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Abstract 
Aim: This study aimed to investigate the effect of non-synonymous SNPs 
(nsSNPs) of the Glucagon-like peptide-1 Receptor (GLP-1R) gene in protein 
function and structure using different computational software. Introduction: 
The GLP1R gene provides the necessary instruction for the synthesis of the 
insulin hormones which is needed for glucose catabolism. Polymorphisms in 
this gene are associated with diabetes. The protein is an important drug target 
for the treatment of type-2 diabetes and stroke. Material and Methods: Dif-
ferent nsSNPs and protein-related sequences were obtained from NCBI and 
ExPASY database. Gene associations and interactions were predicted using 
GeneMANIA software. Deleterious and damaging effects of nsSNPs were ana-
lyzed using SIFT, Provean, and Polyphen-2. The association of the nsSNPs 
with the disease was predicted using SNPs & GO software. Protein stability 
was investigated using I-Mutant and MUpro software. The structural and 
functional impact of point mutations was predicted using Project Hope soft-
ware. Project Hope analyzes the mutations according to their size, charge, 
hydrophobicity, and conservancy. Results: The GLP1R gene was found to 
have an association with 20 other different genes. Among the most important 
ones is the GCG (glucagon) gene which is also a trans membrane protein. 
Overall 7229 variants were seen, and the missense variants or nsSNPs (146) 
were selected for further analysis. The total number of nsSNPs obtained in 
this study was 146. After being subjected to SIFT software (27 Deleterious 
and 119 Tolerated) were predicted. Analysis with Provean showed that (20 
deleterious and 7 neutral). Analysis using Polyphen-2 revealed 17 probably 
damaging, 2 possibly damaging and 1 benign nsSNPs. Using two additional 
software SNPs & GO and PHD-SNPs showed that 14 and 17 nsSNPs had a 
disease effect, respectively. Project Hope software predicts the effect of the 14 
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nsSNPs on the protein function due to differences in charge, size, hydropho-
bicity, and conservancy between the wild and mutant types. Conclusion: In 
this study, the 14 nsSNPs which were highly affected the protein function. 
This protein is providing the necessary instruction for the synthesis of the 
insulin hormones which is needed for glucose catabolism. Polymorphisms in 
this gene are associated with diabetes and also affect the treatment of diabetic 
patients due to the fact that the protein acts as an important drug target. 
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1. Introduction 

Type 2 Diabetes Mellitus (T2DM) is caused by inability of the pancreatic beta 
cells to produce sufficient insulin hormone against insulin resistance [1]. It is a 
heterogeneous disorder of glucose metabolism characterized by both insulin re-
sistance and pancreatic β-cell dysfunction considered as multifactorial due to 
many genetic and environmental factors involved together in its pathophysiolo-
gy [2] [3] (Before the development of T2DM, individuals develop hyperproinsu-
linemia and the elevated level of proinsulinemia have been significantly asso-
ciated with diabetes [4] [5]. Globally, type 2 diabetes mellitus was diagnosed in 
537 million adults aged 20 - 79 years in 2021 and is projected to affect 783 mil-
lion adults by 2045 [6].  

Glucagon-like peptide-1 (GLP-1) is secreted chiefly by the intestinal L cells in 
the distal small intestine and proximal colon encoded by the proglucagon gene 
and it is a 30 amino acid polypeptide [7] [8]. GLP-1 specifically targets the 
GLP1R (GLP-1 Receptor). The human GLP1R gene is allocated to the long arm 
of chromosome 6 (chr 6p21) and contains 13 exons [9]. The gene is a member of 
the B1 family of G protein-coupled receptors, mainly shows expression within 
islet β cells and contains 463 amino acids containing seven trans membrane do-
mains belonging to the family of G-protein coupled receptors. GLP-1 binds to 
GLP1R gene to activate adenylate cyclase, which activates cyclic adenosine mo-
nophosphate (cAMP) dependent second messenger pathways, including protein 
kinase PKA and Exchange Proteins Activated (Epac) by cAMP, thus increasing 
insulin release through β cells and the number of β cells that respond to glucose 
[10]. Guanine nucleotide-binding protein (G-protein) and G-protein-coupled re-
ceptor (GPCR) were involved in the development of T2 DM [11]. G protein ac-
tivates adenylyl cyclase (AC), which generates “second messenger”, cAMP, which 
regulates glucose homeostasis by regulating glucose uptake, insulin and glucagon 
secretion, synthesis and breakdown of glycogen through protein kinase A (PKA). 
The cAMP is one of the most important cellular signaling molecules in the regu-
lation of insulin secretion by beta cells [12] [13].  
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The objective of this study is to predict the nsSNPs in the GLP1R gene and the 
effect they may impose on the protein structure and function using various com-
putational software. 

2. Material and Methods 
2.1. Data Retrieval 

Data was retrieved from the SNP database of the National Center for Biotech-
nology Information (dbSNP) (http://www.ncbi.nlm.nih.gov/snp). The NCBI SNP 
database was used to access the SNPs of the GLP1R gene (accessed June 2022). 
The primary sequence of the protein (accession number: P43220) encoded by 
the GLP1R, human gene was obtained from UniProtKB database (accessed June 
2022).  

2.2. Gene MANIA: (http://www.genemania.org) 

It is a web interface that finds other genes related to an input gene, using a very 
large set of functional association data. Association data include protein and ge-
netic interactions, pathways, co-expression, co-localization and protein domain 
similarity [14].  

2.3. Sorting Intolerant from Tolerant (SIFT):  
(https://sift.bii.a-star.edu.sg/) 

This is a tool that expresses whether a nsSNP at special position affects the 
structure and function of the protein based on sequence homology and the phy-
siochemical characteristics of substituted amino acid. SIFT computes the norma-
lized probability score (SIFT score) for each substitution. The SIFT score has a 
range of 0.0 to 1.0, the amino acid substitution with a score greater than or equal 
to 0.05 (≥0.05) is predicted as tolerated polymorphism, whereas a score less than 
0.05 (<0.05) is predicted to be damaging ones [15].  

2.4. Protein Variation Effect Analysis (PROVEAN):  
(provean.jcvi.org/) 

This is another sequence homology-based predictor. It is used to assess the 
possible functional influence of nsSNPs on a protein. It predicts the variation as 
deleterious or natural, if the functional impact score is less than or equal to −2.5 
(≤−2.5) it is estimated as a deleterious; score above − 2.5 (>−2.5) is estimated as 
neutral [16].  

2.5. Polymorphism Phenotyping Version2 (PolyPhen-2):  
(genetics.bwh.harvard.edu/pph2/) 

It is a combination of protein 3D structure and multiple homolog sequence 
alignment-based method. It predicts the potential consequences of single amino 
acid substitution on both protein function and structure. The prediction is pro-
vided as benign, possibly damaging and probably damaging according to the po-

https://doi.org/10.4236/cmb.2023.133004
http://www.ncbi.nlm.nih.gov/snp
http://www.genemania.org/
https://sift.bii.a-star.edu.sg/
http://provean.jcvi.org/
http://genetics.bwh.harvard.edu/pph2/


N. K. Alshafei et al. 
 

 

DOI: 10.4236/cmb.2023.133004 51 Computational Molecular Bioscience 
 

sition-specific independent count (PSIC) scores difference between 2 variants 
(wild amino acid (aa1) and mutant amino acid (aa2)). PSIC score has a range of 
0.0 to 1.0. The amino acid substitution with a score of 0.0 to 0.49 is predicted as 
benign, with a score of 0.5 to 0.89 is predicted as damaging and with a score of 
0.9 to 1 is predicted as probably damaging [17] [18].  

2.6. SNPs & GO (Single Nucleotide Polymorphism & Gene  
Ontology) 

SNPs & GO is an accurate method that, starting from a protein sequence, can 
predict whether a mutation is disease-related or not by exploiting the protein 
functional annotation. SNPs & GO collects in unique framework information 
derived from protein sequence, evolutionary information, and function as en-
coded in the Gene Ontology terms, and outperforms other available predictive 
methods [19].  

2.7. PHD-SNP: (Predictor of Human Deleterious SNP)  
(snps.biofold.org/phd-snp/phd-snp.html) 

Predictor of human Deleterious Single Nucleotide Polymorphisms (PhD-SNP) is 
a support vector machine (SVM) based server. This server determines whether a 
certain amino acid substitution is related to disease or neutral by protein se-
quence information, protein structure, conservation and solvent accessibility. 
The output is a probability index with a score of 0.0 to 1.0, when the score is 
higher than 0.5, the substituted amino acid is pathogenic [16] [20].  

2.8. Protein Stability Prediction  

Two software were used to predict the effect of a missense mutation on the pro-
tein’s stability. 

2.8.1. I-Mutant 2.0 https://folding.biofold.org/cgi-bin/i-mutant2.0.cgi 
(http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi) 

This software offers the opportunity to predict automatically protein stability 
changes upon single-site mutations starting from protein sequence alone or pro-
tein structure when available. Moreover, it can predict deleterious Single Nuc-
leotide Polymorphism starting from the protein sequence alone [20]. 

2.8.2. MUpro 
(mupro.proteomics.ics.uci.edu): MUpro uses the Support Vector Machine (SVM) 
to assess the variation in the stability of the protein consequent to amino acid 
substitutions. The output is a confidence score among −1 and 1. A confidence score 
< 0 indicates the substituted amino acid decreases the stability and a score > 0 
indicates the substituted amino acid increases the stability [21].  

2.9. Prediction of Protein Modeling www.cmbi.ru.nl/hope/ 

Project Have your Protein Explained (HOPE) is a web server that was used for 
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the investigation of the impacts of a missense mutation on the native protein struc-
ture. HOPE will roll up and incorporate available information from UniProtKB, 
protein’s 3D structure and DAS-servers. As regards the exact 3D-structures of 
some GLP1R protein isoforms are unknown; HOPE built the model of them 
based on homologous structures. HOPE processes the gathered data and pro-
duces a report, including schematic structures of the wild-type and the mutant 
amino acids, differences in the properties of wild-type and mutant amino acids 
and the impacts of a substituted amino acid on the protein structure along with 
figures and animations [22].  

3. Results 

In this study GLP1R gene was found to have an association with 20 other differ-
ent genes. Among the most important ones is the GCG (glucagon) gene which is 
also a trans membrane protein (Figure 1 and Table 1). 

 
Table 1. Gene description rank using GLP1R gene. 

Gene Description 

GLP1R Glucagon like peptide1 receptor 

GCG Glucagon 

GNAS GNAS complex locus 

ARRB1 Arrestin beta1 

SP3 Sp3transcription factor 

CALM1 Calmodulin1 

EN2 Engrailed homeo box2 

FSHR Follicle stimulating hormone receptor 

CRH Cortico tropin releasing hormone 

CALCRL Calcitonin receptor like receptor 

LHB Luteinizing hormone sub-unit beta 

SP1 Sp1transcription factor 

VIPR2 Vasoactive intestinal peptide receptor2 

G6PC2 Glucose-6-phosphatase catalytic subunit 2 

CRHR1 Cortico tropin releasing hormone receptor1 

GLP2R Glucagon like peptide 2 receptor 

VIPR1 Vasoactive intestinal peptide receptor1 

CHRM4 Cholinergic receptor muscarinic 4 

PTH2R Parathyroid hormone2 receptor 

GP9 Glycoprotein I X platelet 

GHRHR Growth hormone releasing hormone receptor 
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Figure 1. GeneMANIA results for GLP1R Gen. 
 

Overall 7229 variants were seen, and the missense variants or nsSNPs (146) 
were selected for further analysis. The nsSNPs obtained were subjected to SIFT 
software, 27 were predicted as deleterious and 119 were predicted as tolerated. 
Analysis with Provean showed that; 20 were predicted as deleterious and 7 as 
neutral, Table 3. Analysis using Polyphen-2 revealed that 17 were predicted as 
probably damaging, 2 possibly damaging and 1 as benign. By using software 
SNPs&GO there were 14 SNPs had a disease effect and 5 were neutral, while us-
ing PHD SNPs 17 SNPs had a disease effect and 2 were neutral, Table 2. 

Disease-related mutations resulting from SNPs&Go were submitted to I-Mutant 
and MUpro software, results showed an effect on the protein stability with va-
ried probabilities, Table 3 and Table 4. 

When using five different software, (SIFT, Polyphen-2, Provean, SNPs & Go 
and PHD-SNP) for studying the functional and structural effects a total of 14 
nsSNPs had a disease effect (Table 4). Regarding the effect on protein stability, 
17 nsSNPs were predicted to decrease the stability of the protein when using 
I-Mutant 2.0. On the other hand, MUpro software showed 19 SNPs decrease the 
protein stability, Table 4. 

The structural impact of the SNPs on protein structure and function was in-
vestigated using Project Hope. Fourteen nsSNPs were analyzed using Project 
Hope, Table 5. 

rs201231115 (C46Y): showed that the mutant residue is bigger than the wild- 
type residue. The wild-type residue was buried in the core of the protein. The 
mutant residue is bigger and probably will not fit. Mutation of a 100% conserved 
residue is usually damaging for the protein. 

rs200765138 (R64W): the mutant residue is bigger than the wild-type and the 
size difference between wild-type and mutant residue makes that the new resi-
due is not in the correct position to make protein structure. 
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rs201634613 (W87R): the mutant residue is smaller than the wild-type resi-
due. The mutated residue is located in a domain that is important for the activity 
of the protein. The mutation can affect this interaction and as such affect protein 
function. There is also difference in the charge between the wild and mutant 
type.  

 
Table 2. The results of different software. 

Software Results 

Retrieved SNPs Total SNPs were 7229, 146 non-synonymous 

SIFT 27 deleterious and 119 tolerated 

Provean 20 deleterious and 7 neutral 

Polyphen-2 17 probably damaging, 2 possibly damaging, and1 benign 

SNPs & GO 14 nsSNPs had a disease association and 5 neutral 

PHD SNPs 17 nsSNPs had a disease association and 2 neutral 

I-Mutant 17 nsSNPs decrease the protein stability and 2increase it 

MUpro All the19 nsSNPs decrease the protein stability 

 
Table 3. Results of SIFT, Provean and Polyphen-2 analysis. 

SNP 
Amino acid 

change 
Protein ID 

SIFT 
Score 

SIFT  
Prediction 

Provean 
score 

Provean  
Prediction 

Polyphen-2 
score 

Polyphen -2 
Prediction 

rs201231115 C46Y ENSP00000362353 0 Deleterious −10.235 Deleterious 1 Probably damaging 

rs200765138 R64W ENSP00000362353 0.018 Deleterious −5.814 Deleterious 1 Probably damaging 

rs201634613 W87R ENSP00000362353 0.002 Deleterious −10.052 Deleterious 1 Probably damaging 

rs182447758 R227H ENSP00000362353 0.002 Deleterious −4.495 Deleterious 1 Probably damaging 

rs375865648 I272T ENSP00000362353 0.003 Deleterious −3.986 Deleterious 0.949 Possibly damaging 

rs200792917 Y291C ENSP00000362353 0.01 Deleterious −6.321 Deleterious 0.999 Probably damaging 

rs150729240 D293Y ENSP00000362353 0.001 Deleterious −4.24 Deleterious 0.625 Possibly damaging 

rs149578908 R310Q ENSP00000362353 0.018 Deleterious −3.859 Deleterious 1 Probably damaging 

rs200118342 R326W ENSP00000362353 0.001 Deleterious −6.585 Deleterious 1 Probably damaging 

rs10305493 S333C ENSP00000362353 0.003 Deleterious −4.279 Deleterious 0.999 Probably damaging 

rs202171972 D344E ENSP00000362353 0.005 Deleterious −4 Deleterious 0.996 Probably damaging 

rs199783730 T353M ENSP00000362353 0 Deleterious −5.988 Deleterious 1 Probably damaging 

rs201054657 I357T ENSP00000362353 0.001 Deleterious −4.682 Deleterious 1 Probably damaging 

rs199818129 P358L ENSP00000362353 0.019 Deleterious −9.93 Deleterious 1 Probably damaging 

rs201669667 L360P ENSP00000362353 0.001 Deleterious −6.677 Deleterious 1 Probably damaging 

rs148543734 G361R ENSP00000362353 0 Deleterious −7.984 Deleterious 1 Probably damaging 

rs200065197 R376W ENSP00000362353 0.007 Deleterious −3.742 Deleterious 0.999 Probably damaging 

rs201617183 G377R ENSP00000362353 0.002 Deleterious −6.884 Deleterious 1 Probably damaging 

rs201899163 Q394R ENSP00000362353 0.008 Deleterious −3.6 Deleterious 0.998 Probably damaging 
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Table 4. Results of SNPs & GO, PHD SNP and I-Mutant software. 

No. 
Amino acids 

change 
SNP&GO  
Prediction 

SNP&GO 
RI 

PHD SNP  
Prediction 

PHD 
RI 

I-Mutant 
Prediction 

I-Mutant 
RI 

MUpro 

1 C46Y Disease 6 Disease 1 Increase 4 Decrease 

2 R64W Disease 3 Disease 3 Decrease 7 Decrease 

3 W87R Disease 5 Disease 1 Decrease 8 Decrease 

4 R227H Disease 4 Disease 1 Decrease 7 Decrease 

5 I272T Disease 2 Disease 7 Decrease 9 Decrease 

6 Y291C Disease 6 Disease 8 Decrease 6 Decrease 

7 D293Y Disease 8 Disease 9 Decrease 1 Decrease 

8 R310Q Disease 4 Neutral 3 Decrease 8 Decrease 

9 R326W Disease 3 Disease 6 Decrease 6 Decrease 

10 S333C Neutral 7 Disease 2 Decrease 7 Decrease 

11 D344E Neutral 3 Neutral 3 Increase 0 Decrease 

12 T353M Disease 6 Disease 7 Decrease 3 Decrease 

13 I357T Neutral 1 Disease 4 Decrease 3 Decrease 

14 P358L Disease 6 Disease 8 Decrease 4 Decrease 

15 L360P Disease 7 Disease 9 Decrease 5 Decrease 

16 G361R Disease 7 Disease 9 Decrease 7 Decrease 

17 R376W Neutral 3 Disease 3 Decrease 8 Decrease 

18 G377R Neutral 0 Disease 6 Decrease 8 Decrease 

19 Q394R Disease 6 Disease 9 Decrease 6 Decrease 
 

Table 5. The effect of mutations on the protein using Project Hope software. 

SNP ID Wild and Mutant variation Structure 

rs201231115 (C46Y) 
The mutation of a  

Cysteine into a Tyrosine 

  

rs200765138 (R64W) 
The mutation of an  

Arginine into a  
Tryptophan 

  

rs201634613(W87R) 
The mutation of a  
Tryptophan into a  

Arginine 
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Continued 

rs182447758 (R227H) 
mutation of a Arginine 

into a Histidine 

  

rs375865648 (I272T) 
The mutation of a  
Isoleucine into a  

Threonine 
  

rs200792917 (Y291C) 
The mutation of a  

Tyrosine into a Cysteine 

 
 

rs150729240 (D293Y) 
The mutation of a  

Aspartic Acid into a  
Tyrosine 

  

rs149578908 (R310Q) 
The mutation of a  

Arginine into a Glutamine 

  

rs200118342 (R326W) 
The mutation of a  

Arginine into a  
Tryptophan 

  

rs199783730 (T353M) 
The mutation of a  
Threonine into a  

Methionine 
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Continued 

rs199818129 (P358L) 
The mutation of a Proline 

into a Leucine 

  

rs201669667 (L360P) 
The mutation of a Leucine 

into a Proline 

 
 

rs148543734 (G361R) 
The mutation of a Glycine 

into a Arginine 

  

rs201899163 (Q394R) 
The mutation of a  

Glutamine into a Arginine 

 
 

*Note: Grey colour is protein chains, green coloured atoms are the wild amino acid residues, while red coloured atoms are the 
mutated amino acid residues. 
 

rs182447758 (R227H): the wild-type residue is smaller than the mutant resi-
due. There is a difference in charge between the wild-type and mutant amino 
acid, this can cause loss of interactions with other molecules. 

rs375865648 (I272T): the mutant residue is smaller and less hydrophobic than 
the mutant residue, this will cause a possible loss of external interactions and will 
cause an empty space in the core of the protein and this differences in hydro-
phobicity can affect the hydrophobic interactions with the membrane lipids.  

rs200792917 (Y291C): the mutant residue is smaller than the wild-type resi-
due. The mutant residue is more hydrophobic than the wild-type residue which 
might affect the function of the protein. 

rs150729240 (D293Y): appeared that the mutant residue and wild residue are 
differing in size and charge. The mutant residue is more hydrophobic than the 
wild-type residue, so the interaction between these domains could be disturbed 
by the mutation, which might affect the function of the protein. 

rs149578908 (R310Q): The mutant residue is smaller than the wild-type resi-
due. This mutation might occur in some rare cases, but it’s more likely that the 
mutation is damaging to the protein. The difference in charge will disturb the 
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ionic interaction made by the original, wild-type residue. 
rs200118342 (R326W): indicated that the wild-type and mutant amino acids 

differ in size. The mutant residue is bigger than the wild-type residue. The resi-
due is located on the surface of the protein. There is a difference in charge be-
tween the wild-type and mutant amino acid. Mutation of this residue can disturb 
interactions with other molecules or other parts of the protein. The mutation 
can affect this interaction and as such affect protein function. 

rs199783730 (T353M): each amino acid has its own specific size, charge, and 
hydrophobicity-value. The original wild-type residue and newly introduced mu-
tant residue differ in these properties. The mutant residue is bigger and more 
hydrophobic than the wild-type residue, based on this conservation information 
this mutation is probably damaging to the protein. 

rs199818129 (P358L): the mutated residue is located in a domain that is im-
portant for the activity of the protein and in contact with residues in another 
domain. The wild-type residue was buried in the core of the protein. The mutant 
residue is bigger and probably will not fit. 

rs201669667 (L360P): the mutant residue is smaller than the wild type which 
will cause an empty space in the core of the protein and loss of hydrophobic in-
teractions.  

rs148543734 (G361R): showed that the mutant residue is bigger than the 
wild-type residue. The wild-type residue was buried in the core of the protein. 
The mutant residue is bigger and probably will not fit. The mutation into anoth-
er residue will force the local backbone into an incorrect conformation and will 
disturb the local structure. 

rs201899163 (Q394R): the wild-type and mutant amino acids differ in size, 
based on conservation scores this mutation is probably damaging to the protein. 

4. Discussion 

Missense mutations resulting in the amino acid change disturb the potential 
protein structure, stability, and activity which can enhance the individual sus-
ceptibility to disease [23]. Investigating the impact of a missense mutation on 
proteins is a key step in understanding the effect of the mutation on the charac-
teristics of the wild type protein and the resulting phenotype [24]. The major ef-
fects of GLP-1 protein include the potentiation of glucose-stimulated insulin se-
cretion, suppression of appetite, and slowing of gastric emptying [25]. Five 
GLP-1 mimetic agents are approved for the treatment of type 2 diabetes, includ-
ing exenatide, lixisenatide, liraglutide, dulaglutide, and semaglutide [26].  

In this study, a total of 14 nsSNPs were shown to be deleterious, damaging, 
disease-related, and affecting the protein function due to differences in charge, 
size, hydrophobicity, and conservancy between the wild and mutant types using 
different software namely rs201231115 (C46Y); rs200765138 (R64W); rs201634613 
(W87R); rs182447758 (R227H); rs375865648 (I272T); rs200792917 (Y291C); 
rs150729240 (D293Y); rs149578908 (R310Q); rs200118342 (R326W); rs199783730 

https://doi.org/10.4236/cmb.2023.133004


N. K. Alshafei et al. 
 

 

DOI: 10.4236/cmb.2023.133004 59 Computational Molecular Bioscience 
 

(T353M); rs199818129 (P358L); rs201669667 (L360P); rs148543734 (G361R); 
and rs201899163 (Q394R) were not reported in ClinVar database and has not 
been previously reported in the GLP1R gene.  

The rs1042044 of the GLP1R gene is a tag-SNP located in exon7 of the gene. 
This is a nsSNP resulting in (Phe260Leu) according to Hap Map location  
(http://www.hapmap.org). The nsSNPs of the GLP1R gene affect the in vivo re-
sponse of GLP-1 and are considered to be the primary cause of the inconsistent 
clinical efficacy of GLP-1 analogs within T2DM patients. Anderson et al., 2012 
and Sathananthan et al. 2010 studied the effects of the GLP1R gene nsSNPs on 
insulin secretion from exogenous GLP-1 and found that two sites of GLP1R, 
rs6923761 and rs3765467, could change the insulin promoting effect of GLP-1 
[27] [28]. In a clinical study for the same mutation indicated that patients with 
T2DM carrying the variant allele of rs3765467 showed a more robust response to 
the treatment by dipeptidyl peptidase inhibitors [29]. Also the rs3765467 and 
rs10305492 nsSNPs in the GLP1R gene showed to exert a critical effect on regu-
lating insulin secretory capacity by β-cell and β-cell mass through leading to the 
dysfunction and apoptosis of β-cell, GLP1R rs3765467 and rs10305492 might 
also impair GLP-1 interaction with GLP1R [9] [30]. Another study found that 
the nsSNP rs367543060 is associated with T2DM susceptibility and, its expres-
sion can reduce the receptor affinity and intracellular signaling of GLP-1 [29]. 

When GLP-1R signaling pathway is disrupted, insulin secretion, insulin sensi-
tivity and glucose effectiveness would be impaired, as in the case of GLP-1R 
mutation. So far, the N-terminal extracellular domain and three intracellular 
loops have been reported to be functionally important regions in terms of bind-
ing and signal transduction [9]. Some studies have shown that GLP-1 analog in-
creases β-cell mass by both differentiation and neogenesis of precursor cells and 
by replication of pre-existing β-cells [30]. 

5. Conclusion 

In this study, the 14 nsSNPs were highly affecting the protein function, which is 
providing the necessary instruction for the synthesis of the insulin hormones 
needed for glucose catabolism. Concluding that these nsSNPs are associated with 
T2DM and also affect the treatment of diabetic patients due to the fact that the 
protein acts as an important drug target. Thus, the findings of the present study 
provide a guideline for researchers to know the important role of these nsSNPs 
in the etiology of the complex diseases. In vitro research is needed to confirm 
these results. 
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