
Computational Molecular Bioscience, 2021, 11, 69-83
https://www.scirp.org/journal/cmb

ISSN Online: 2165-3453
ISSN Print: 2165-3445

DOI: 10.4236/cmb.2021.114005 Dec. 27, 2021 69 Computational Molecular Bioscience

Reinforcement Learning of Molecule
Optimization with Bayesian Neural Networks

Wei Hu

Department of Computer Science, Houghton College, Houghton, NY, USA

Abstract
Creating new molecules with desired properties is a fundamental and chal-
lenging problem in chemistry. Reinforcement learning (RL) has shown its
utility in this area where the target chemical property values can serve as a
reward signal. At each step of making a new molecule, the RL agent learns se-
lecting an action from a list of many chemically valid actions for a given mo-
lecule, implying a great uncertainty associated with its learning. In a tradi-
tional implementation of deep RL algorithms, deterministic neural networks
are typically employed, thus allowing the agent to choose one action from one
sampled action at each step. In this paper, we proposed a new strategy of ap-
plying Bayesian neural networks to RL to reduce uncertainty so that the agent
can choose one action from a pool of sampled actions at each step, and inves-
tigated its benefits in molecule design. Our experiments suggested the Baye-
sian approach could create molecules of desirable chemical quality while main-
tained their diversity, a very difficult goal to achieve in machine learning of
molecules. We further exploited their diversity by using them to train a ge-
nerative model to yield more novel drug-like molecules, which were absent in
the training molecules as we know novelty is essential for drug candidate mo-
lecules. In conclusion, Bayesian approach could offer a balance between ex-
ploitation and exploration in RL, and a balance between optimization and
diversity in molecule design.

Keywords
Molecule Design, Bayesian Neural Networks, Reinforcement Learning

1. Introduction

Optimizing molecules for specific chemical properties is of great importance in
chemistry. Traditionally, this task has been carried out by human experts with

How to cite this paper: Hu, W. (2021)
Reinforcement Learning of Molecule Op-
timization with Bayesian Neural Networks.
Computational Molecular Bioscience, 11,
69-83.
https://doi.org/10.4236/cmb.2021.114005

Received: October 10, 2021
Accepted: December 24, 2021
Published: December 27, 2021

Copyright © 2021 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/cmb
https://doi.org/10.4236/cmb.2021.114005
https://www.scirp.org/
https://doi.org/10.4236/cmb.2021.114005
http://creativecommons.org/licenses/by/4.0/

W. Hu

DOI: 10.4236/cmb.2021.114005 70 Computational Molecular Bioscience

domain knowledge and intuition, which are expensive in terms of cost and time
with a very loss rate of success. With its recent advances, deep learning has shown
it can increase the scale and accelerate speed of this process. However, this ap-
proach heavily relies on large datasets of molecules, which can be hard to acquire
in real applications. Furthermore, the models trained on a set of molecules tend
to make biased predictions towards the training molecules, thereby limiting the
scope of their learning and generalization. As a result, computational techniques
for the generation of new molecules from scratch have attracted much attention
recently [1]-[7].

The generation of a molecule is a sequential decision process, and the target
chemical property values can be used as a reward single. Therefore, reinforce-
ment learning (RL) is a natural choice for this kind of artificial intelligence task.
The first issue of applying RL to molecule learning is how to represent a mole-
cule so that computers can process it. The well-known SMILES string represen-
tations could produce invalid molecules while the graph representations incline
to require pre-defined dataset of molecules, which could make the trained mod-
els to generate molecules not very different from the training ones. MolDQN, a
deep RL learning algorithm, was introduced to overcome these limitations, which
operates directly on molecular graphs to generate 100% chemically valid mole-
cules [8]. Actions in MolDQN such as atom/bond addition and removal are en-
sured to be chemically valid with help of the domain knowledge in chemistry.
One clear advantage of MolDQN and other similar strategies is that they do not
require a training set of molecules, thus eliminating the possible model biased
caused by the training set [8].

Deep RL algorithms generally use deterministic networks, which represent
their weights as single values or point estimates. As a result, these networks tend
to perform well in regions with lots of data, but fail to indicate uncertainty in re-
gions with little or no data, giving overconfident decisions. Bayesian neural net-
works, on the other hand, represent weights as probability distributions, and thus
able to express the uncertainty of weight estimation and predictions. They can be
trained with variational inference that learns the parameters of weight distribu-
tions instead of the weights directly. Bayes back propagation [9] provides a prin-
cipled way to train Bayesian networks. It takes the gradients on Monte Carlo
samples of the loss function to make the typical intractable learning tractable,
offering the advantage of allowing more complex prior and variational approxi-
mation distributions.

The challenge of balancing the exploitation and exploration is perpetually
present in RL, and the trade-off is hard to calculate, due to the lack of a complete
knowledge of the environment. On one hand, the agent needs to explore new
states so that it would not miss out any good states for bigger rewards. On the
other hand, the agent needs to keep visiting the previously discovered good
states so that it can learn from experiences gained so far. The uncertainty from
the learning process and the environment makes RL particularly difficult and

https://doi.org/10.4236/cmb.2021.114005

W. Hu

DOI: 10.4236/cmb.2021.114005 71 Computational Molecular Bioscience

permeates every aspect of RL algorithm design.
Another challenge of machine learning of molecules is the trade-off between

optimality and diversity. The former refers to having molecules with desired
chemical properties, and the latter refers to having many different molecules,
which could then lead to novel drug molecules. Generally, machine learning
models can only have one focus, either on optimality (depth) or on diversity
(breadth).

This study explored the potential of utilizing Bayesian networks to replace the
traditional deterministic networks in deep RL and to assess this idea in the con-
text of molecular generation. Our efforts were to reach the goal of ideal machine
learning of molecules: creating molecules with optimized properties and as
much diversity as possible. Our current work could also be viewed as a continu-
ation of our earlier works in [10] [11], where multi-agent reinforcement learning
and invertible neural networks were applied to molecule design, respectively.

2. Methods

The aim of this work was to use Bayesian neural networks in deep RL and ap-
plied this approach to generate new and diverse molecules. Then these newly
created molecules were used to train a variational autoencoder to produce more
novel molecules. This section explained the techniques employed in this study.

2.1. Bayesian Neural Networks

Deterministic neural networks, when viewed as probabilistic models, have their
weights as single values ()| ,p y x w while Bayesian neural networks have their
weights as probability distributions ()|p w D , where x is the input to a net-
work, y an output of the network, w are the weights, and (){ },i iD x y= is the
training dataset. The single values of w in the traditional networks can be
learned from D by maximum likelihood estimation.

The learning of Bayesian networks involves calculation of the posterior dis-
tribution of the weights given the training data. In general, exact Bayesian infe-
rence on the weights of a neural network ()|p w D is intractable so a simpli-
fied variational approximation ()|q w θ is frequently employed. The parame-
ters θ can be found by minimizing the Kullback-Leibler (KL) divergence be-
tween ()|q w θ and the true posterior ()|p w D :

() () () ()
()

() () ()
() ()

|
| || | | log d

|

|
| log d

|

q w
KL q w p w D q w w

p w D

q w p D
q w w

p W p D w

θ
θ θ

θ
θ

=  

=

∫

∫
 (1)

The last step in (1) is using Bayes formula, and because we want to estimate
θ so the terms involving ()p D can be ignored. Thus, we obtain the following
intractable loss function:

() () () () ()|, | || log |q wF D KL q w p w E p D wθθ θ= −       (2)

https://doi.org/10.4236/cmb.2021.114005

W. Hu

DOI: 10.4236/cmb.2021.114005 72 Computational Molecular Bioscience

where ()p w is the prior distribution of w. The first part of the loss is prior de-
pendent or regularizing ()|q w θ towards ()p w by squeezing ()|q w θ under
()p w and the second is data dependent or the likelihood of observing D given

w. The existence of the first term prevents the second term overfitting the model.
Bayes by Backprop [9] was introduced to find θ through Monte Carlo sampling
to evaluate the expectations:

() () () ()1, log | log log |n i i i
iF D q w p w p D wθ θ
=

≈ − −∑ (3)

where iw denotes the𝑖𝑖th Monte Carlo sample drawn fromthe variational post-
erior ()|q w θ . As a result, the task of minimizing the loss in (1) can be accom-
plished via the Monte Carlo gradients on the tractable loss in (2). The work in
[9] shows that the derivative of an expectation can be expressed as the expecta-
tion of a derivative, under certain conditions. The Monte Carlo technique in (2)
removes the need to use a closed form for the first or the second term in (1),
thereby reduces any potential bias from a particular selection of the closed form.
A common implementation of ()|q w θ uses a Gaussian distribution with

(),θ µ σ= where μ is the mean and σ the standard deviation. These probability
distributions describe the uncertainty in weights and can be used to estimate
uncertainty in predictions.

Since deterministic networks can only output point estimates, Bayesian net-
works can be viewed as an assemble of infinitely many deterministic networks.

2.2. Reinforcement Learning of Molecule Design

Machine learning is increasingly being applied to the targeted generation of mo-
lecules and guided exploration of chemical space. Reinforcement learning is a
subfield of machine learning in which an agent learns how to act in an environ-
ment so as to maximize its cumulative rewards. Therefore, RL agents are natural
fitfor creating molecules with desirable properties as their rewards. MolDQN [8]
formulated optimizing molecules as a Markov decision process (MDP). In this
MDP, the agent took actions on the molecule to transform it sequentially. Atoms
in a molecule are connected with one another by chemical bonds, therefore, three
categories of actions were employed: atom addition, bond addition, and bond
removal. For the validity of each molecule, “no modification” was also included
as an action, which permitted the molecule to remain unchanged at the current
step. By only allowing chemically valid actions, all molecules generated by the
agent were ensured to be valid. Furthermore, it could learn from scratch without
any training molecules. The goal of the agent was to learn a Q function (),Q s a
which represents the long-term rewards for taking action a in the state s. From
the learned values of (),Q s a , the agent could decide what actions to take in a
given state, or using a more precise term in RL: the agent could infer a policy
from this Q function, here policy is a mapping from states to actions.

In this study, we replaced the deterministic networks in MolDQN with Baye-
sian networks. The purpose of using a Bayesian approach was to aid exploration
and reduce uncertainty in RL, which could then yield diverse molecules of de-

https://doi.org/10.4236/cmb.2021.114005

W. Hu

DOI: 10.4236/cmb.2021.114005 73 Computational Molecular Bioscience

sirable properties when applied to molecule design. In the remaining part of this
paper, DQN and BDQN denote MolDQN and Bayesian MolDQN, respectively.
Our work used the Pytorch implementation of MolDQN from
https://github.com/aksub99/MolDQN-pytorch.

2.3. Variational Autoencoders (VAEs) for Molecule Generation

VAEs are commonly used to construct generative models by learning the un-
derlying distribution of the data [12], which were used to create novel molecules
in this study. Assume ()p x is a distribution of data, and ()p z is a distribu-
tion of latent representation of the data. It is beneficial for the latent distribution
to be probabilistic, since this introduces noise that helps VAEs to learn more
robust representations. The objective in generative learning is to learn ()p x
from which we can sample x from, and we know () () ()| dp x p x z p z z= ∫ .
Therefore, learning ()p x is equivalent to learning ()|p x z and ()p z ,
where ()p z is a prior for z and ()|p x z is the likelihood of observing x given
z. ()|p x z is also called decoder as we can sample z from ()p z , and then
sample x from ()|p x z . The encoder ()|p z x is the posterior given the prior
()p z and the likelihood ()|p x z through Bayes formula. A similar derivation

like the one in (1) can lead to the following equation:

() () () () () () ()|log | || | log | | ||q z xp x KL q z x p z x E p x z KL q z x p z− = −           (4)

Because KL divergence is always non-negative, we can maximize ()log p x in
(4) by minimizing the loss in (5). By doing so, we actually maximize the lower
bound of ()log p x .

() () () ()|| || log |q z xLoss KL q z x p z E p x z= −       (5)

where the first term on the right-hand side is forcing ()|q z x getting close to
()p z so it can serve as regularization to avoid overfitting and the second term

measures the quality of reconstruction by the encoder ()|q z x and decoder
()|p x z . This loss function suggests that generative models can give us insight

into our data. Notice the similarity between the loss functions in (2) and (4).
However, the loss in (4) aims to learn the distribution ()|q z x over the latent
variable z for each x, and the loss in (2) is to learn the distribution over the
weights in the networks. Every x corresponds to a different ()|q z x while in
(2) there is only one single distribution over weights. To conclude, VAEs are la-
tent variable models in which we can draw z from aprior ()p z and passed it
into a decoder ()|p x z . Our work used the VAE implemented in [13], where
the encoder ()|q z x and decoder ()|p x z are represented as neural net-
works.

3. Results

The chemical property studied in this work is QED, which stands for quantita-
tive estimation of drug-likeness and is a measurement based a collection of mo-
lecular properties. Its range is (0, 1) and a value closer to 1 means more

https://doi.org/10.4236/cmb.2021.114005
https://github.com/aksub99/MolDQN-pytorch

W. Hu

DOI: 10.4236/cmb.2021.114005 74 Computational Molecular Bioscience

drug-likeness. Its calculation was carried out by software RDKit. Each molecule
was represented by a Morgan fingerprint with radius of 3 and length of 200.
Each element of the fingerprint indicates the presence or absence of a particular
molecular feature. The experiments reported in this section assumed one episode
was made of maximum of 20 steps in the design of a molecule, and one action
was taken from one possible action at each step by the DQN agent and one ac-
tion from multiple possible actions from BDQN. The reward for each action was
the QED value for the molecule being generated by the agent. One episode gen-
erated one molecule. The atoms that could be added onto the molecule were
“C”, “O”, “N”, and the starting molecule was none.

We showed in this section the results of applying Bayesian approach to RL in
the generation and optimization of molecules. The molecules generated by
BDQN had similar QED values with those from DQN, but more diverse. Fur-
thermore, because of their diversity, these newly created molecules were em-
ployed to train a generative model to yield more novel molecules.

3.1. Needs for Better Action Selection

The inspiring motivation for us to use Bayesian networks was that there were
varied number of valid actions at each step of generating a molecule by a DQN
agent. This uncertainty, therefore, called for better action selection. In the first
500 episodes of one run of DQN, the number of valid actions in each step ranged
from 1 to 121 (Figure 1).

3.2. Comparison of DQN and BDQN

This section assessed the performance of DQN and BDQN regarding the opti-
mization and diversity of the molecules they created. We ran DQN and BDQN
for three experiments with each of 10,000 episodes and the learning curves of

Figure 1. Histogram of size of valid actions in each step in the first 500 episodes from one
run of DQN.

https://doi.org/10.4236/cmb.2021.114005

W. Hu

DOI: 10.4236/cmb.2021.114005 75 Computational Molecular Bioscience

averaged rewards were plotted using a simple moving average of size 50, and the
shaded areas around the curves were standard deviations of their rewards
(Figure 2). The DQN agent obviously collected more rewards than the BDQN
agent, therefore, DQN was better in optimization. However, generating diverse
molecules is also of great interest in chemistry.

In order to reveal the diversity of the molecules, this time we calculated the
unique molecules produced by DQN and BDQN agents respectively (Figure 3).

Figure 2. Learning curves of DQN and BDQN where the curves are
the average of three rewards and the shaded areas around the curves
are the standard deviations of the rewards.

Figure 3. Unique molecule counts from DQN and BDQN where the
curves are the average of three counts and the shaded areas around the
curves are the standard deviations of the counts.

https://doi.org/10.4236/cmb.2021.114005

W. Hu

DOI: 10.4236/cmb.2021.114005 76 Computational Molecular Bioscience

Out of the 10,000 episodes in each of the three experiments, we counted the
unique molecules in a segment of 100 episodes. Recall that each episode gener-
ated one molecule. The average counts plotted as curves and their standard dev-
iations were the shaded areas around the curves (Figure 3). It seemed that as the
learning took place DQN dropped quickly to a single molecule in each segment
of 100 episodes after 8000 episodes, whereas BDQN maintained steady 100 mo-
lecules in each segment to the end of 10,000 episodes. What we observed in Fig-
ure 3 was mode collapse, where DQN only generated a narrow range of different
molecules.

3.3. Advantage of Offering Multiple Possible Actions by BDQN

Bayesian neural networks output multiple predictions instead of a single one
from deterministic neural networks. We allowed the BDQN agent to provide
several possible actions and then took one of the most votes. Our notation
BDQN_1 meant offering one possible action, BDQN_5 meant 5 actions, and
BDQN_15 meant 15 actions. Our purpose was to elaborate on the benefits of
choosing one action from a collection of possible actions during decision mak-
ing in the face of uncertainty. We ran three experiments of 10,000 episodes for
each, and the average of three rewards were calculated and plotted as curves and
the standard deviation of the rewards were the shaded areas (Figure 4). The
curves in Figure 4 implied that having multiple actions to choose from can gain
more rewards. At the same time, it is of interest to see how the diversity of the
molecules was kept as the number of possible actions were increased (from 1 to
5, and then to 15 actions) (Figure 5). As observed from Figure 5, the diversity

Figure 4. Learning curves of BDQN_1, BDQN_5, and BDQN_15 where the
curves are the average of three rewards and the shaded areas around the curves
are the standard deviations of the rewards.

https://doi.org/10.4236/cmb.2021.114005

W. Hu

DOI: 10.4236/cmb.2021.114005 77 Computational Molecular Bioscience

Figure 5. Unique molecule counts of BDQN_1, BDQN_5, and BDQN_15 where the
curves are the average of three counts and the shaded areas around the curves are the
standard deviations of the counts.

was deteriorated in the case of BDQN_15, while BDQN_5 and BDQN_1 were
still very robust. The information in Figure 4 and Figure 5 demonstrated a real
play of the dilemma between optimization and diversity: BDQN_15 increased
the QED values of molecules but at the expense of their diversity. Therefore, our
Bayesian approach provided a means to choose a trade-off between the two.

3.4. Illustration of Learning Process of BDQN_15

This section highlighted the learning process of BDQN_15 as reported in Figure
4 within one episode as well as between two episodes. We first recorded the mo-
lecules that were produced after the actions taken at step 19 in episode 526.
From 44 valid actions at this step, the actions sampled from the Q function were
[1, 1, 1, 1, 22, 18, 1, 22, 1, 23, 1, 22, 1, 1, 26] (index starts from 0 not 1), action 1
had the most votes and therefore it was chosen by the agent. This action resulted
in a molecule of the highest QED value (Figure 6) among the 44 molecules
(Figure 7). We plotted the graph images of the molecules that were recom-
mended by the Q function in Figures 8-11.

As the learning taking place, QED values of the molecules created were in-
creased. In episode 2811, there were 65 valid actions at step 19, which yielded 65
molecules (Figure 12). The recommended actions were [11, 52, 9, 34, 12, 44, 14,
14, 12, 57, 3, 14, 12, 12, 57], and action 12 had the most votes. This action re-
sulted in a molecule of highest QED value = 0.80, which was much higher than
that in episode 526 (Figure 6). The action 14 also had the most votes (tied with
action 12), which could result in a molecule of QED value = 0.78.

https://doi.org/10.4236/cmb.2021.114005

W. Hu

DOI: 10.4236/cmb.2021.114005 78 Computational Molecular Bioscience

Figure 6. Graph of the molecule that was chosen by BDQN_15 from 15 possible actions,
its QED = 0.68 and SMILES = CCOC(C)c1nc(N)c[nH]1.

Figure 7. This plot shows the QED values of the molecules after actions at step 19 in episode 526. There are 44 valid actions in
total to produce 44 molecules, which are shown on x-axis with their SMILES. The average QED values of 44 mols = 0.59, min =
0.43 (one mol) and max = 0.68 (three mols).

Figure 8. Graph of one of the molecules produced by 15 possible actions, its QED = 0.63
and SMILES = C=CC(OC)c1nc(N)c[nH]1.

https://doi.org/10.4236/cmb.2021.114005

W. Hu

DOI: 10.4236/cmb.2021.114005 79 Computational Molecular Bioscience

Figure 9. Graph of one of the molecules produced by 15 possible actions, its QED = 0.53
and SMILES = CC(OCO)c1nc(N)c[nH]1.

Figure 10. Graph of one of the molecules produced by 15 possible actions, its QED = 0.53
and SMILES = CC(OCN)c1nc(N)c[nH]1.

Figure 11. Graph of one of the molecules produced by 15 possible actions, its QED = 0.54
and SMILES = COC(C=N)c1nc(N)c[nH]1.

3.5. Using VAEs to Generate Novel Molecules from the
Molecules Created by BDQN_15

Section 3.3 showed that the molecules produced by BDQN enjoyed a great di-
versity. To further exploit these molecules, we selected 1000 molecules of QED
values above 7.0 created by BDQN_15 and used them as a training set to build a
VAE as a generative model. After training, this model was utilized to produce
2382 molecules. Some of them belonged to the training set, and we took out the
ones that were not part of the training set, which had a total of 1632 new mole-
cules. We considered this set as novel molecules generated by this VAE.

https://doi.org/10.4236/cmb.2021.114005

W. Hu

DOI: 10.4236/cmb.2021.114005 80 Computational Molecular Bioscience

Figure 12. This plot shows the QED values of the molecules after actions at step 19 in episode 2811. There are 65 valid actions in
total to produce 65 molecules, which are shown on x-axis with their SMILES. The average QED values of 65 mols = 0.74, min =
0.43 (one mol) and max = 0.68 (three mols).

Figure 13. QED value distribution of the 1000 molecules (unique scaffolds = 778) created
by BDQN_15 and used as a training set for VAE, their average QED values = 0.73.

To provide more insight into the work of this VAE, we compared the training
molecules from BDQN_15 with the VAE generated ones. Because the 1000 mo-
lecules were selected to have QED values above 0.7 so their QED distribution
was not normal (Figure 13), whereas the distribution of the QED values from the
1632 molecules generated by VAE was normal (Figure 14). It was interesting to
see that the length distribution of both sets of molecules were normal and even
surprisingly had the same average length of 27.6 (Figure 15, Figure 16).

https://doi.org/10.4236/cmb.2021.114005

W. Hu

DOI: 10.4236/cmb.2021.114005 81 Computational Molecular Bioscience

Figure 14. QED value distribution of 1632 molecules (unique scaffolds = 1098)
generated by VAE trained with the 1000 molecules produced by BDQN_15,their
average QED values = 0.71.

Figure 15. Molecule length distribution of 1000 molecules produced by BDQN_15,
their average length = 27.6.

Figure 16. Molecule length distribution of 1632 molecules produced by VAE
trained with the 1000 molecules created by BDQN_15, their average length = 27.6.

https://doi.org/10.4236/cmb.2021.114005

W. Hu

DOI: 10.4236/cmb.2021.114005 82 Computational Molecular Bioscience

4. Conclusions

Machine learning has demonstrated its potential to accelerate the process of
identifying and designing novel molecules. It has been observed that if a ma-
chine learning model is trained with a set of molecules, then it may be difficult to
generate novel molecules that are highly dissimilar to those in the training set.
RL can be used to create molecules without training datasets; as a result, it can
reduce the model bias caused from particular choice of datasets. Discovering
novel molecules different from the known ones is another crucial factor for drug
devolvement since only by satisfying this condition is it possible to design new
drugs.

Uncertainty in machine learning is unavoidable. It can come from data or the
learning process. In RL, the uncertainty may originate from the environment or
the learning process. Compared to the traditional deterministic neural networks
that can only output point estimates, Bayesian neural networks can output any
number of sampled predictions. This redundancy of Bayesian predictions is ad-
vantageous in the face of uncertainty.

Our findings suggest that Bayesian networks are able to keep the balance be-
tween exploration and exploitation in RL, thus performing better than their de-
terministic counterparts. The additional benefit of using Bayesian networks is
that they can yield diverse molecules of desired chemical quality and offer a
means to achieve a trade-off between optimization and diversity in molecule de-
sign. Because of these advantages, our work has made two leaps: the first leap (0
to 1) is creating drug-like molecules from none by a Bayesian RL agent, and the
second leap (1 to n) is producing more novel molecules by a VAE model trained
with the molecules generated in the first leap.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this pa-
per.

References
[1] Elton, D.C., Boukouvalas, Z., Fugea, M.D. and Chunga, P.W. (2019) Deep Learning

for Molecular Design—A Review of the State of the Art. Molecular Systems Design
& Engineering, 4, 828-849. https://doi.org/10.1039/C9ME00039A

[2] Patrick Walters, W. and Barzilay, R. (2021) Applications of Deep Learning in Mo-
lecule Generation and Molecular Property Prediction. Accounts of Chemical Re-
search, 54, 263-270. https://doi.org/10.1021/acs.accounts.0c00699

[3] Rifaioglu, A.S., Atas, H., Martin, M.J., Cetin-Atalay, R., Atalay, V. and Doğan, T.
(2019) Recent Applications of Deep Learning and Machine Intelligence on in Silico
Drug Discovery: Methods, Tools and Databases. Briefings Bioinform, 20, 1878-1912.
https://doi.org/10.1093/bib/bby061

[4] Olivecrona, M., Blaschke, T., Engkvist, O. and Chen, H. (2017) Molecular De-Novo
Design through Deep Reinforcement Learning. Journal of Cheminformatics, 9, Ar-
ticle Number: 48. https://doi.org/10.1186/s13321-017-0235-x

https://doi.org/10.4236/cmb.2021.114005
https://doi.org/10.1039/C9ME00039A
https://doi.org/10.1021/acs.accounts.0c00699
https://doi.org/10.1093/bib/bby061
https://doi.org/10.1186/s13321-017-0235-x

W. Hu

DOI: 10.4236/cmb.2021.114005 83 Computational Molecular Bioscience

[5] Popova, M., Isayev, O. and Tropsha, A. (2018) Deep Reinforcement Learning for De
Novo Drug Design. Science Advances, 4, Article ID: 7885.
https://doi.org/10.1126/sciadv.aap7885

[6] Jeon, W. and Kim, D. (2020) Autonomous Molecule Generation Using Reinforce-
ment Learning and Docking to Develop Potential Novel Inhibitors. Scientific Re-
ports, 10, Article Number: 22104. https://doi.org/10.1038/s41598-020-78537-2

[7] Ståhl, N., Falkman, G., Karlsson, A., Mathiason, G. and Boström, J. (2019) Deep
Reinforcement Learning for Multiparameter Optimization in De Novo Drug De-
sign. Journal of Chemical Information and Modeling, 59, 3166-3176.
https://doi.org/10.1021/acs.jcim.9b00325

[8] Zhou, Z., Kearnes, S., Li, L., Zare, R.N. and Riley, P. (2019) Optimization of Mole-
cules via Deep Reinforcement Learning. Scientific Reports, 9, Article Number: 10752.
https://doi.org/10.1038/s41598-019-47148-x

[9] Blundell, C., Cornebise, J., Kavukcuoglu, K. and Wierstra, D. (2015) Weight Uncer-
tainty in Neural Networks, ICML’15: Proceedings of the 32nd International Confe-
rence on International Conference on Machine Learning, 37, 1613-1622.

[10] Hu, W. (2021) Exploring Local Chemical Space in De Novo Molecular Generation
Using Multi-Agent Deep Reinforcement Learning. Natural Science, 13, 412-424.
https://doi.org/10.4236/ns.2021.139034

[11] Hu, W. (2021) Inverse Molecule Design with Invertible Neural Networks as Gener-
ative Models. Journal of Biomedical Science and Engineering, 14, 305-315.
https://doi.org/10.4236/jbise.2021.147026

[12] Kingma, D.P. and Welling, M. (2014) Auto-Encoding Variational Bayes. ICLR 2014,
14-16 April 2014, Banff, Canada.

[13] Polykovskiy, D., Zhebrak, A., Sanchez-Lengeling, B., Golovanov, S., Tatanov, O.,
Belyaev, S., Kurbanov, R., Artamonov, A., Aladinskiy, V., Veselov, M., Kadurin, A.,
Johansson, S., Chen, H.M., Nikolenko, S., Aspuru-Guzik, A. and Zhavoronkov, A.
(2020) Molecular Sets (MOSES): A Benchmarking Platform for Molecular Genera-
tion Models. Frontiers in Pharmacology. https://doi.org/10.3389/fphar.2020.565644

https://doi.org/10.4236/cmb.2021.114005
https://doi.org/10.1126/sciadv.aap7885
https://doi.org/10.1038/s41598-020-78537-2
https://doi.org/10.1021/acs.jcim.9b00325
https://doi.org/10.1038/s41598-019-47148-x
https://doi.org/10.4236/ns.2021.139034
https://doi.org/10.4236/jbise.2021.147026
https://doi.org/10.3389/fphar.2020.565644

	Reinforcement Learning of Molecule Optimization with Bayesian Neural Networks
	Abstract
	Keywords
	1. Introduction
	2. Methods
	2.1. Bayesian Neural Networks
	2.2. Reinforcement Learning of Molecule Design
	2.3. Variational Autoencoders (VAEs) for Molecule Generation

	3. Results
	3.1. Needs for Better Action Selection
	3.2. Comparison of DQN and BDQN
	3.3. Advantage of Offering Multiple Possible Actions by BDQN
	3.4. Illustration of Learning Process of BDQN_15
	3.5. Using VAEs to Generate Novel Molecules from the Molecules Created by BDQN_15

	4. Conclusions
	Conflicts of Interest
	References

