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Abstract 

This study involved the assessment of the MNI2SX/Def2TZVP/H2O model 
chemistry to enhance the understanding of the structural composition of the 
marine peptide Hemiasterlin and its derivatives A and B used in cancer 
treatment. The Conceptual Density Functional theory was used in the calcu-
lation of molecular properties of the system chemical descriptors during the 
study. Integration of the active molecular regions into their respective Fukui 
functions was used in the selection of electrophilic and nucleophilic attacks. 
Additionally, the proposed correlation between global hardness and the pKa 
was used as the basis of deriving accurate predictions for the pKa values while 
a homology technique was used in the prediction of bioactivity and bioavaila-
bility scores of the peptides under investigation. 
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1. Introduction 

The structural diversity of numerous biologically active metabolites that are 
found in the marine ecosystems has been used in the development of new cate-
gories of agents that can be used in anticancer therapies. The successful devel-
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opment of the anticancer agents has overcome the challenges experienced in the 
development of drugs from natural resources due to the structural complexity of 
the agent sourcing process. Despite the challenges several anticancer drugs de-
rived from the marine life agents have been tested and approved as highly effec-
tive therapeutic interventions within the past few years. Research reveals that 
marine life forms contain diverse clinical and preclinical compounds that are 
potentially vital in the development of new drug formulas for the treatment of 
human health complications. Researchers have carried out numerous studies to 
understand the structural and biosynthetic assembling of the marine agents 
through re-engineering techniques, interdisciplinary development processes, 
and innovative manipulation within the gene clusters of these agents. These 
processes are key in enhancing the pharmaceutical properties of the marine 
agents when compared to the utilization of the natural products directly in the 
development of human medicine [1] [2]. 

A wide range of marine species contains bioactive products known as pep-
tides, which contain high amounts of nutraceutical and medicinal agents based 
on their diverse bioactivities. Pharmacists and medical scientists have leveraged 
the antimicrobial, neuroprotective, antiviral, immunomodulatory, antioxidative, 
antidiabetic, analgesic, antiatherosclerotic, cardioprotective, and anxiolytic 
properties to create drugs that have been used as effective treatments for human 
diseases. The chemical derivatives of some marine peptides are known to have 
high demand and commercial value in the pharmaceutical industry due to their 
important roles in improving patient outcomes in various clinical and preclinical 
stages of disease treatment. A linear tripeptide known as Hemiasterlin is com-
posed of unique amino acids and cytotoxic properties that are vital in the treat-
ment of leukemia. These properties of Hemiasterlin enhance the clinical treat-
ment of leukaemia by inhibiting the formation of mitotic spindle thus inducing 
apoptosis and mitotic arrest, which results in tubulin depolymerization [3]-[8]. 

The oceanic environment provides habitat for many organisms which are 
important agents in the manufactured medicine. According to clinical trials that 
have been carried out to develop medications for cancer, a wide range of marine 
peptides have been found to have important anti-cancer properties that inhibit 
growth or kill cancer cells through activities that inhibit different angiogenesis 
process as well as the tubulin-microtubule balance. The advantage of marine 
peptides as anticancer agents over the traditional chemotherapeutic interven-
tions is that they do not have extreme side effects on the immune system. 
Therefore, the use of marine peptides in the development of anticancer peptides 
is the ideal solution to chemotherapy side effects such as multi-drug resistance, 
which are common in the use of traditional treatment methods [9]. A wide range 
of naturally occurring molecules focuses on microtubules as the key drug targets 
in the treatment of cancer. Combining the marine peptides with the terrestrial 
anticancer agents such as vinca alkaloids and taxes forms an effective clinical 
agent that produce tubulin-binding molecules to inhibit the growth of cancer 
cells [10]. The isolation of cytotoxic peptides from marine sponges results in the 
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formation of Hemiasterlins A and B, which are composed of a wide range of 
unique amino acids such as trimethyltryptophan, N-methyl homovinylogous va-
line, and tert-leucine. These amino acids contain antimitotic properties which 
are used in the treatment of different types of cancer [11] [12] [13]. 

The objective of this work is to study the chemical reactivity of the Hemiaster-
lin and the Hemiasterlin A and B derivatives using the techniques of the Con-
ceptual DFT [14] [15] [16], determining its global properties (of the molecule as 
a whole) as well as the local properties that allow to understand and predict ac-
tive reaction sites, both electrophilic and nucleophilic, with the aid of the calcu-
lated Parr functions [17] [18]. Similarly, the pKa values for each of the peptides 
will be predicted based on a methodology previously developed by us [19]. Fi-
nally, the bioavailability of these compounds and their potential bioactivity will 
be predicted by using some online available software designed for this purpose. 
This research can be considered as providing new insights into the knowledge of 
the chemical reactivity and bioactivity properties of peptides of marine origin 
with potential therapeutic properties in the same line as our previous work on 
the field [20]-[25]. 

2. Computational Methodology 

This study obtained the molecular structures of Hemiasterlin and its A and B 
derivatives from PubChem (https://pubchem.ncbi.nlm.nih.gov), a website that 
serves as the public repository for information pertaining to chemical sub-
stances, along with their associated biological activities. The resulting geometries 
were optimized by means of the DFTBA (Density Functional Tight Binding Ap-
proximation) module available within Gaussian 09 [26]. 

Consistent with our previous work [20]-[25] [27]-[34], the calculation of the 
electronic properties needed for the determination of the chemical reactivity de-
scriptors within the KID (Koopmans in DFT) procedure were obtained by re-
sorting to the MN12SX/Def2TZVP/H2O model chemistry [35] [36] [37] under 
the Solvation Model Density (SMD) parameterization of the Integral Equation 
Formalism-Polarized Continuum Model (IEF-PCM) [38]. 

3. Results and Discussion 

The molecular structures of the optimized members of the Hemiasterlins ob-
tained as mentioned in the Computational Methodology section are displayed in 
Figure 1. 

Following Becke’s ideas [39] and the studies by Baerends et al. concluding that 
the HOMO-LUMO gap of the Kohn-Sham (KS) system can be used as an effec-
tive measure of the molecular optical gap [40] [41], ground state calculations 
were used for the determination of the maximum absorption wavelength that 
belongs to the Hemiasterlins to find the respective maxλ  values through the ap-
plication of chosen model chemistry to determine the HOMO-LUMO gaps. 
Therefore, the results for the calculation of the electronic properties of the He-
miasterlins are displayed in Table 1. 
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Table 1. Electronic energies of the neutral molecular systems (in au) of Hemiasterlin and 
its A and B derivatives, the HOMO and LUMO orbital energies as well as the 
HOMO-LUMO gap (in eV), and the maximum absorption wavelengths maxλ  (in nm) 
calculated with the MN12SX density functional and the Def2TZVP basis set using water 
as solvent simulated with the SMD parametrization of the IEF-PCM model. 

Molecule Total Electronic Energy HOMO LUMO HOMO-LUMO Gap λmax 

Hemiasterlin −1690.078 −5.452 −1.907 3.545 350 

Hemiasterlin A −1650.793 −5.542 −1.907 3.635 341 

Hemiasterlin B −1611.505 −5.471 −1.927 3.544 350 

 

 
(a) 

 
(b) 

 
(c) 

Figure 1. Part (a) shows the graphical representation of the molecular structure of He-
miasterlin, while parts (b) and (c) show the molecular structures of Hemiasterlin A and B, 
respectively. 

3.1. Computation of the Global Reactivity Descriptors 

According with our previous findings for the case of the melanoidins [27]-[33] 
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and peptides of marine origin [20]-[25] [34], the MN12SX density functional is 
capable of giving HOMO and LUMO energies that allow to verify the agreement 
with the approximate Koopmans’ theorem. Thus, the application of the KID 
procedure will be justified. By taking into account the KID procedure presented 
in those previous works together with the finite difference approximation, the 
global reactivity descriptors can be expressed as [14] [15] [16] [42] [43] [44]: 

Electronegativity ( ) ( )0.5 0.5 H LI Aχ ε ε= − + ≈ +  
Global Hardness ( ) ( )L HI Aη ε ε= − ≈ −  
Electrophilicity 20.5ω χ η=  
Electrodonating Power ( ) ( )23 16I A I Aω− = + −  
Electroaccepting Power ( ) ( )23 16I A I Aω+ = + −  
Net Electrophilicity ω ω ω± + −∆ = +  

where Hε  and Lε  are the energies of the HOMO and LUMO, respectively. 
Thus, the results for the global reactivity descriptors based on the values of the 

HOMO and LUMO energies calculated with the MN12SX/Def2TZVP/H2O 
model chemistry are presented in Table 2. 

The electrophilicity ω  index encompasses the balance between the tendency 
of an electrophile to acquire an extra amount of electron density and the resis-
tance of a molecule to exchange electron density with the environment [45]. By 
studying the electrophilicity of a series of reagents involved in Diels-Alder reac-
tions [46], through a quantitative characterization of the global electrophilicity 
pattern of some reagents involved in 1,3-dipolar cycloaddition reactions [47] 
and by means of the understanding of the mechanism of polar Diels-Alder reac-
tions [48], Domingo et al. were allowed to establish an electrophilicity ω  scale 
for the classification of organic molecules as strong electrophiles with ω  > 1.5 
eV, moderate electrophiles with 0.8 < ω  < 1.5 eV and marginal electrophiles 
with ω  < 0.8 eV [46]. By inspection of Table 2, it can be seen that all the pep-
tides considered in this study can be regarded as strong electrophiles. Besides the 
electrophiilcity classification, an electrophilicity scale for these anticancer pep-
tides can be displayed as: Hemiasterlin B > Hemiasterlin > Hemiasterlin A. 

The nucleophilicity N is another important chemical reactivity descriptor.  
 
Table 2. Global reactivity descriptors of Hemiasterlin and its A and B derivatives, calcu-
lated with the MN12SX/Def2TZVP/H2O model chemistry. 

Molecule Electronegativity Global Hardness Electrophilicity 

Hemiasterlin 3.679 3.545 1.909 

Hemiasterlin A 3.724 3.635 1.908 

Hemiasterlin B 3.699 3.544 1.931 

Molecule Electrodonating Power Electroaccepting Power Net Electrophilicity 

Hemiasterlin 5.880 2.200 8.080 

Hemiasterlin A 5.906 2.181 8.087 

Hemiasterlin B 5.932 2.233 8.165 
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There are several definitions of nucleophilicity available in the literature of Con-
ceptual DFT, and the interested reader is referred to the recent work of Domin-
go and Pérez [49]. However, those indices fail for more complex molecules 
which display concurrently both electrophilic and nucleophilic behaviors and in 
these cases the value of the electrophilicity ω  does not correlate well with their 
expected nucleophilicity [45]. This has compelled Domingo and his collabora-
tors [45] [48] [49] [50] to propose a new nucleophilicity index N simply based 
on the highest occupied molecular orbital (HOMO) energy obtained within the 
Kohn-Sham scheme with an arbitrary shifting of the origin with tetracyanoethy-
lene (TCE) taken as a reference. The corresponding definition for the nucleophi-
licity N index is [45] [48] [49] [50]: N(Nu) = EHOMO(Nu) - EHOMO(TCE), 
and the results for the calculation of this index for the anticancer peptides are: 
Hemiasterlin = 3.34 eV, Hemiasterlin A = 3.25 eV and Hemiasterlin B = 3.32 eV. 
On the basis of the previous definition and the scale established in the men-
tioned study [50], it can be concluded that the Hemiasterlins can be regarded as 
strong nucleophiles because their values are greater than 3 eV. 

3.2. Computation of the Local Reactivity Descriptors 

The expressions for the local reactivity descriptors are shown below [14] [15] 
[16] [51]-[55]: 

Nucleophilic Fukui function ( ) ( ) ( )1N Nf r r rρ ρ+
+= −  

Electrophilic Fukui function ( ) ( ) ( )1N Nf r r rρ ρ−
−= −  

Dual Descriptor ( ) ( ) ( )f r f r f r+ −∆ = −  
where ( )1N rρ + , ( )N rρ  and ( )1N rρ −  are the electronic densities at point r 
for a system with N + 1, N, and N − 1 electrons, respectively. 

Figure 2 shows the Electrophilic and the Nucleophilic Fukui functions 
( )f r−  and ( )f r+  for the respective Hemiasterlins. 

3.3. Computation of the Marine Anticancer Peptides pKas 

Following the methodology or our previous work [19], where we have developed 
a simple QSAR relationship for the prediction of the pKa of peptides with the 
form pKa = 16.3088 - 0.8268η, in this study we have considered the optimized 
molecular structure of each Hemiasterlin and we have applied it to the calcula-
tion of the pKa of these molecules, making use of the η values presented in Table 
3 being the results as follows. 

The resulting pKas must be seen within the context of our previous study [19],  
 
Table 3. The pKa value representation of Hemiasterlin with its derivatives A and B. 

Molecule pKa 

Hemiasterlin 13.38 

Hemiasterlin A 13.30 

Hemiasterlin B 13.38 

https://doi.org/10.4236/cmb.2019.94008


N. Flores-Holguín et al. 
 

 

DOI: 10.4236/cmb.2019.94008 101 Computational Molecular Bioscience 

 

 
Figure 2. The right column represents the Nucleophilic Fukui function while the left 
column represents the Electrophilic Fukui function of Hemiasterlin and its A and B de-
rivatives.  
 
and it is our belief that they could be of interest during the process of the devel-
opment of pharmaceuticals starting from these peptides which could enable an 
explanation of the mechanisms of action and the drug delivery procedures 
within the pH where these actions take place. 

3.4. Bioavailability and Bioactivity Scores 

The bioavailability of pharmaceuticals is intimately related to the concept of 
drug-likeness for which several criteria have been proposed by Lipinski et al. 
[56] [57]. The resulting descriptors can be easily calculated by feeding the cor-
responding SMILES notations into the readily available online MolInspiration 
software (Slovensky Grob, Slovak Republic (www.molinspiration.com). The re-
sults for this determination are presented in Table 4. 

Indeed, the Lipinsky Rule of Five measures the oral bioavailability of a poten-
tial drug and it usual that peptides fail to pass it, mostly due to their volume and 
molecular weight (MW). As we can see from Table 4, this is true also for the 
case of small peptides like those considered in this work. An alternative ap-
proach can be followed by resorting similarity searches in the chemical space for 
similar compounds of known pharmacological properties. 

Molinspiration was considered again for the calculation of the bioactivity 
scores which are a measure of the ability of the potential drug to act as GPCR li-

Hemiasterlin

Hemiasterlin A

Hemiasterlin B

https://doi.org/10.4236/cmb.2019.94008
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gands or Kinase inhibitors, to perform as Ion Channel modulators, or to interact 
with Enzymes and Nuclear receptors. The determination of these bioactivity 
scores has been performed by feeding the SMILES notation for each peptide into 
the online Molinspiration software from Molinspiration Cheminformatics 
(www.molinspiration.com) for the prediction of the bioactivity score for differ-
ent drug targets (GPCR ligands, kinase inhibitors, ion channel modulators, en-
zymes and nuclear receptors). The values of the bioactivity scores for the He-
miasterlins are presented in Table 5. 

As it can be seen from the previous table, the Hemiasterlin family of marine 
peptides will behave mostly as protease inhibitors, and also as enzyme inhibitors 
and as GPCR ligands. 

4. Conclusions 

This paper describes a study carried out to investigate the reactivity properties of 
Hemiasterlin and its derivatives using the density functional theory to explain 
how the molecular interactions of these marine peptides can be used in anti-
cancer drugs. 

The development of new pharmaceutical drugs, especially in cancer treatment 
requires extensive knowledge of the molecular bioactivity scores of different 
global and local peptides. Similarly, the values of the chemical hardness of some  
 
Table 4. Molecular properties of the Hemiasterlin family of anticancer peptides of marine 
origin calculated to verify the Lipinski Rule of Five. 

Molecule milogP TPSA nAtoms nON NOHNH 

Hemiasterlin 4.65 103.67 38 8 3 

Hemiasterlin A 4.58 114.52 37 8 4 

Hemiasterlin B 4.00 114.52 36 8 4 

Molecule Nviol Nrotb Volume MW  

Hemiasterlin 1 11 525.87 526.72  

Hemiasterlin A 1 11 508.92 512.70  

Hemiasterlin B 0 11 492.69 498.67  

 
Table 5. Bioactivity scores of the Hemiasterlin family of marine peptides. 

Molecule GPCR Ligand Ion Channel Modulator Kinase Inhibitor 

Hemiasterlin 0.51 0.02 0.01 

Hemiasterlin A 0.56 0.13 0.04 

Hemiasterlin B 0.49 0.12 0.06 

Molecule Nuclear Receptor Ligand Protease Inhibitor Enzyme Inhibitor 

Hemiasterlin 0.19 0.62 0.43 

Hemiasterlin A 0.18 0.68 0.45 

Hemiasterlin B 0.13 0.58 0.35 

https://doi.org/10.4236/cmb.2019.94008
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therapeutic peptides have been used as the basis of determining their respective 
pKa values as proposed in the computational methodology. This information 
that is obtained enhances the understanding of properties such as the chemical 
reactivity and the water solubility of the peptides. 

Moreover, prediction of the molecular properties of the peptides using various 
methodologies as described in the literature can also be used in the computation 
of the bioavailability values. As a result, the bioactivity levels can be quantified 
on the basis of their respective descriptors in the characterization process of the 
peptide bioactivity with the GPCR Ligand and the protease inhibitors. 
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