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Abstract 
Benzimidazolyl-Chalcones (BZCs) possess nitrogen heteroatoms making them 
very active molecules when protonated. In this work we will focus on a series 
of fourteen (14) substituted BZC molecules. These molecules have been syn-
thesised, characterised and tested for their nematocidal activities. By imple-
menting quantum chemical methods, including density functional theory (DFT) 
at the MPW1PW91/6-311+G (d, p) level, we can achieve accurate predictions 
of molecular properties. A QSAR study is conducted to determine a quantita-
tive relationship between nematocidal activity and property information of the 
BZC compound series. The quantum descriptors namely dipole moment (µ), 
energy gap (ΔE) and mean valence angle (θNsp), are all obtained by protona-
tion on the sp2 nitrogen, the preferred site of protonation in BZCs. These de-
scriptors are the explanatory and predictive parameters of the nematocidal ac-
tivity of the studied molecules. This study was conducted using the principal 
component analysis (PCA), the Multiple Linear Regression (MLR) and the 
non-linear regression (MNLR) methods. The quantitative models were pro-
posed and the nematocidal activity of BZCs was interpreted based on multi-
variate statistical analysis. This study shows that PCA, MLR and NMR were 
used to predict the activities, but compared to the statistical indicators of 
NMR, we realised that the predictions fulfilled by the latter were more effec-
tive. The obtained results suggest that the combination of the proposed de-
scriptors (µ, ΔE, θNsp) could be useful to predict the nematocidal activity of 
Benz imidazolyl-Chalcones. 
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1. Introduction 

 
Figure 1. Molecular structures of training sets and test of Benzimidazolyl-Chalcones used for 
QSAR models. 

 
Nematodes are a large group of worms found in all living environments. They live 
as parasites of plants, animals and humans. They are the cause of most parasitic 
diseases in humans (elephantiasis, filariasis) [1] [2], gastrointestinal infections 
and loss of productivity in animals [3] [4]. However, for more than two decades, 
the continued emergence of new, resistant races of nematodes has been of increas-
ing concern to the agricultural, medical and health communities. There is a need 
to develop an anthelmintic that offers a broad spectrum of action, a high degree 
of efficacy, a good safety margin and flexibility of use in order to contain the prob-
lems of resistance. Several hundred compounds derived from benzimidazoles 
have been synthesised, of which a few have been selected primarily for their broad-
spectrum anthelmintic activity. Benzimidazolyl-chalcone derivatives are of con-
siderable pharmacological interest because of their therapeutic properties in many 
diseases. Several studies have shown that benzimidazolyl derivatives possess an-
tihistaminic properties [5], antifungals [6], anti-allergic [7], antibacterial [8]-
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[10] and antiviral [11]. As these therapeutic properties are linked to the confor-
mation of the molecules and the interactions, they can establish with each other, 
a QSAR study is used to determine models. These models are increasingly used, 
due to the growth in computing resources, to explain and/or predict molecular 
properties in order to limit the excessive number of experiments, which are some-
times long and expensive and to reduce the cost of drug production by pharma-
ceutical companies [12] [13]. In the specific case of the QSAR study, ten deriva-
tives of Benzimidazolyl-Chalcones were studied and four others from the same 
series were used for the external validation test (Figure 1). These molecules were 
synthesised by Ouattara et al. [14]. The nematocidity of the 14 BZC derivatives 
was modelled using several statistical tools, in particular, principal component 
analysis (PCA), multiple linear regression (MLR) and non-linear regression 
(MNLR). The general objective of this work is to make a descriptive and predictive 
study of the nematocidal activity of BZCs based on multivariate statistical anal-
yses. 

2. Materials and Methods 
2.1. Level of Calculation 

In order to establish a descriptive and predictive theory of the biological activities 
of protonated BZCs, Theoretical Chemistry methods are employed at the 
MPW1PW91/6-311+G (d, p) level. The modified Perdew-Wang 1 (MPW1) cal-
culations [15] [16] such as mPW1PW91 are hybrid HF-DF models that provide 
good results for both covalent and non-covalent interactions [17]. In this work, to 
assess the quantitative structure-activity relationship between nematocidal activ-
ity LC100 (μg/mL) and protonated BZC descriptors, the quantum chemistry soft-
ware Gaussian 03 [18] was used. The split-valence and triple-dzeta bases, being 
sufficiently large and taking into account the diffuse and polarisation functions, 
are important when dealing with intermolecular interactions. Taking into account 
these diffuse and polarisation functions gives a quantitative character to the results 
obtained. The modelling was done using the multilinear regression method im-
plemented in Excel spreadsheets [19] and XLSTAT version 2014 [20]. 

2.2. Quantum Descriptors Used 

The descriptors linked to the molecules in interaction by protonation were calcu-
lated. In particular, on the sp2 nitrogen, the preferential protonation site in BZCs. 
For the development of QSAR models, some theoretical descriptors related to the 
conceptual DFT have been determined such as the energy of the Highest Occupied 
Molecular Orbital (LUMO), the energy of the Highest Occupied Molecular Or-
bital (HOMO), the energy gap (ΔE), the dipole moment (µ) and the average va-
lence angle. It should be noted that, the descriptors related to the boundary mo-
lecular orbitals have been calculated in a very simple way within the Koopmans 
approximation [21]. The LUMO energy characterises the sensitivity of the mole-
cule to nucleophilic attack, and the HOMO energy characterises the susceptibility 
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of a molecule to electrophilic attack. The energy difference ΔE between the LUMO 
and HOMO, is an important parameter that gauges the overall reactivity towards 
an electron acceptor and the stability of a molecule. The dipole moment (μ) indi-
cates the stability of a molecule in water. Thus, a high dipole moment will reflect 
low solubility in organic solvents and high solubility in water. The energy gap is 
calculated from Equation (1): 

( )LUMO HOMO1 2E ε ε∆ = +                     (1) 

The measured valence angle θNsp2 is the average of the angles τ1 and τ2 about 
the nitrogen sp2 (Figure 2). 

 

 
Figure 2. The average valence angle (θNsp) measured on the sp2 nitrogen preferential site 
of protonation. 
 

The descriptors obtained in protonation interaction were characterised by 
Kone et al. [22].  

2.3. Estimating the Predictive Capacity of a QSAR Model 

The BZCs have various nematocidal concentrations ranging from 0.002 to 424.5 
µg/mL. This range of concentrations allows a quantitative relationship to be de-
fined between the nematocidal activity and the theoretical descriptors of these 
molecules. Biological data are generally expressed as the opposite of the base ten 
logarithm of the activity ( ( )10log C− ) to obtain higher mathematical values where 
structures are biologically highly effective [23] [24]. The nematocidal activity is 
expressed by the nematocidal potential pLC100. The nematocidal potential is de-
fined from Equation (2):  

3100
100 10

 

LCpLC log 10
M

− 
= − ∗ 

 
                 (2) 

Where M is the molecular weight (g/mol) and LC100 is the lethal concentration 100 
in worms, it gives the concentration of substance required to destroy 100% of a 
worm population under the conditions of the experiment (µg/mL). 

The quality of a model is determined on the basis of different statistical analysis 
criteria including the coefficient of determination R2, standard deviation S, cross-
validation correlation coefficients 2

CVQ  and Fischer F. R2, S and F relate to the fit 
of calculated and experimental values. They describe the predictive ability within 
the limits of the model, and allow to estimate the accuracy of the calculated values 
on the test set [25] [26]. As for the cross-validation coefficient 2

CVQ , it provides 
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information on the predictive power of the model. This predictive power is said 
to be “internal” because it is calculated from the structures used to build the 
model. The correlation coefficient R2 gives an evaluation of the dispersion of the 
theoretical values around the experimental values. The quality of the modelling is 
better when the points are close to the adjustment line [27]. The fit of the points 
to this line can be assessed by the coefficient of determination. 

( )
( )

2
, ,2

2
, ,

ˆ
1 i exp i theo

i exp i exp

y y
R

y y

−
= −

−

∑
∑

                   (3) 

Où: 

,i expy : Experimental value of nematocidal activity 

,ˆi theoy : Theoretical value of nematocidal activity and 

,i expy : Average value of experimental values for nematocidal activity. 

The closer the R2 value is to 1, the more the theoretical and experimental values 
are correlated. 

Furthermore, the variance σ2 is determined by the relation 4: 

( )2
, ,2 2

1
i exp i theoy y

s
n k

σ
−

= =
− −

∑
                   (4) 

Where k is the number of independent variables (descriptors), n is the number of 
molecules in the test or training set and n – k − 1 is the degree of freedom. 

Another statistical indicator used is the standard deviation S. It is used to assess 
the reliability and accuracy of a test set. It is used to assess the reliability and ac-
curacy of a model:  

( )2
, ,

1
i exp i theoy y

s
n k

−
=

− −
∑                      (5) 

The Fisher F test is also used to measure the statistical significance of the model, 
i.e. the quality of the choice of descriptors making up the model. 

( )
( )

2
, ,

2
, ,

1i theo i exp

i exp i theo

y y n kF
ky y

− − −
= ∗

−

∑
∑

                 (6) 

The coefficient of determination of the cross-validation, Q2
CV, is used to evalu-

ate the accuracy of the prediction on the test set. It is calculated using the following 
relationship: 

( ) ( )
( )

2 2
, , , ,2

2
, ,

i theo i exp i theo i exp
cv

i theo i exp

y y y y
Q

y y

− − −
=

−

∑ ∑
∑

            (7) 

2.4. Statistical Analysis 
2.4.1. Principal Component Analysis (PCA) 
The structures of 14 BZC compounds were studied by statistical methods based 
on Principal Component Analysis (PCA) [28] using the XLSTAT software version 
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2014 [20]. PCA is a useful statistical technique for summarising all the infor-
mation encoded in the structures of compounds. It is also very useful for under-
standing the distribution of compounds [29]. This is an essentially descriptive sta-
tistical method which aims to present, in graphic form, the maximum information 
contained in the data. 

2.4.2. Multiple Linear and Non-Linear Regressions (MLR and MNLR) 
The statistical technique of Multiple Linear Regression (MLR) is used to study the 
relationship between a dependent variable (biological activity) and several inde-
pendent variables (descriptors). This statistical method minimises the differences 
between the actual and predicted values. It was also used to select the descriptors 
used as input parameters in the multiple non-linear regression (MNLR). Multiple 
Non-Linear Regression (MNLR) analysis is a technique for improving the struc-
ture-activity relationship in order to quantitatively assess biological activity. It 
takes into account several parameters. It is the most common tool for studying 
multidimensional data. It is based on the following pre-programmed XLSTAT 
functions: 

( ) ( )1 2 3 4 12 22 32 42y a bx cx dx ex fx gx hx ix= + + + + + + + +         (8) 

Where , , , ,a b c d  : represent the parameters and 1 2 3 4, , , ,x x x x  : represent the 
variables. 

The (MLR) and (MNLR) were generated using the XLSTAT software version 
2014 [20], to predict LC100 nematocidal activity. The equations of the different 
models were evaluated by coefficient of determination (R2), root mean square er-
ror (S), Fischer test (F) and cross correlation coefficient ( 2

CVQ ) [30]. 
All descriptor values for the ten (10) BZC molecules in the test set and the other 

four (4) molecules in the validation set are presented in Table 1. 
 

Table 1. Quantum descriptors and experimental potentials of the test and validation sets. 

Compounds ΔΕ (eV) µ (D) θNsp (˚) pLC100exp 

Training Set 

BZC-1 −3.150 4.293 125.13 3.095 

BZC-2 −2.645 4.695 125.13 2.837 

BZC-3 −3.255 9.512 125.13 4.372 

BZC-4 −3.422 7.943 125.13 4.346 

BZC-5 −3.712 15.726 125.14 7.503 

BZC-6 −3.250 4.781 125.14 4.919 

BZC-7 −3.642 8.259 124.84 8.096 

BZC-8 −3.089 14.292 125.14 6.311 

BZC-9 −2.811 7.724 125.14 2.817 

BZC-10 −3.377 5.991 125.14 4.34 
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Continued 

Test set 

BZC-11 −3.498 5.273 125.13 8.094 

BZC-12 −3.314 5.812 125.13 6.215 

BZC-13 −3.054 5.028 125.13 5.612 

BZC-14 −3.133 12.953 125.14 2.887 

2.5. Acceptance Criteria for a QSAR Model 

The performance of a mathematical model, for Eriksson et al. [31], is character-
ized by a value of 2 0.5cvQ >  for a satisfactory model when for the excellent model 

2 0.9cvQ > . According to them, given a test set, a model will perform well if the 

acceptance criterion 2 2 0.3cvR Q− <  is respected. 

According to Tropsha et al. [32] [33], For the external validation set, the pre-
dictive power of a model can be obtained from five criteria. These criteria are: 

1) 2 0.7TestR > , 2) 2 0.6Cv TestQ > , 3) 2 2
0 0.3TestR R− ≤  

4) 
2 2

0
2 0.1Test

Test

R R
R
−

< . et 0.85 1.15k≤ ≤ , 5) 
2 2

0
2 0.1Test

Test

R R
R

′−
<  et  

0.85 1.15k′≤ ≤ . 
In addition, Roy and Roy [34], have further refined the predictive capacity of a 

QSAR model. They have developed quantities 2
mr  et 2

mr∆ , called metric values, 
2

mr  determines how close the observed activity is to the prediction. The metric 
values 2

mr  et 2
mr∆  are calculated from the oerved and predicted activities. Cur-

rently, these two different variants 2
mr  et 2

mr∆ , can be calculated for t test set (in-
ternal validation) or for the test set (external validation). A QSAR model is ac-
ceptable to these authors, if both criteria are met. 

2 2
2 0.5

2
m m

m
r rr

′+
= >  

2 2 2 0.2m m mr r r′= − >∆  

Where ( )2 2 2 2
01mr r r r= ∗ − −  and ( )2 2 2 2

01mr r r r′ ′= ∗ − − . 

2.6. Domain of Applicability 

The domain of applicability of a QSAR model is the physico-chemical, structural 
or biological space, in which the model equation is applicable to make predictions 
for new compounds [35]. It corresponds to the region of the chemical space in-
cluding the compounds of the training set and similar compounds, which are close 
in the same space [36]. Indeed, the model, which is built on the basis of a limited 
number of compounds, by relevant descriptors, chosen among many oers, cannot 
ba universal tool to predict the activity of any other molecule with confidence. It 
appears necessary, even mandatory, to determine the DA of any QSAR model. 
This is recommended by the Organisation for Economic Co-operation and 
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Development (OECD) in the development of a QSAR model [37]. There are sev-
eral methods for determining the domain of applicability of a model [36]. Among 
these, the approach used in this work is the leverage approach. This method is 
based on the variation of the standardised residuals of the dependent variable with 
the distance between the values of the descriptors and their mean, called leverage 
[38]. The hii are the diagonal elements of a matrix H called hat matrix. H is the 
projection matrix of the experimental values of the explained variable Yexp into the 
space of the predicted values of the explained variable Ypred such that: 

pred expY HY=                          (9) 

H is defined by the expression (10): 

( ) 1t tH X X X X
−

= .                     (10) 

The area of applicability is delimited by a threshold value of the lever noted h  

In general, it is set at 13 p
n
+ , where n is the number of compounds in the training  

set, and p is the number of descriptors in the model [39] [40]. For standardised 
residuals, the two limit values generally used are ±3σ, σ being the standard devia-
tion of the experimental values of the quantity to be explained [41]: this is the 
“three sigma rule” [42]. 

3. Results and Discussion 
3.1. Principal Component Analysis (PCA) 

Three descriptors for the 14 compounds are subjected to PCA analysis. The two 
main axes are sufficient to describe the information provided by the data matrix. 
Indeed, the percentages of variance are 53.73% and 25.49% for the F1 and F2 axes, 
respectively. The total information is estimated at 79.23%. Principal component 
analysis (PCA) [29] was conducted to identify the relationship between the differ-
ent descriptors. The bold values are different from 0 at a significance level of p = 
0.05. The correlations between the three descriptors are presented in Table 2 as a 
correlation matrix and in Figure 2 where these descriptors are represented in a 
correlation circle. The Pearson correlation coefficients are summarised in Table 
2. The resulting matrix provides information on the negative or positive correla-
tion between the variables. 

 
Table 2. Correlation matrix (Pearson(n)) between the different descriptors. 

Variables ΔΕ (eV) µ (D) θNsp (˚) pLC100exp 

ΔΕ (eV) 1 −0.2821 0.3893 −0.7386 

µ (D) −0.2821 1 0.0165 0.2172 

θNsp (˚) 0.3893 0.0165 1 −0.4514 

pLC100exp −0.7386 0.2172 −0.4514 1 

Bold values are different from 0 at a significant level for p < 0.05. Very significant at p < 
0.01. Very significant at p < 0.001. 
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The Pearson correlation coefficients are summarised in the following Table 2. 
The matrix obtained provides information on the negative or positive correlation 
between the variables. The energy gap (ΔE) is negatively correlated with the nem-
atocidal activity pLC100 (r = −0.7386 and p < 0.05) at a significant level. 

 

 
Figure 3. Circle of correlation. 

 
The correlation circle was performed to detect the connection between the dif-

ferent descriptors. Principal component analysis from the correlation circle (Fig-
ure 3) revealed that the F1 axis (53.73% of the variance) appears to represent the 
mean valence angle (θNsp) and the energy gap (ΔE), and the F2 axis (25.49% of 
the variance) appears to represent the dipole moment (µ). 

 

 
Figure 4. Cartesian diagram according to F1 and F2: correlation 
between the descriptors used and the BZCs. 

 
The Cartesian diagram in Figure 4 linking the 14 BZCs to the three descriptors 
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studied, shows that there is a connection between the compounds BZC-5 and 
BZC-8 and the dipole moment (µ). 

 

 
Figure 5. Cartesian diagram according to F1 and F2: Separation 
between group 1 (pLC100 < 6.00) and group 2 (pLC100 > 6.00). 

 
Figure 5 shows a distribution of the BZCs into two groups: group 1 containing 

compounds with pLC100 < 6.00 and group 2 containing compounds with pLC100 > 
6.00. 

3.2. Multiple Linear Regression (MLR) 

The equation of the QSAR model with statistical data is presented below. Figure 
6 shows the correlation between the experimental and theoretical nematocidal po-
tentials of the test set (blue dots) and the validation set (red dots). The resulting 
model relates the nematocidal activity to the theoretical descriptors of the proto-
nated molecules. The negative or positive sign of the coefficient of a descriptor in 
the model reflects the proportionality effect between the evolution of biological 
activity and this parameter in the regression equation. The negative sign indicates 
that when the value of the descriptor is high, biological activity decreases. The 
positive sign indicates the opposite effect. The resulting equation is presented be-
low: 

100pLC 1096 2.13190 0.24723 8.78931 NspE µ θ= − ∗∆ + ∗ − ∗       (11) 

10N = , 2 0.90R = , 2 0.82CVQ = , 0.64S = , 69.21F =  

The negative signs of the coefficients of energy gap (ΔE) and mean valence an-
gle (θNsp) reflect that nematocidal activity will be enhanced for low values of these 
descriptors. And the positive sign of the dipole moment (µ) also reflects that the 
nematocidal activity will be improved for high values of the dipole moment. The 
significance of the model is reflected by the Fischer coefficient F = 69.21: the cor-
relation coefficient of the cross-validation 2 0.82CVQ = . This model is acceptable 
with 2 2 0.90 0.82 0.008 0.3CVR Q− = − = < . The regression line between the 
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experimental and theoretical nematocidal potentials of the test set and the valida-
tion set is shown in Figure 6. 

 

 
Figure 6. The regression line of the MLR model. 

Verification of Tropsha’s Criteria 
2 1 0.7TestR = > , 2 1 0.6Cv TestQ = > , 2 2

0 0.007 0.3TestR R− = ≤  

2 2
0

2 0.007 0.1Test

Test

R R
R
−

= <  and 0.85 0.996 1.15k≤ = ≤ ; 

2 2
0

2 0.007 0.1Test

Test

R R
R

′−
= <  and 0.85 1.004 1.15k′≤ = ≤ . 

As mt the Tropsha criteria, so the model is acceptable for predicting nematoci-
dal activity. 

3.3. Multiple Non-Linear Regression (MNLR) 

 
Figure 7. The regression line of the MNLR model. 
 
The non-linear regression statistical method was used to improve the predicted 

L00 nematocidal activity in a quantitative way. It takes into account the three 
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selected descriptors (ΔE, µ, θNsp). It is the most common tool for the study of 
multidimensional data. This statistical method is applied to the data in Table 1 
containing 14 molecules associated with the three descriptors. The resulting equa-
tion is: 

100
2 2 2

pLC 2788144 10.43862* 0.39036 44603 Nsp

1.36271 0.03197 178.38332 NspE

µ θ

µ θ

= − ∆Ε− ∗ − ∗

− ∗∆ + ∗ + ∗
    (12) 

10N = , 2 0.955R = , 2 0.955CVQ = , 0.422S = , 170.228F =  

The significance of the model is expressed by the Fischer coefficient F = 17228: 
the correlation coefficient of the cross-validation 2 0.955CVQ = . This model is ac-
ceptable with 2 2 0.955 0.955 0.000 0.3CVR Q− = − = < . The regression line be-
tween the experimental and theoretical nematocidal potentials of the test set (blue 
points) and the test set (red points) is shown in Figure 7. 

Checking Roy’s Criteria 
2 2

2 2 2 20.919 0.5; 0.000 0.2
2

m m
m m m m

r rr r r r
′+ ′= = > ∆ = − = <  

2 2Avec 0.919 et 0.919m mr r′= =  

All values meet Tropsha’s criteria, so the model is acceptable for predicting 
nematocidal activity. 

Of the two models, the model obtained by the statistical method MNLR has a 
significantly better predictive ability than the MLR approach.  

The low standard deviation values are 0.64 and 0.422 in models 1 and 2, respec-
tively, showing that the predicted and experimental values are very similar (Figure 
8). These curves show similar evolution of these values in both models of BZC 
series derived from benzimidazoles, despite some recorded differences. 

 

 
Figure 8. Similarity curve of experimental and predicted values for models 1 and 2. 

 
However, as this model is a function of three theoretical descriptors, it is essen-

tial to determine the contribution of each one in the prediction of the nematocidal 
activity for this series of molecules. Indeed, the knowledge of this contribution 
makes it possible to establish the order of priority of the various descriptors and 
to define the choice of the parameters to be optimised for the achievement of a 
better activity. 
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3.4. Analysis of the Contribution of the Descriptors 

The contribution of the three descriptors of this model in predicting the nemato-
cidal activity of Benzimidazolyl-Chalcones was determined. The various contri-
butions are illustrated in Figure 9. 

 

 
Figure 9. Contribution of descriptors in the models. 

 
The dipole moment (µ) shows a large proportion followed by the mean valence 

angle (θNsp) and finally the energy gap (ΔE). Thus it is noted that to improve 
nematocidal activity, a high value of dipole moment (µ) is required. This claim is 
evidenced by Figure 4 where compounds BZC-5 and BZC-8 which have high val-
ues of dipole moment (µ) correlate well with pLC100 activity. 

3.5. Domain of Applicability Analysis 

The range of applicability of the MLR and MNLR models was determined by the 
lever method. The values of the hii levers and the standardised residues of the mol-
ecules were used to plot the standardised residues against the hii levers in Figure 
10. 

 

 
Figure 10. Graph of Standardised Residues according to the levers of the 
MLR and MNLR models. 
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For the 10 molecules of the training set and the 3 descriptors of the model, the 
threshold value of the levers h* is 1.2. The extreme values of the standardised re-
siduals are ±3 according to the “three sigma rule” [42]. These different values de-
limit the area of applicability [43] of the model as shown on the graph in Figure 
10. This figure shows that all molecules have levers below the threshold lever (h* 
= 1.2) and standardised residue values between +3 and −3. This result means that 
all molecules belong to the applicability domain. 

4. Conclusion 

This study has made it possible to highlight relationships between the nematocidal 
activity LC100 (μg/mL), which is an interaction quantity by its size, and the de-
scriptors of the interacting molecules by protonation. From a chemical point of 
view, these descriptors obtained by molecule interaction will be able to guide the 
experimenter in the synthesis of new more active molecules. The descriptors of 
the protonated molecules (ΔE, µ, θNsp) can explain and predict the nematocidal 
activity of BZCs because there are strong correlations between the calculated and 
experimental values of nematocidal activity. Statistical methods such as principal 
component analysis (PCA), multilinear and non-linear regression were used. The 
robustness study of the two models (MLR and MNLR) constructed shows good 
stability and excellent predictive power. Moreover, compared to the MLR model, 
the MNLR model (R2 = 0.955, S = 0.422, F = 170.228) is better and constitutes an 
efficient tool to predict the nematocidal activity of the best studied BZC analogues 
called “leads”. Furthermore, the study of the contribution of the descriptors 
showed that the dipole moment (µ) is the priority descriptor in predicting the 
nematocidal activity of the studied protonated BZCs. Furthermore, the positive 
sign of the dipole moment coefficient (µ) in the MLR model equation reflects that 
high values of dipole moment (µ) could enhance the nematocidal activity of BZCs. 
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