount of energy remaining in the device. P2P 
devices, including the GO, are battery powered devices. If the battery life is not 
considered in electing a GO, there is a probability that a P2P device having low 
value of remaining battery is elected as GO. The GO being the most active device 
in the P2P group would exhaust soon and the P2P group will be broken.  

(d) Processing capability (CPU clock and memory), which reflects the de-
vice’s computing and storage capacity. The device which becomes GO shall be 
equipped with enough processing power and large memory to better serve the 
connected clients. The processing power and memory requirements for GO might 
become more significant when the P2P group consists of a large number of nodes 
and the group is intended for multimedia application.  

(e) Number of neighbors: Number of devices in direct range. A node with 
more neighbors can ensure better connectivity within the network. Because the 
P2P group is intended to connect large number of devices, then it is important to 
elect as GO the P2P device which has more devices in its range to connect as cli-
ents. There should also be a limit on maximum number of nodes in a P2P Group. 
In our case, this is the maximum number of devices that can be connected simul-
taneously (the amount of device it can support without compromising network 
quality).  

(f) Device mobility: Indicates the speed of movement of each device. In realistic 
mobile ad-hoc environments, each mobile host is free to change its mobility pa-
rameters randomly at any time [33]. Less mobile devices are preferred to become 
GO to minimize frequent topology changes and to make the group more stable. 
There are several models of mobility, such as Gauss-Markov Mobility (GMM), 
Random Waypoint (RWP), Random Walk (RW), Random Direction (RD), and 
Recurrent Self-Similar Gauss-Markov (RSSGM) [33]. In our case, the data pre-
sented for this feature were obtained using the RSSGM model, which shows the 
greatest accuracy compared to other models [31] [33].  

These data, obtained from 356 pieces of equipment are then aggregated to form 
a dataset representative of the different network conditions that the models will 
have to manage.  

2) Data preprocessing: Pre-processing is an important step to ensure that the 
data are in an optimal format for training ANN models. The following steps are 
applied:   
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(a) Data cleaning: Missing or abnormal data (such as outliers) are processed. 
Missing values can be imputed using the mean or median of the other values in 
the same column. In our dataset, we do not have any missing data or outliers.  

(b) Normalization: Features such as RSSI, battery level and CPU clock can have 
very different scales. To ensure that each feature contributes equally to model 
training, data are normalized to a standard range (usually between 0 and 1). Here 
we have used the Min-Max Scaler method [34]. The formula to scale a feature is 
given by Equation 1, where x , minx  and maxx  are respectively the value to 
scale, the minimum value and the maximum value of the dataset. 

min
scaled

max min

x xx
x x

−
=

−
                       (1) 

(c) Categorizing feature values: In order to determine the suitability of a device 
and to understand the values of these features, we have graded these values ac-
cording to different mentions. This procedure is described in Table 1 and Table 
2, which present the categorization the RSSI, Battery and CPU level feature values 
respectively. For RSSI, we use the categorization proposed in [26].  

 
Table 1. Categorization of RSSI levels by received power ( rP ). 

RSSI Level Min rP  Max rP  Description 

0 −∞ −81 Very bad signal 

1 −81 −78 Bad signal 

2 −78 −73 Average signal 

3 −73 −65 Good signal 

4 −65 0 Excellent signal 

 
Table 2. Battery and CPU level categorization. 

Level Battery in (%) CPU Clock in (MHz) Description 

0 0 - 20 1000 - 1300 Very Bad 

1 30 - 50 1400 - 1600 Bad 

2 60 - 80 1700 - 2000 Good 

3 80 - 100 2100 - 3000 Very Good 

 
As one of our models is a binary classification model then for the Intent Value 

column we will categorize the values into two classes 0 and 1 according to Table 3.  
 

Table 3. Intent value classes. 

Intent Value Classe Description 

0 - 7 0 noGO 

8 - 15 1 GO 

 
This distribution is justified by the fact that in the classic GO selection, the 
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role is assigned to the device that has emitted the highest value of intent. We 
have therefore considered values between 0 and 7 to be low and those between 
8 and 15 to be high. And 8 is the midpoint of the range [0, 15]. In the Wi-Fi 
Direct protocol, two Intent values are compared at the time of negotiation, 
whereas our predictive models only know the local characteristics (RSSI, battery 
level, memory, etc.) of a device and try either to predict whether this node has a 
good chance of becoming a GO, or to predict what its Intent Value might be. 
Consequently, as our models have no knowledge of the other nodes at the time 
of prediction, we simply teach it to classify nodes as GO or noGO according to 
their Intent Value level in absolute value. This is where the empirical threshold 
of 8 comes into play. This threshold is not a protocol truth, but a practical ap-
proach that we have used to formulate the problem in binary classification, 
which makes it possible to identify nodes with a high propensity to become GOs 
where several nodes will be compared. This balanced cut-off also makes it pos-
sible to create a symmetrical binary classification, leading to a more balanced 
model. 

3) Data Processing Division: To properly evaluate model performance, we 
have used the standard Machine Learning distribution. The dataset is divided into 
three distinct sets:   
• Training Set: Representing 70% of the dataset, this set is used to train the clas-

sification and regression models. This majority share enables the model to 
learn the relationships between inputs and outputs. Sufficient data are required 
for the model to generalise.  

• Validation Set: Representing 15% of the data set, it is used to adjust model 
hyperparameters and prevent overfitting. The model does not see this data 
during training, which gives a good indicator of the performance of the data 
during adjustment.  

• Test Set: The remaining 15% is used to evaluate the final performance of the 
models on data they have never seen before.  

This division allows us to ensure that the models generalize well beyond the 
data on which they have been trained. 

3.2. Classification and Regression Models 

Our classification (Figure 3) and regression (Figure 4) models are structured in 
the form of a multi-layer neural network (Multi-Layer Perceptron, MLP). MLP is 
composed of multiple layers, including an input layer, hidden layers, and an out-
put layer, where each layer contains a set of perception elements known as neu-
rons. The neurons of the input layer of our model is composed of the device fea-
tures mentioned in section 2, except for the ID. 

Both networks include two hidden layers (each with eight neurons) using the 
Rectified Linear Unit (ReLU) as activation function (Equation 3). The ReLU func-
tion is chosen for its acceleration of learning and mitigation of the problem of the 
gradient disappearing. In fact, the simplicity of the ReLU reduces the time re-
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quired to perform calculations during forward and reverse propagation in the net-
work, which speeds up the learning process. ReLU tends to activate only some of 
the neurons at a time, making the network lighter and less costly in terms of com-
putation [35]. In addition, unlike other functions, the ReLU allows a freer flow of 
the gradient, avoiding problems where the gradients become too small for effec-
tive updating during training [35]. Our models have 2 hidden layers, each consist-
ing of 8 neurons. The choice of these quantities was guided by the tests carried out 
during the training. In ANN, the number of hidden layers and the number of neu-
rons generally depend on the number of input features and the size of the dataset 
[11]. In our case, we have observed that increasing these values tends to overfit-
ting. 

The output layers of both models are formed by a single neuron. For the classi-
fication model, since we are doing a binary classification a Sigmoid activation 
function (Equation 4) is used for the output, producing a probability indicating 
whether a device is suitable for election as a GO or not. Beside the classification 
model, the regression model calculates the Intent Value of each node. Precise cal-
culation of this value enables more nuanced and dynamic decision-making, by 
adjusting the probability of a device being chosen as a GO according to changing 
network conditions. So the output layer of our regression model is activated with 
Linear activation (Equation 5), to produce a continuous value representing the 
Intent Value, ranging from 0 to 15 according to the Wi-Fi direct technology spec-
ification. 

If we note ( ) ( ) ( ) ( )
1 2, , ,n n n n

mY y y y=   the set of neurons in the thn  layer, the 
functioning of the neurons in the model is broken down into two phases:   
• Aggregation phase: It consists of calculating the weighted sum ( ( )j

iX ) of the 
neuron’s inputs, to within one bias ( ( )jb ), as shown in Equation 2: 

( ) ( ) ( ) ( )1 1

1

m
j j j j

i ik k
k

X w y b+ +

=

= +∑                      (2) 

• Activation phase: The neurons are then activated, to give an output value, by 
applying an activation function to the aggregated values. The output values of 
the hidden layers are obtained by Equation 3: 

( ) ( )( )
( ) ( ), if 0max 0,

0, otherwise

j j
j j i i

i i
X XZ X

 >= = 


               (3) 

The output values of the two models are obtained at the output layer level by 
Equation 4 for the classification model and Equation 5 for the regression model. 

( )
1

1 e
j

iZ
Y

−
=

+
                         (4) 

( )

( ) ( ) ] [
( )

0, if 0

, if 0,15

15, if 15

j
i

j j
i i

j
i

Z

Y Z Z

Z

 ≤
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

≥

                    (5) 
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Figure 3. The classification model 

 

 
Figure 4. The regression model 

4. Models Performance Evaluation  

In this section we carry out a theoretical evaluation of our two models for GO 
selection and Intent Value calculation in Wi-Fi Direct ad hoc networks. These 
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models aim to improve network performance and stability by using more complex 
and adaptive devices features than traditional methods. In this section we also 
present the experimental environment and evaluation indicators specific to each 
of the models. 

4.1. Experimental Environment  

The hardware and software conditions in the experimental environment of this 
article are shown in Table 4. 

 
Table 4. Experimental environment. 

Software and hardware configuration Configuration parameter 
CPU AMD Ryzen5-3500U @2.1 GHz 
RAM 8G 

Operating System Windows 11 Professional 64-bit 
Programming language Python 3.7.0 

Deep learning framework Tensorflow 1.14 
Deep learning library Keras 2.3.1 

Data visualization library Matplotlib 3.10.1 

4.2. Selection of Evaluation Indicators 

In order to evaluate the GO selection and Intent Value prediction performance of 
our models, several evaluation indicators are selected, depending on the type of 
model. 

For the classification model, these indicators are:   
• Confusion matrix compares the model’s predictions with the actual results, 

showing the numbers of correct and incorrect predictions in four categories: 
True Positive (TP), False Positive (FP), True Negative (TN) and False Negative 
(FN), providing an overview of the effectiveness of the model for classifying 
data.  

• Accuracy and precision measures the proportion of correct predictions made 
by the classification model in relation to all predictions made. The accuracy 
metric (Equation 6) is defined as the proportion of true predictions T  for 
each class iC  1, ,i N∀ =   among the total number of predictions. 

1 TP TNAccuracy
Total Predictions TP TN FP FN

iC
N
i T
= +

= =
+ + +

∑            (6) 

The precision of the model can be formally defined as the frequency of correct 
predictions for actual positive instances as in Equation 7: 

TPPrecision
TP FP

=
+

                       (7) 

The accuracy curve shows the evolution of the model’s accuracy during train-
ing, for both the training set and the validation set. It shows whether the model 
continues to improve its predictions.  
• Recall or True Positive Rate (TPR); also known as sensitivity, describes the 
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number of correct predictions is inferred from the confusion matrix as in 
Equation 8. 

( ) TPTPR Recall
TP FN

=
+

                     (8) 

• F-measure is a compromise measure between precision and recall, calculated 
as the harmonic mean of these two metrics (Equation 9). 

Precision TPRF-measure 2
Precision TPR

×
= ×

+
                 (9) 

• ROC curve and AUC is a graphical tool that can be used to evaluate the per-
formance of a classification model by measuring the trade-off between the 
False Positive Rate (FPR) and the True Positive Rate (TPR) at different deci-
sion thresholds. The Area Under the ROC curve (AUC-ROC) is also calculated 
to quantify the overall performance of the model.  

• Loss curve shows the evolution of the cost function (or loss) during model 
training, for both the training set and the validation set. It shows whether the 
model continues to learn efficiently or whether it starts to overfitting at a cer-
tain point. For our model, the loss function used is the Binary Cross-Entropy 
[36], adapted for binary classification tasks.  

The regression model designed to calculate the Intent Value is evaluated using 
specific metrics that measure the accuracy of the predictions of continuous values. 
Noting that n  is the number of samples, y  is the observed Intent Value, ŷ  
is the predicted Intent Value and y  is the mean, these parameters are:   
• The Median Absolute Error (MedAE) measures the median of the absolute er-

rors between predicted and actual values. Its formula is given by Equation 10. 

( ) ( )ˆMedAE , e ˆm d i iy y y y= −                 (10) 

where med is the median function calculated on absolute errors ˆi iy y− . 
• The Mean Absolute Error (MAE) is another metric that measures the average 

of absolute errors, providing a direct view of the average differences between 
predictions and actual values. MAE is calculated by Equation 11. 

( )
1

0

1M , ˆAE ˆ
n

i i
i

y y y y
n

−

=

= −∑                   (11) 

• The Mean Square Error (MSE) calculates the average of the squares of the 
differences between the predicted values and the actual values. It is defined as 
follows (Equation 12): 

( ) ( )
1 2

0
M , ˆS ˆ1E

n

i i
i

y y y y
n

−

=

= −∑                  (12) 

• The R2 Score measures the proportion of the variance in the target values that 
is explained by the model. It is defined by Equation 13. 

( ) ( )
( )

21
2 0

21

0

, 1
ˆ

ˆ
n

i ii
n

ii

y y
R y y

y y

−

=
−

=

−
= −

−
∑
∑

                 (13) 
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• The MAE curves illustrate how the average error between predicted and actual 
values changes of the regression model is trained.  

4.3. Results and Interpretation 

After training our models by applying a weighting to the other features to generate 
the “Intent Value” column in our dataset, we were able to adjust the target to bet-
ter reflect the underlying relationships between inputs and outputs (Equation 1). 
This strategy created consistency between the inputs and the target variable, which 
improved model performance. This weighting process strengthens the links be-
tween relevant features and the target, which is often essential in ANN based ap-
proaches. 

The performance curves obtained from the classification model are shown be-
low: 
• In Figure 5, which presents the ROC curve and AUC, the ROC curve is close 

to perfection, with an AUC of 1.00, which is ideal. This indicates that the model 
has an excellent ability to distinguish between classes 0 and 1 without any er-
ror.  

• The training loss curve (blue line) and the validation loss (orange line) curve 
are shown in Figure 6. Both curves decrease steadily with the number of 
epochs. This means that the model is improving with each epochs, reducing 
the prediction error. What’s more, the loss decreases for both training and val-
idation sets, indicating that the model is learning well without noticeable over-
learning.  

• Table 5 shows the confusion matrix for both classes. For the Class 0 (noGO), 
the model correctly predicted 30 instances of noGO (true negatives) but it mis-
classified 9 instances as GO when they were noGO (false positives). For Class 
1 (GO), the model correctly predicted all 38 instances of GO (true positives). 
No GO node was misclassified as noGO (zero false negatives).   

 

 
Figure 5. ROC curve and AUC. 
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Figure 6. Loss curve of the classification model. 

 
Table 5. Confusion matrix for classification model. 

 Actual instance 
 Positive (P) Negative (N) 

Predicted Positive (P) 38 9 
Values Negative(N) 0 30 

 
• The curves presented in Figure 7 show the evolution of training accuracy (blue 

line) and validation accuracy (red line). Accuracy increases steadily for both 
sets (training and validation). The red curve reaches a high accuracy (0.90) 
after a few epochs, while the training curve gradually catches up, suggesting 
that the model has a good generalization capacity and a very good validation 
accuracy (approx. 88% - 90%), demonstrating that it is still effective in distin-
guishing classes and is not overlearned, as the curves follow a similar trajectory 
without significant deviation. 

 

 
Figure 7. Accuracy curves of the classification model. 
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A summary of the performance of our classification model is presented in Table 
6.   

 
Table 6. Summary of the performance of the classification model. 

Metrics 
Class 0 

(NoGO) 
Class 1 
(GO) 

Global Interpretation 

Overall loss - - 0.3308 
The overall loss is relatively small,  

suggesting that the model fits the data 
well. 

Accuracy 1.00 0.81 0.8831 

100% of predictions for noGO are  
correct, and 81% for GO. The model 

correctly classifies around 88% of 
nodes, indicating good overall accuracy. 

Recall 0.77 1.00 - 
The model detects 77% of noGO nodes, 

but captures all GO nodes. 

F1-Score 0.87 0.89 - 

The balance between precision and  
recall is excellent for both classes,  

indicating a good compromise for each 
class but slightly higher for class 1 

(GO). 

 
The classification model used to elect the Group Owner (GO) in a Wi-Fi Direct 

network showed solid performance with an overall accuracy of 88%, an AUC of 
1.00, and a minimum loss of 0.33. The use of class weighting better managed the 
potential imbalance between GO and noGO classes, improving the model’s ability 
to correctly identify nodes that could be GO. This ensures a more accurate selec-
tion of the GO, resulting in smaller architecture and very good performance. 

The performance of our regression model was obtained by calculating the met-
rics presented in section 4 (Equations 10, 11, 12, and 13), that measure the accu-
racy of continuous value predictions. These performances are summarised as fol-
lows:   
• In Loss curves for Regression presented in Figure 8, the loss drops rapidly dur-

ing the first epochs and then stabilizes, with a slight variation. This shows that 
the model has quickly learned to reduce the error. In the same figure, the train-
ing curve (in blue) and validation curve (in orange) are very close to each other, 
which means that there is no overlearning. The model is able to generalize well 
on data not seen during training. 

• In MAE curves (Figure 9), the MAE falls in a similar way to the loss during 
the first epochs (around 10 epochs). After this initial drop, the error stabilizes 
at around 1 for training and slightly below 1 for validation, showing that the 
model predicts value intents relatively well, with an average error of around 1 
unit. 

• The Prediction curve presented in Figure 10, shows a strong correlation be-
tween actual and predicted values, i.e. the points are close to the red diagonal 
line (representing a perfect match), indicating a good match between model 
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predictions and actual values. There is also a slight deviation in some places, 
with a few points deviating slightly from the diagonal line, particularly for 
higher values (around 14 or 15). This suggests that the model is slightly less 
accurate for extreme values, but overall, it is able to predict the majority of 
values with acceptable accuracy.  

 

 
Figure 8. Loss curves of the regression model. 

 

 
Figure 9. MAE curves. 
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Figure 10. Prediction vs. actual curve. 

 
In order to visualize the intent values prediction results, we have represented 

the 10 first instances in Table 7.   
 

Table 7. Actual and predicted values of the regression model. 

Nodes 0 1 2 3 4 5 6 7 8 9 
Actual 
Value 

3 8 9 9 2 6 9 5 6 11 

Predicted 
Value 

4 8 8 9 3 6 9 5 6 10 

 
Table 8. Summary of the performance of the regression model. 

Metrics Value Interpretation 

MedAE 1.00 
Half of the predictions have an absolute error of less than 

or equal to 1 unit, indicating stability in the model’s  
predictions. 

MAE 0.6104 
A MAE of 0.61 indicates that, on average, the error  

between predicted and actual values is around 0.61 units, 
which indicates good overall accuracy. 

MSE 0.7403 
A relatively low MSE shows that the squared error between 

the actual and predicted values is moderate, indicating a 
good predictive capacity for the model. 

R2-Score 0.9416 

The high R2-Score means that the model captures 94% of 
the variance in the data, which shows that it explains the 
relationship between the input variables and the output 

well. 

 
With an MSE of 0.74, a MAE of 0.61 and an R2 of 0.94, our regression model 

with the weighted dataset demonstrated solid performance, indicating that it ex-
plained 94% of the variance in the data. The error and loss curves show fast learn-
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ing and efficient generalisation, without overlearning. The majority of the predic-
tions match the actual values, although differences are apparent for the extreme 
values of Intent-Value (14-15). Overall, the model is accurate and stable. Table 8 
summarises the performance of the Regression model. 

5. Group Owner Selection  

In this section, we present a new GO selection approach (GO-ANN), that incor-
porates the artificial neural network models presented in Section 3. This mecha-
nism, shown in Algorithm 1, allows a device to be selected to act as the GO from 
a set of devices that are all within direct communication range of each other. 

In fact, the Wi-Fi Direct specification restricts the GO negociation procedure 
to two devices i.e. only two interested devices can form a P2P group where one 
becomes GO and then the GO will announce its presence by sending beacons like 
an access point. Other P2P devices and also legacy Wi-Fi stations can join the 
group later as clients. This limitation has several implications for the performance 
for example, in several applications where more than two devices are in a shared 
wireless range and need to from a group to communicate efficiently and quickly. 
In this case, the role of GO must be negotiated automaticaly from all devices in 
the same wireless range and mutually neighbors. 

Our GO election process, called GO-ANN and presented in Algorithm 1, will 
elect a GO from among several neighbouring devices in the same coverage area. 
It is detailed as follows: In the beginning, each node discovers its neighbors. Each 
P2P device computes its Intent Value (IVC) based on our Regression Model. It 
also generates another Intent Value (IVG) by using the classic Wi-Fi Direct 
method. These parameters are sent to a remote P2P device via a packet (Lo-
calDeviceFrame) embedded in the GO Negotiation Request. Upon receipt of the 
GO Negotiation Response, the parameters of the remote P2P device, contained in 
the RemoteDeviceFrame paquet are obtained. The classification model is then ac-
tivated to identify the most suitable node to act as GO between the two pieces of 
devices. If the result of the classification is 0, the local device can be the GO, there-
fore the remote device is disqualified to the selection process. On the contrary, if 
the result of the classification is 1, the remote device can be the GO and the local 
device disqualifies itself from the selection process. 

More specifically, let us assume three P2P devices: A, B and C. Node A sends a 
GO Negotiation Request message to Node C. Node C activates the classification 
model and finds that Node A is the most suitable node to act as GO. Node C sends 
its parameters through GO Negotiation Response frame and disqualifies itself for 
the election. Node A is still active, but does not announce itself as GO, in contrast 
to the standard protocol operation. Node A shares its parameters with Node B and 
finds that Node B is the most suitable node. Node A disqualifies itself and stops 
participating in the election. Node B is still active in the election. Similarly, each 
node continues to participate in the election until it finds another node most suit-
able than itself or if it has performed GO Negotiation with all discovered devices. 
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The election process ends with a single node elected as Group Owner. 
 

 
Algorithm 1. Group owner selection (GO-ANN). 

 

 
Figure 11. GO election time. 

 

 
Figure 12. GO election overhead. 
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This algorithm was simulated on OMNET++ to evaluate the GO election time 
and the overhead level based on the number of devices discovered. The simula-
tions were carried out considering 10 P2P devices whose parameters were ran-
domly generated in accordance with the values defined in the dataset. The random 
nature of these parameters allows us to better evaluate the effectiveness of our 
algorithm, since the selected GO can change from one simulation to another. For 
each number of devices (ranging from 2 to 10) in the group, the simulation was 
run 50 times, and each time the time taken and the level of network overload due 
to message exchange were recorded. 

Figure 11 shows the average GO selection time based on the number of devices. 
It can be seen that the average time taken to elect the GO increases with the num-
ber of devices discovered in the group. But when the number of devices is low (≤ 
5), the average election time of the GO with our approach is lower than with the 
standard election model and the model proposed by Khan et al. in [18]. This time 
begins to exceed other methods when the number of devices exceeds 5. This is 
certainly due to the calculations performed by the regression and classification 
models; these calculations become significant as the number of devices increases. 

For the overhead shown in Figure 12, it can be seen that the network overload 
increases with the number of devices. This is because the number of messages 
exchanged increases as the number of devices increases. Nevertheless, although 
our approach generates more overhead than the standard method, it remains bet-
ter than the approach used by Khan et al. in [18]. 

6. Conclusion and Future Works  

In sum, this work has demonstrated that Artificial Neural Networks (ANN) rep-
resent an innovative and effective solution for improving Group Owner (GO) se-
lection and Intent Value calculation in Wi-Fi Direct mobile ad hoc networks. Ad 
hoc networks, by their very nature, are decentralized and dynamic, and present 
numerous challenges in terms of stability and resource management. GO selection 
is a critical task in these networks, as the proper functioning of the network relies 
heavily on the optimal choice of this central node. The models developed in this 
work offer a smarter approach that is better adapted to varying network condi-
tions, compared with conventional GO selection methods based on simple criteria 
such as RSSI or battery life. The classification model enables GO selection based 
on multiple dynamic characteristics, while the regression model provides a quan-
titative measure of a node’s propensity to become a GO by calculating its Intent 
Value. This combination of the two models enables more robust and flexible de-
cision making, adapted to constantly evolving network environments. The pro-
posed election technique, as compared to other group formation introduces more 
overhead than the standard method and longer time for group formation, how-
ever it ensures that the most capable node is elected as group owner. Empirical 
tests will help confirm the applicability of these models in real-life scenarios, and 
assess their performance in the face of complex and dynamic and hoc networks. 
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