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Abstract 
Comparison between different biological sequences is a key step in bioinfor-
matics when analyzing similarities of sequences and phylogenetic relation-
ships. A method of graphically representing biological sequences known as 
Chaos Game Representation (CGR) has achieved many applications in the 
studies of bioinformatics. The key issue in the application of CGR is to extract 
as many useful features as possible from CGR. Initially, CGR was applied to 
DNA sequences, but in this paper, a CGR-based approach is used to extract 
suitable features for comparing protein sequences of SARS-CoV-2 and other 
viruses. For this aim, several viral protein sequences from 12 groups are consi-
dered and CGR centroid, amino acid frequency, compounded frequency, Shan-
non entropy, and Kullback-Lieber Discrimination Information are applied to find 
the inter-relationship among the sequences. The experimental results demon-
strate the potential strengths of CGR-based method for examining the evolu-
tionary relationship of protein sequences. Our method is powerful for extract-
ing effective features from protein sequences, and therefore important in clas-
sifying proteins and inferring the phylogeny of viruses. 
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1. Introduction 

Proteins are complex molecules that play a critical role in several functions 
of the body as well as the structure of tissue and organs. They are comprised 
of amino acids which are connected in long chains ranging from a few hundred 
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to several thousand depending on the protein. These chains of amino acids de-
termine the structure and function of a protein, which include the transport 
and storage of structural components, and enzymes. By studying the structure 
and function of proteins, we can hurdle some of the obstacles in understanding 
the evolutionary relationships of organisms. The 20 amino acids are Alanine (A), 
Arginine (R), Asparagine (N), Aspartic Acid (D), Cysteine (C), Glutamic acid 
(E), Glutamine(Q), Glycine (G), Histidine (H), Isoleucine (I), Leucine (L), Ly-
sine (K), Methionine (M), Phenylalanine (F), Proline (P), Serine (S), Threo-
nine (T), Tryptophan (W), Tyrosine (Y), and Valine (V) [1]. Each amino acid 
has certain physical and chemical properties which distinguish it from others. In 
general, the biological function of a protein is determined by its 3-dimensional 
structure which is dependent on the linear sequence of amino acids. Rigden [2] 
presented that one of the fundamental principles of molecular biology is that 
proteins having similar sequences possess similar functions. This leads to diffi-
culty when comparing closely and distantly related sequences. Similarity analysis 
of protein sequences plays an important role in protein sequence studies, e.g. the 
prediction or classification of protein structures and functions. In recent years, 
many numerical representation methods have been proposed and then applied 
in protein classification. 

Apart from representing biological sequences into numerical expression di-
rectly, many other numerical representations are constructed by first giving the 
sequence a graphical representation and then studying the image numerically [3]. 
Chaos game representation (CGR) was originally applied to bioinformatics as an 
image representation of DNA sequences by Jefferey in 1990 [4]. The four nucleo-
tides {A, T, G, C} were put on 4 vertices of the unit square, and every DNA sequence 
was mapped to a series of points inside the unit square in 2-dimensional space. Be-
ing capable of discovering the inner pattern of gene sequences, CGR has been 
widely used in the investigation of DNA sequences in [5]-[11]. Encouraged by 
the CGR of DNA sequences, the CGR of protein sequences has also been exten-
sively studied by many researchers. While DNAs are composed of four kinds of 
nucleotides, proteins are made up of twenty kinds of amino acids. Thus, it re-
mains to decide the distribution of the 20 amino acids when promoting CGR to 
the image representation of proteins. 

Fiser [12] was one of the first to find a method to improve such techniques by 
creating a 20-sided polygon with each vertex representing one of the 20 amino 
acids. Another representation of the 20 amino acids was applied by Randic [13] 
in which the CGR exists within the unit circle. This approach ordered the amino 
acids alphabetically in comparison to organization based on their physiochemi-
cal properties. The properties of the amino acids serve as vital information for 
the characterization of protein sequences and this was noted by Randic. Consi-
dering the limitation that a 20-vertex CGR cannot be used to demonstrate the si-
milarity of protein sequences with conservative substitution, Basu [14] proposed a 
12-vertex CGR, with each vertex of a regular 12-sided polygon representing an ami-
no acid with its conservative substitutions. The number of the vertices in CGR 
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was then reduced to four [15] [16], with each vertex of the square representing 
one of the four groups of amino acids, that is, the non-polar, uncharged polar, 
negative polar, and positive polar groups. The reduction in the vertices of CGR 
images can help represent the similarity in protein sequences. 

Up to now, CGR method has achieved many applications in the studies of 
bioinformatics. The key issue in the application of CGR is to extract as many 
useful features as possible from CGR and several studies showed that those 
extracted features play important roles in protein studies [17]-[23]. One of 
the most used feature extraction methods is the so-called FCGR, in which the 
CGR image is split into small grids and the frequencies of points falling into 
each grid are taken as the feature of the corresponding protein sequence. In our 
previous work [24], we used FCGR to study the similarity of coronavirus se-
quences. While FCGR has been used mainly for coronavirus genome sequence 
encoding and classification, we modified it in this study to work also for protein 
sequences. 

For this study, HTLV 1, HIV 1, HIV 2, Ebola, Dengue, Middle Eastern Respi-
ratory Syndrome (MERS), Severe Acute Respiratory Syndrome Coronavirus 
(SARS-CoV), and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) 
were used for protein sequence comparison. SARS-CoV-2 has been detrimental to 
the human population over the past year. At the time of this report, more than 179 
million people have contracted the virus and over 3.8 million of those have been fatal. 
The first pathogenic novel coronavirus, discovered in 2003 and named SARS-CoV, 
caused SARS, serious and atypical pneumonia. The second, MERS-CoV, emerged a 
decade later in the Middle East and caused a similar respiratory ailment called 
Middle East respiratory syndrome (MERS). Since its identification, 2494 cases of 
MERS-CoV infection and nearly 900 deaths have been documented. The SARS-CoV 
epidemic proved larger but less deadly, with approximately 8000 cases and nearly 
800 deaths. There are other four coronaviruses that cause colds in humans-known as 
HCoV-229E, HCoV-NL63, HCoV-OC43, and HCoV-HKU1 [24]. SARS-CoV-2 is 
the third pathogenic novel coronavirus. Identifying ways to better understand 
such viruses is of grave importance to the human population. Such major out-
breaks demand classification and origin of the virus genome sequence, for plan-
ning, containment, and treatment. Motivated by the above need, we report a 
method combining with CGR to perform clustering analysis and create a phylo-
genetic tree based on it. 

For this report, CGR is used for the identification of several hundred protein 
sequences into their respective viral groups through feature extraction. These 
features include CGR centroid, amino acid frequency, compounded frequency, 
Shannon entropy, and Kullback-Lieber Discrimination Information. Due to the 
scale independence of CGR, smaller components of the CGR graph can be used 
to help explain the bigger picture. This points to the potential of extracting smaller 
features of the graph and using them to better explain the protein sequence as a 
whole. After the application of our proposed method, we apply multidimension-
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al scaling (MDS) to the data. With this 2D and 3D projections of the data can be 
obtained for clustering analysis. Kruskal [25] first introduced this method of in-
formation visualization which takes the distance matrices computed from our 
methods as input. In turn, a representation of each viral sequence is created in 
euclidean space with corresponding distances between sequences that are equiv-
alent to their distance given in the matrix. Therefore, similar viral sequences 
should be relatively close in this representation which has been previously shown 
for DNA sequences [26] [27]. 

2. Methods 

In this section, we describe the dataset used for our experiments, then discuss 
the proteins version of CGR, give an overview of the three main steps of our ex-
periments, and conclude with a description of features that we considered. 

2.1. Dataset 

Data acquisition: All protein sequences were downloaded in FASTA format from 
the database for our analysis: NCBI (https://www.ncbi.nlm.nih.gov/). The data 
sets shown in Tables 1-6 are the accession numbers of 510 viral strains in 12 
groups that we used for our experiments. 

The HIV_1 group consisted of Gag-pol, Gag-pol poly, Gag-pol fusion, and 
Gag-pol fusion poly proteins. For HIV_2, pol, pol poly, Gag-pol poly, and 
Gag-pol fusion poly proteins, the Dengue group consisted of only polyproteins. 
HTLV group contained pol, polymerase, Gag/pol precursor, Gag-pro-pol poly, 
and Gag-protease proteins. SARS_CoV and SARS_CoV-2 encompassed six groups, 
two for ORF1a polyprotein, and two for ORF1ab polyprotein, one spike glyco-
protein and one surface glycoprotein. MERS group contained 1a poly, 1ab poly, 
ORF1a, ORF1ab, OR1ab poly, and replicase poly proteins. Lastly, the Ebola group 
consisted of RNA-dependent RNA polymerase, RNA-directed RNA polymerase, 
polymerase, and L proteins. 

2.2. CGR of Proteins 

CGR is an algorithm that uses iterations in order to generate a pattern by utiliz-
ing the nucleotides in DNA or amino acids in protein sequences. CGR assigns a 
coordinate value to each alphabet in a sequence and hence a characteristic visual 
pattern is generated for each sequence. In the case of a DNA sequences, CGR as-
signs each of the four possible nucleotides A, T, G and C to one of the four ver-
tices of a square. In our study, we used protein sequences; the 20 amino acids 
were divided into 4 groups, and each of these groups (designated A, B, C and D) 
was assigned to one of the four vertices of the square. We used groups based on 
amino acid residue chemical properties (charge and polarity): A = D, E (nega-
tively charged); B = K, R, H (positively charged); C = S, T, N, C, Y, Q (neu-
tral/polar); D = G, A, V, L, I, M, P (neutral/nonpolar). 

Let the vertices of the unit square be: ( )A 0,0= , ( )B 0,1= , ( )C 1,1= , and 
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( )D 1,0= . Successive points in the CGR were generated by an iterated function 
system defined by the following formula  

( ) ( ) ( )
1 1, ,

2 2
i yi x

i i

y T ix T i
x y+ +

+ +
=   
 

 

 
Table 1. HIV_1 & HIV_2 data sets.  

HIV_1 HIV_2 

CAD59561 CAD48441 ALQ56957 Q89928.3 

AZI72458 CAD48455 2120212B P18042.4 

CAT00576 P03366.3 AIA59459 ATU79162 

P04587.3 AZI72417 AAF82029 Q74120.3 

P04588.3 AZI72491 ACH73021 P20876.3 

AUO72800 AAN73511 BAH97695 P17757.3 

AAD03225 AAN73835 ANG59323 AAC95341 

Q9IDV9.3 AZI72386 ATU79172 APJ01827 

AFB39387 AAD17072 APJ01785 ANG59330 

BAC77486 BBC08805 AAT37062 ABV83026 

Q79666.3 P12499.3 APJ01810 APJ01769 

BAC77511 NP_057849 BAH97704 AAA64576 

CAC86564 AZI72433 AAA43933 QLK12568 

P20875.3 AZI72558 BAM76182 AYA94959 

AAD03191 AUO72809 AAR98760 APJ01776 

AAD03200 CAY83134 AIA59452 ALA65437 

AAW68124 P0C6F2.1 QGV16580 AIA59451 

AUO72845 O41798.3 Q76634.3 AIA59453 

ABV00730 O93215.4 AAA43942 QGV16534 

BBC08787 AAD03316 ATU79192 QGV16537 

CAC38421  P18096.4  

AZI72408  AAA76841  

P03369.3  P12451.3  

AAG30116  ANG59316  

BBC08796  ALX35369  

AUO72688  QGV16583  

AAD03241  AYA94966  

CAB96338  BAA00710  

AAN73709  APJ01819  

AAD03184  AIA59450  
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Table 2. SARS_CoV & SARS_CoV-2 ORF1ab polyprotein data sets. 

SARS_CoV ORF1ab polyprotein SARS_CoV-2 ORF1ab polyprotein 

QLG75207 QOF14847 QQI07512 QLG76455 

QPN97028 QOU98004 QPI70323 QJR91795 

QOU93276 QOQ14978 QPF58140 QPM28262 

QQJ94670 QJX74509 QIA98605 QPM28286 

QPZ45698 QIK02963 QPJ72410 QPJ72398 

QPP19202 YP_009724389 QIC53203 QPJ72422 

QQH18637 QPJ58632 QHD43415 QPI70311 

QPZ33349 QQJ94682 QQJ95078 QPG83249 

QPZ33508 QQJ95306 QHZ87591 QPG83261 

QPZ75589 QPZ56528 QHO62876 QPG02368 

QPN97040 QPZ56540 QHU79171 BCN28299 

QQI07500 QPZ56564 QHN73809 BCN28311 

QKS66638 QPZ75577 QPI75812 QPG00682 

QQJ95318 QPV51018 QHZ00378 QPF21470 

QOU87996 QPX60397 QHO60603 QHN73794 

QMJ01339 QPP19226 QIB84672 QIH45022 

QOQ07719 QPN97052 QPF58152 QHS34545 

QPZ56552 QPN97064 BCA87360 BCB15089 

QPF54048 QPN53402 QPF49350 QIA98553 

QPV51042 QPN53415 QPI71724 QII57267 

QPV51030  QQJ95090  

QPZ33361  QJR91771  

QPP19214  QOU97164  

QLJ57697  QNO98001  

QQI07488  QHR84448  

QMI94679  QPF49362  

QMI93420  QPI70335  

QQJ94103  QIG55993  

QLJ57685  QMJ01279  

QPJ58620  QPM28274  

 
Table 3. MERS & Dengue data sets.  

MERS Dengue 

AVN89429 AWH65952 QPZ88405 ANC57575 

AID50417 AGR87639 QFS19562 ANC57576 

ANC28665 YP_007188577 QPB40131 ANC57581 

AKM76247 QGW51400 QFS19150 ANC57582 
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Continued 

AJD81449 QOU08495 ACK28184 ANC57584 

QFQ59585 QLD98092 QHR82546 ANC57591 

AKJ80135 QEJ82213 QCZ25008 QGQ59490 

ARQ84744 QDI73607 QFS19149 QGQ59491 

QBM11746 QAT98897 ACL99188 QPU83821 

ATQ39389 QAT98908 QQC97219 QPI70486 

QOU08506 ANC28676 QPZ88403 QPI11926 

AIZ48758 AMO03400 BBH51315 QPB40126 

AKM76237 ALD51902 AEF01518 QPB40128 

ANI69822 AHY21468 AAW23164 QPB40129 

AKS48060 AHB33324 ANC57587 QOW96372 

AZU90729 AVN89311 QPZ88404 QIB99388 

AYM48029 AVN89418 ANC57579 QCZ25007 

AWH65941 AUM60013 QPU83820 QIS48855 

QGV13489 AUM60023 QPB40125 QBQ58384 

QGV13494 AWH65953 QFS19134 QCE20685 

AVN89300  QPB40127  

AHX71944  QGQ59492  

AHZ64055  ANC57577  

ANI69844  ANC57580  

ANI69833  QPI11922  

QGW51390  QIB99387  

QKX95935  ANC57586  

QBM11735  QBQ58385  

AHZ58509  ANC57578  

QJX19955  BBH51316  

 
Table 4. Ebola & HTLV data sets. 

Ebola HTLV 

ARU80343 QCH40643 ABM66546 P0C211.2 

APT36405 QCH40651 AER08530 AAC82581 

AWZ62332 AYP10283 ABM66560 P14078.3 

AQA27316 QCF40472 QIZ31287 P03362.3 

APA16576 ASU06439 QIZ31293 QIZ31284 

APA16540 AXF48918 QIZ31278 QIZ31290 

AYP66825 AXF48927 BAH85786 AAC00186 

ATY51149 AXF48945 AYN25329 AAA85843 

ARU80319 AXF48963 AOT98555 AAA96673 

QEU56421 ARG43235 ABM66542 AYN25340 
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Continued 

APT36396 APW30156 QIZ31299 AYN25351 

ARC95311 APW30174 AOT98549 ATV90697 

ASU06448 ARV89896 ABM66584 BAX76690 

QNF60339 ARU80303 BBL33033 BAX76706 

AYI50378 ARU80351 AOT98550 AHX00005 

SCD11539 BAX08105 AAA85327 APR72307 

AXE75594 AQS26699 AER08534 APR72311 

ARU80359 AMY60341 AYN25362 ABM66540 

APW30165 AMY60350 AOT98554 ABM66544 

ARG43928 AMY60359 ATV90703 ABM66562 

ARU80327  QIZ31296  

AXF48954  AAB20769  

ARG43937  BAA02931  

ALR82674  QNL15179  

AVQ09636  BAX76714  

AVQ09627  QIZ31281  

ARU80311  AAD50663  

AXH37632  ABM66574  

ALR82665  ABM66556  

ARU80335  ATV90700  

 
Table 5. SARS_CoV & SARS_CoV-2 ORF1a polyprotein data sets. 

SARS_CoV ORF1a polyprotein SARS_CoV-2 ORF1a polyprotein 

QRW47702 QRW76846 QLG76384 QLG76456 

QRW78869 QRW99524 QJR91760 QSB33764 

QRW99824 QQX03241 QSB33775 QRY28991 

QRF77371 QRF77383 QRY29002 QRY29015 

QRF77395 QRF77406 QRY29025 QRY29037 

QOU96541 QOU97165 QRW37736 QRW37748 

QOU98005 QOQ07720 QRW37760 QRW37772 

QOQ14979 QMI93421 QRW37784 QPV15466 

QMI94680 QMJ01280 QPV15478 QPV15490 

QMJ01340 QLG75208 QPV15502 QPV15514 

QKS66639 QJX74510   

QJR87032 QJR91124   

QJR91244 QSB33705   

QSB33717 QSB33729   

QSB33741 QSB33753   
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Table 6. SARS_CoV spike glycoprotein & SARS_CoV-2 surface glycoprotein data sets. 

SARS_CoV spike glycoprotein SARS_CoV-2 surface glycoprotein 

AGT21273 AGT21288 BCN86425 BCN86437 

AGT21303 AGT21318 QRK43459 QRX53181 

BAF42873 ABD72999 QRX62421 QRU92034 

ABD73000 ABD73001 QLG76853 QRG48189 

ABD73002 ABB29898 QNO97727 QNP06175 

AAV98002 AAV98003 QSB33742 QRW53372 

AAU93318 AAU93319 QRX10874 QRX20730 

AAU93320 AAV49722 QRC46729 QQY95746 

AAV49723 AAT76147 QQV41531 QQN01053 

AAS10463 AAS00003 QQN92410 QPC41132 

AAP82968 AAP73417 QSB35551 QSB35563 

AAP41037 AIA62320 QSB35575 QSB35587 

AID16716 ADE34779 QSB35599 QQX20575 

ADE34790 ADE34801 QQX20587 QQX20599 

ADE34812 ADE34823 QQX20611 QQX20623 

 
where ( )xT i  is the x coordinate and ( )yT i  is the y coordinate of the vertex of 
the corresponding group of the next amino acid in the sequence. To create a 
CGR image, we first began with an initial point ( )0.5,0.5 , the center of a unit 
square in quadrant 1 of the xy-plane. A point is plotted half the distance from this 
vertex and the previous coordinate. The output file contained x, y coordinate val-
ues for each amino acid present in the input sequence. These x and y coordinate 
values were plotted as scatterplots. Some examples of the CGR of several viruses 
used in this report are shown in Figures 1-5. 

2.3. Overview 

The method we used to analyze and classify protein sequences has three steps: 1) 
generate graphical representations (images) of each Protein sequence using 
Chaos Game Representation (CGR), 2) compute all pairwise distances be-
tween these images using one of the following features, and 3) visualize the in-
terrelationships implied by these distances as two- or three-dimensional maps, 
using Multi-Dimensional Scaling (MDS).  

2.4. CGR Centroid 

Once the CGR is created for a protein sequence, the CGR square is divided into 
four cells. Each cell represents one of the four groups, { }, , , ; 1, 2, ,i i i iA B C D i n=   
where n is the length of the sequence. These cells correspond to the vertex lo-
cated in that cell. The points in each cell are then averaged to find the centroid of 
each cell denoted by  
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Figure 1. CGR of Dengue (left) and Ebola (right). 

 

 
Figure 2. CGR of HTLV (left) and MERS (right). 

 

 
Figure 3. CGR of HIV_1 (left) and HIV_2 (right). 
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Figure 4. CGR of SARS_CoV spike glyco (left) and SARS_CoV ORF1a (right). 

 

 
Figure 5. CGR of SARS_CoV-2 surface glyco (left) and SARS_CoV-2 ORF1a (right). 

 

( ) ( )11 , j
n

ii
n

j
k

a ya x
C

n n
==

 
 =
 
 

∑∑  

where ( )ia x  and ( )ia y  are the x and y coordinates respectively in a cell and 
1,2,3,4k = . This gives four centroids 1 2 3, ,C C C  and 4C  for comparison of 

viral sequences. 

2.5. CGR Centroid Bisection 

Upon calculation of the four CGR centroids, a rectangle is created from these 
vertices. Next, the diagonals of this rectangle are constructed and their intersec-
tion is taken as the CGR Centroid Bisection denoted ( )CB x  of viral sequence 
x.  

( ) 1 4

2C
C CB x +

=  
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2.6. Amino Acid Frequency 

The next method of sequence comparison examined is the amino acid frequency 
(AAF) of 2mers. A 2mer is subsequence of length 2 of a string of characters and 
they are found by taking the cross product between the set of amino acids and 
itself. This yields 220 400=  possible 2mers and some of these include: DE, MA, 
AR, HE, and RT. The frequency of each 2mer is calculated as follows  

Number of occurences of 2mer
400ijp =  

1 400i j≤ ≤ ≤ . Several distance measures can then be obtained by comparing 
the amino acid FCGR of viral sequences. One distance metric that encompasses 
two others is the minkowski distance and is derived as follows  

( )
1

1

n t t
ij ij

i
p p

=

′−∑  

Note that when t = 1, we have  

( )
1

n

ij ij
i

M p p
=

′= −∑  

which is manhattan distance and when t = 2, we have  

( )2

1

n

ij ij
i

E p p
=

′= −∑  

euclidean distance. 

2.7. Group Frequency Chaos Game Representation 

Each cell in the CGR of protein contains an x amount of points and by dividing 
this amount by four for the four cells; we have the group frequency chaos game 
representation (GFCGR). With this the frequencies are defined for the four groups 
of amino acids as opposed to just one. The GFCGR is defined as follows:  

( ) Number of occurences of amino acid in a group GFCGR
Length of the sequence

zz =  

where { }, , ,z A B C D= .  

2.8. Kullback-Leibler Discrimination Information 

A previous method introduced by Li [20] utilized the Kullback-Leibler Discrim-
ination Information for sequence comparison. This comparison proved useful 
and in this report we further extend this method to be applicable with our pre-
viously mentioned methods. Given a discrete random variable Y, different dis-
tribution laws can be applied. For example under Hypothesis 1, we have  

( ) ( ) ( ) ( )
1 2

1 1 1 2 11

n

n

y y yY
p y p y p yp y

  
=   

   





 

Under Hypothesis 2, we have  
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( ) ( ) ( ) ( )
1 2

2 1 2 2 22

n

n

y y yY
p y p y p yp y

  
=   

   





 

These distributions can be compared by using the Kullback-Leibler Discrimi-
nation Information denoted by  

( ) ( ) ( )
( )

1
1 2 1

1 2

, log
n

i
i

i i

p a
I p p p a

p a=

= ∑  

In this report, we let these distributions be the 2mer AAF of viral genomes. So 
for viruses x and y, we have ( ),I x y , but due to its directed divergence ( ),I x y  
might not necessarily equal ( ),I y x . For this reason, the metric ( ),J a b  is de-
fined as follows  

( ) ( ) ( ), , ,J x y I x y I y x= +  

Note that when x y= , ( ), 0J x y = . We also note that for any two viral se-
quences x and y, ( ) ( ), ,J x y J y x= . Li [20] noted that this method can accu-
rately measure the dissimilarity between two sequences. 

2.9. Compounded Frequency 

Another method for sequence comparison that has been previously examined is 
the compounded frequency. This method was proposed by Almeida [3] for 
comparison of biological sequences. First we denote the compounded frequency 
nw as follows  

1

k

i i
i

nw x y
=

= ∗∑  

The compounded frequency is then used in conjunction with the Pearson 
correlation coefficient, rw for sequence comparison.  

1i
k i i

i i
x x y y x y

sx sy
rw

nw

µ µ
=

− −
∗ ∗ ∗

=
∑

 

where  

( )2
1

k
i i ii x x x y

sx
nw
µ

=
− ∗ ∗

= ∑  

and  

( )2
1

k
i i ii y u x y

sy
nw
µ

=
− ∗ ∗

= ∑  

with xµ  and yµ  defined as follows  

2
1

k
i ii x y

x
nw

µ =
∗

= ∑  

2
1

k
i ii y x

y
nw

µ =
∗

= ∑  
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Previous studies used this method for comparison of the FCGR of two se-
quences. Similarly, we use the 2mer AAF to find the rw between two sequences. 
By using the weight of nw, each 2mer is proportional to its frequency. Now we 
define the sequence distance as 1d rw= − , which has values from 0 - 2. For 

1d > , a negative correlation exists and for 1d <  a positive correlation exists. 
When 0d = , the sequences are exactly similar. 

2.10. Shannon Entropy 

The Shannon information index has been used in some of our past work as well 
as other studies. It is denoted  

( )2 2 2
1 1

1log log
k k

i i i
i i i

S p p p
p= =

 
= − ∗ = ∗  

 
∑ ∑  

where 1 22mer AAF , , , ,1np p p i n= ≤ ≤ . This method has been used in some 
of our past works for sequence comparison. In this report we use this method as 
a measure of the amount of information contained within a sequence of pro-
teins. 

3. Results 

For the Shannon entropy, 2mer AAF and GFCGR the manhattan distance is 
used. The euclidean distance is applied to both the CGR centroids and CGR 
centroid bisections, while ( ),J x y  and Pearson correlation have the respec-
tive distance measures. MDS is then applied to the distance matrices to create 2D 
and 3D projections shown in Figures 6-12. 

To rank the effectiveness of each distance metric, we define the ( ),x yδ  func-
tion as in [26] of two viral sequences x and y as follows  

( )
0, if  and  belong to same viral group

,
1,  otherwise

x y
x yδ


= 


 

 

 
Figure 6. 2mer AAF 2D and 3D MDS charts. 
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Figure 7. CGR Centroid Bisection 2D and 3D MDS charts. 

 

 
Figure 8. CGR Centroid 2D and 3D MDS charts. 
 

 
Figure 9. Compounded Freq 2D and 3D MDS charts. 
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Figure 10. GFCGR 2D and 3D MDS charts. 
 

 
Figure 11. Kullback-Leibler 2D and 3D MDS charts. 

 

 
Figure 12. Shannon Entropy 2D and 3D MDS charts. 
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With this function we create a 400 × 400 distance matrix of the viruses and 
take the upper triangular matrix as a vector Uδ . Next, we take the upper trian-
gle matrix, 2mer AA, FUα α ∈ , ( ),J x y , 2S , 1D rw= − , GFCGR, CGR Cen-
troid, CGR Centroid Bisection of each of the 7 distance matrices for comparison 
with Uδ . The Pearson correlation coefficient is used to establish how well a dis-
tance measure fits a particular viral sequence to its corresponding group cluster. 
We denote this coefficient as  

P αδ
α

α δ

σ
σ σ

=  

with a range of [ ]1,1− . Values of 1 indicate a linear correlation between Uδ  
and Uα  while a value of 0 indicates the pair is unrelated. The values of Pα  for 
each distance measure are shown in Table 7. 

We see that of the distance measures, 2mer AAF is most closely related with 
Uδ . Further confirmation of this is shown in the 2D and 3D MDS charts for 
2mer AAF Figure 6, which show a good separation of the viral sequences into 
their respective groups. It can also be noted that viruses belonging to the coro-
navirus family cluster close together as do viruses belonging to the HIV fami-
ly. We expect this as these viruses are more closely related than say HTLV or 
Dengue. In fact, SARS_CoV ORF1a and SARS_CoV-2 ORF1a overlap as do 
SARS_CoV ORF1ab and SARS_CoV-2 ORF1ab. This is indicative of a distance 
measure of almost 0, which shows just how closely related they are. Other meas-
ures such as Shannon entropy and GFCGR which have the lowest correlation 
with Uδ , 0.147915Pα =  and 0.36562 respectively, show a lack of separation 
between viral groups in their MDS charts Figure 10 and Figure 12. 

4. Discussion and Conclusions 

Feature extractions of protein sequences play an important role in protein se-
quence similarity studies. Although many methods have been proposed for ex-
tracting features of protein sequences, most of them showed great limits in prac-
tical applications. Many studies have shown that the CGR-based strategy would 
be one of the most useful approaches for protein feature extractions, and the 
so-called FCGR method is currently the most frequently used method-based CGR, 
however, a large amount of useful information, e.g. physicochemical properties of 
amino acids and the distribution information of points in the CGR image were 
not taken into consideration in the method of FCGR. 

In this study, CGR was used for the identification of several hundred protein 
sequences into their respective viral groups through feature extraction. These 
features include CGR centroid, amino acid frequency, compounded frequency, 
Shannon entropy, and Kullback-Lieber Discrimination Information. 

The method, we used to analyze and classify protein sequences, has three steps: 
1) generate graphical representations (images) of each Protein sequence using 
Chaos Game Representation (CGR), 2) compute all pairwise distances between 
these images, and 3) visualize the interrelationships implied by these distances as 
two- or three-dimensional maps, using Multi-Dimensional Scaling (MDS). 
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Table 7. Pα  of distance metrics. 

Method Pα  

2mer AAF 0.556726 

( ),J a b  0.537113 

1D rw= −  0.486536 

CGR Centroid 0.405884 

CGR Centroid Bisection 0.36107 

GFCGR 0.36562 

2S  0.147915 

 

 
Figure 13. Dendrogram made using 2mer AAF of SARS_CoV-2 ORFlab. 
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Figure 14. Phylogenetic tree of SARS_CoV-2 ORF1ab from NCBI website. 

 
Several distance metrics were introduced for comparison as well as a method 

of ranking these metrics. Our quantitative comparison of seven different dis-
tances suggests that the Kullback-Lieber Discrimination Information as well as 
the manhattan distance of 2mer AAF outperform all other distances. Our find-
ings suggest that the Kullback-Lieber Discrimination Information as well as the 
manhattan distance of 2mer AAF is best in clustering viruses into their respec-
tive groups. This shows the importance of the frequency of 2mers in correctly 
identifying viral sequences. We compare the results of the phylogenetic tree of 
SARS_CoV-2 ORF1ab obtained from our 2mer AAF distance method with those 
given in the NCBI site in Figure 13 and Figure 14. The NCBI method per-
forms equally well with our 2mer distance method. The two-dimensional and 
three-dimensional Molecular Distance Maps we obtain, which visualize the simulta-
neous interrelationships among the sequences in our dataset, show this method’s 
potential. Further analysis is needed to explore this method’s potential for the analy-
sis of closely related sequences. 

In conclusion, our distance comparison results on datasets illustrate the po-
tential strengths of CGR-based method for examining the evolutionary relation-
ship. Our method is powerful for extracting effective features from protein se-
quences, and therefore important in classifying proteins and inferring the phy-
logeny of viruses. 
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