

ISSN Online: 2151-4771 ISSN Print: 2151-4755

Navigating Digital Fatigue in Educational Environments

Cynthia Silvia¹, Karolina Kopczynski², Amanda Alexander³

- ¹School of Business, American Public University System, Charles Town, WV, USA
- ²School of Arts, Humanities and Education, American Public University System, Charles Town, WV, USA
- ³American Public University System, Charles Town, WV, USA

Email: cynthia.silvia@mycampus.apus.edu

How to cite this paper: Silvia, C., Kopczynski, K., & Alexander, A. (2025). Navigating Digital Fatigue in Educational Environments. *Creative Education, 16,* 1883-1896. https://doi.org/10.4236/ce.2025.1611115

Received: September 15, 2025 Accepted: November 21, 2025 Published: November 24, 2025

Copyright © 2025 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Abstract

There is a decline in the efficacy of traditional student performance and retention due to digital weariness from overexposure to technology. During pandemic times, educators have increased their use of digital media in academia, while students have become increasingly dependent on email, social media, and other digital formats. Personalization is a critical component in retaining student and faculty engagement that resonates with both students and faculty. This article examines the symptoms, causes, and preventative solutions for digital fatigue in educational settings. The conversation, which draws on insights from academic and industry sources, focuses on how educators can adopt digital minimalism, balance digital and physical touchpoints, and improve employee well-being.

Keywords

Digital Fatigue, Education, Social Media, Communication, Burnout

1. Introduction

In today's modern day world of computer and information technology, we are all aware how much our personal and professional lives run with the cutting edge tools like the internet, social media platforms, etc., and this is called as digital-communication based hyper-connected way of learning that we follow in schools these days which have been taking its toll on both students as well as teachers. That is something that affects students, who are inundated with digital advertising, and teachers, who are affected by digital logistics. We must understand why this occurs and, most importantly, what it means for digital weariness so that we can develop more resilient educational policies.

The persistent stimulus of screen-mediated interactions, fragmented technology, and emotionally sterile output contributes to cognitive fatigue, emotional exhaustion, and reduced engagement. The article examines a range of factors that contribute to digital fatigue, including high exposure, technostress, sleep deprivation, and burnout. It provides insights into evidence-based approaches that can help mitigate its effects by weaving digital minimalism and ergonomics, e.g. Aladaptative learning tools for inclusive pedagogy practices, into the mix educational institutions can create agile business spaces that keep up with the pace of technology without leaving human wellness out in the cold.

This article focuses on specific causes, such as anxiety and burnout, and offers recommendations for preventing digital fatigue in the educational field. Some of the suggestions address coping mechanisms, individualized strategies for learners, professional development, mental health support, and pedagogical practices.

2. Causes of Digital Fatigue

2.1. What Is Digital Fatigue?

"Digital fatigue refers to the mental, emotional, and physical exhaustion that results from prolonged use of screens and digital devices." https://mentalhealthproviders.com/glossary-terms/digital-fatigue/

This is called the digital-communication base, a hyper-connected way of learning that we have been running in our schools. If you think about it, none of us can imagine our personal or professional lives without modern tools like the internet, social media, etc., which means we are all used to having many manual guiding channels influencing us. This has definitely got to be taking away from both students and teachers. It impacts students, involves digital advertising and teachers, and involves digital logistics. We need to understand why this is the case and, more importantly, what it implies for digital fatigue, so that we can develop more robust policies in this new educational landscape.

The unceasing pressure of screen-based communication, fractured technology, and emotionally impoverished output leads to cognitive fatigue, emotional burnout, and diminished engagement. It involves an in-depth examination of factors contributing to digital fatigue, such as high-level exposure, technostress, sleep deprivation, and burnout, and evidence-based techniques to reduce their impact. By incorporating digital minimalism and ergonomics, such as AI-adaptive learning tools that support inclusive pedagogical practices, educational institutions can build business-agile spaces that align the velocity of technology with natural human resistance.

Digital fatigue results from excessive screen exposure, recycled content, and the lack of emotional connection in digital environments. Petro (2024) suggests that increasing levels of digital advertising and digital learning materials are eroding students' trust, their level of interaction, and their willingness to use them. Within schools, Acosta (2024) believes that disconnected tech tools and cumbersome

online tasks are productivity killers for both students and teachers, leading to burnout.

Digital fatigue is beginning to manifest throughout classrooms and student environments as everyday life migrates online. Extended digital screen use causes cognitive and physical tiredness, including headaches, difficulty concentrating, sleep disturbance, and eye discomfort; these complaints are consistent with the clinical picture of computer vision syndrome (Kaur et al., 2022; Mylona et al., 2023). Redundant and low attention content can further aggravate this fatigue-inducing disaffection rather than attention. In addition to individual well-being, tiredness also affects relationships in educational settings. In other words, that which is not relevant to them is usually not going to be very visible in the positive sense.

Disjointed digital tools and extended online processes impose friction that saps mental resources and focus. An ICT usage review reveals that, especially in educational systems, technology can drain users' subjective energy if it is not consistent with the student process (Korunovska & Spiekermann, 2019). Additionally, results from a systematic review suggest that technostress may be associated with adverse psychosocial outcomes and lower student achievement (Bahamondes-Rosado et al., 2023). Meanwhile, in aggregate, digital weariness is less a personal failure than a systemic consequence of how tools are designed and implemented.

Solving this issue is something that can only be addressed by more than minor incremental fixes: groups need to prioritize the usability, workflow integration, and authenticity of their systems and content with equivalent measures, fully respecting not just whether a system works but how well it takes into account users' cognitive and emotional boundaries.

There are several reasons people become tired of digital media, including excessive screen time, constant scrolling through similar information, and a lack of emotional connection in digital spaces. Petro (2024) says the omnipresent ads, as well as learning platforms, are eroding learners' confidence and dropping engagement. Within, Acosta (2024) contends that fragmented technologies and longer online chores hamper efficiency and lead to burnout for students and teachers.

Digital fatigue is increasingly evident in classrooms and student spaces as individual daily routine migrates online. Extended screen use is also related to cognitive and physical efforts; typically, headaches, focus issues, disrupted sleep patterns, and eye soreness are frequent reports of "symptoms" included in the clinical profile of digital eye strain (Kaur et al., 2022; Mylona et al., 2023). Repetitive, low-impact content can exacerbate this fatigue by affecting a student's level of interaction and leading to burnout. Beyond individual well-being, fatigue shapes relationships in educational environments. In short, visibility without relevance rarely sustains a student's attention.

Disjointed digital tools and protracted online processes create friction that hijacks mental energy and focus. An ICT usage overview suggests that, especially in

the school context, technology may drain users' subjective energy when it is not aligned with students' workflow (Korunovska & Spiekermann, 2019). More corroborating evidence, from a meta-analysis, associates technostress with poorer psychological outcomes and worse academic performance among students (Pulido-Martos et al., 2024). Meanwhile, considered together, digital fatigue is less a personal fault than an inherent result of how tools are built, adopted, and used. Part of that, I would argue, involves more than a series of patchwork fixes; organizations should factor in usability, workflow integration, and authenticity considerations into their design (along with measuring systems' efficiency and how well they respect users' cognitive and emotional bandwidth).

2.2. Increased Anxiety and Burnout

The rise of digital platforms in education has led to a surge in screen time and academic pressures, particularly among students in demanding fields such as nursing. For these reasons, the finding of Ibrahim et al. (2025) concluded there was a significant relationship between digital burnout and poor psychological health among nursing students in the UAE, younger students and those taking more than five subject had higher anxiety symptoms/and or exhaustion concerns' The study revealed that digital burnout was a significant predictor of poor mental health, independent of other demographic or academic variables. The results indicate the need for (PLA) institutional strategies that promote digital well-being, such as adjusting course loads and enhancing mental health support.

Likewise, Das Deep & Chen (2025b) conducted a qualitative narrative review of 38 peer-reviewed papers on student burnout post COVID-19. Their research helped explain how the fatigue of digital learning, paired with financial instability and social isolation, led to widespread disengagement from school and mental anguish. Flexible academic policies, hybrid learning models, and AI-powered support tools have helped alleviate some of the stress, the review found, but long-term academic consequences remain unknown. Such findings indicate that sustainable digital and institutional support structures are required to build resilience and to prevent decline amid the rise of digital educational environments.

2.3. Sleep Disruption and Emotional Exhaustion

Insomnia is a critical consequence of digital fatigue, particularly in universities where students are exposed to protracted screen time. This sleep disruption not only prevents students from falling asleep but also impairs cognitive function and academic performance by depriving them of sufficient rest (Hershner & Chervin, 2014). The continuous consumption of digital content in the context of coursework, communication, and research results in a state of mental arousal (i.e., tenseness), reinforcing fatigue and stress, with consequences for relaxation and sleep onset.

Emotional exhaustion, a prominent feature of burnout, is growing among students adapting to digital learning environments. It is inherent in the constant de-

mands of the internet, learning/teaching platforms, or the blurred margins between professional and family life (Sonnentag et al., 2010). This weakened boundary creates a permanent state of vigilance, hindering students' ability to distance themselves from school duties. When this continues, it leads to complaints like irritability, anxiety, and a reduced sense of accomplishment (Maslach & Leiter, 2016). In response to these effects, schools will need to promote digital wellness strategies (e.g., scheduled breaks, screen time limits, psychological detachment) to support students' emotional and physical health.

3. Recommendations for the Prevention of Digital Fatigue3.1. Strategies in Educational Environments

With the growing reliance on digital communication tools in education, minimizing digital fatigue is crucial for sustaining learner engagement and supporting educators' well-being. A balanced ecosystem that promotes both high-tech efficiency and human connection is achieved by using ergonomic, operational, and experiential strategies. One of the most effective strategies to eliminate digital fatigue is to take frequent screen breaks. The 20-20-20 rule is effective at reducing digital eye strain and improving cognitive concentration (Nova Eye Care Center, 2024).

In education, many systems are reconsidering how they structure remote collaboration plans by implementing no-meeting days and capping the duration of virtual meetings to mitigate exhaustion, increase productivity (Fellow.app, 2025). In addition, technical barriers need to be defined. Apps that help turn off unnecessary notifications and identify tech-free zones at school or home can help people refocus their attention and prevent overstimulation (Vital Pathways, 2024). Fatigue can be reduced amongst educators by improving digital workflows, enhancing clarity and meaning in wayfinding, and increasing brand loyalty over time (Stayf, 2025; Crudo, 2024).

Complementary to this, in-class experiential designs such as interactive displays, tactile elements, and gamified environments can provide screen-free engagement that counters digital saturation (Forbes Business Council, 2025; Kopczynski & Silvia, 2023). Equally important is the investment in mental health and ergonomic support for learners and educators. Teachers can counteract screen fatigue by offering mindfulness resources, promoting good posture, and integrating movement during the school day (McLean Hospital, 2024). These tactics cultivate intrinsic motivation, reduce burnout, and contribute to a positive work environment.

3.2. Promoting Asynchronous Learning Options

Promoting asynchronous options enables students and teachers to engage in flexible and on-demand learning. The prevalence of asynchronous learning has escalated concerns about screen time and the always-on connectivity to virtual environments, raising questions about digital fatigue—a condition of mental exhaustion that impacts teacher engagement and wellness. Learning to develop resilience

and a positive mindset despite digital learning challenges is essential for both learners and teachers.

The discovery and implementation of individual learning pathways can reduce mental pressure and overburden, by creating a self-directed schedule for the learner. Adapting the learning model to incorporate microlearning, gamification, and elearning tools will facilitate an interactive learning experience and potentially reduce cognitive fatigue. According to Kumar (2024), community-centered learning serves as an emotional support system that protects against digital fatigue. While it's true that asynchronous learning has created opportunity for more accessibility and flexibility in one's educational experience, teachers must also ensure that the flexible aspects of their teaching can provide durable, long-term resistance against digital fatigue.

Developing resilience and a positive mindset even in the face of digital learning challenges is something both learners and teachers need to learn. This flexibility has opened the door to learning opportunities based on space and time thus creating an opportunity to foster digital learning both for students and teachers; still, there is a widespread use of asynchronous learning that rises issues related to screen time and constant interactivity becoming a drain (a "digital fatigue") in teacher's engagement aspects determining a loss of their well-being. Even in the rare case of challenges in digital learning, both learners and teachers need to build resilience and a positive mindset.

When individuals have personalized learning pathways, cognitive stress, or task overload, an autonomous pacing schedule can be created to redesign the learning model by integrating microlearning, gamification, and e-learning tools to incentivize and redefine the process, thereby preventing mental fatigue. According to Kumar (2024), a learning environment that promotes collaborative and emotional support, nurtures resilience, and mitigates digital fatigue. While asynchronous learning does offer more opportunities and freedom when it comes to accessing the scholar experience, educators will also need to be sure that their flexible teaching practices have the long-term load-bearing capacity against digital fatigue.

Smart (2023) offers five design factors that would be beneficial for educators and instructional designers to consider when designing flexible learning formats that contribute to the reduction of digital fatigue, such as:

- 1. Setting explicit course expectations
- 2. Toss in some media to spice up their education
- 3. Help students collaborate and communicate to prevent social isolation
- 4. Create a sense of community
- 5. Dish out timely and helpful criticism to help them learn
- 6. Build BYOD into the classroom.

Used in combination, the following can help students and teachers address digital fatigue. The answer lies in unifying these digital efficiencies with human-centered design so that both learners and educators can connect with educational programs in ways that are engaging rather than exhausting.

3.3. Using Low-Tech or Blended Learning Approaches

Blended learning, which combines face-to-face instruction with digital tools, has been effective in increasing student motivation and retention by offering flexibility without sacrificing the personal connection students have come to expect. As Jain (2025) notes, reimagining digital learning through personalization is key to preventing digital fatigue, and blended strategies are the ideal framework for such blended learning approaches.

Human-centric educational brands also reduce fatigue and promote long-term client loyalty and staff happiness. In other words, reducing the fatigue gap while also supporting long-term creativity and innovation. The replacement of streamlined digital messages and in-person experiences helps bridge the fatigue gap. The shift from high-touch to high-tech also offers an effective means to elongate the former. Here is the good news: a low-tech and blended approach reduces digital fatigue. Fatigue is rapidly becoming a significant issue in contemporary teaching. Prolonged computer usage and inactive learning consuming templates are two other contributors to digital fatigue. People also experience youthful aspects in online teaching sessions. The damage caused by digital fatigue is mitigated when instructors provide low-tech and blended solutions such as book materials, video seminars, and real-world classroom activities. For example, Tugtekin (2023) found a significant relationship between written data overload and digital fatigue. Incorporating later-stage technology with traditional interfaces can increase student success. Blended course systems have been successful in reducing student exhaustion by combining face-to-face and online learning. "Blended learning", which mixes face-to-face instruction with online lessons, increases student interest and retention while maintaining flexibility. Blending encourages active learning while avoiding digital fatigue.

3.4. Interface Simplicity and User Experience

Interface simplicity plays a pivotal role in mitigating digital fatigue within educational environments. In today's educational settings, students rely heavily on digital platforms for learning. These complex and cluttered interfaces can lead to cognitive overload, resulting in decreased engagement and increased frustration. According to Ntoa (2025), Usability (Learnability, Efficiency, Memorability, Error Reduction, and Satisfaction) is the cornerstone of the design of an intelligent environment that contributes positively to well-being. In educational settings, simple interfaces that prioritize high readability and seamless navigation can reduce cognitive load when using digital systems (making it easier for students' brains to process information), leading to less fatigue and more precise focus. The study also emphasizes that user-friendly adaptation systems are likely to help maintain user engagement and reduce dropout rates in digital learning environments.

Usability is only a part of user experience (UX), which includes emotional and motivational dimensions of digital interactions (Hedonic Design for Sustained Use). Mauro and Thurman's (2025) work also highlights that hedonic, utilitarian

trade-offs in interface design are crucial for driving continued user engagement. In educational settings, this means we must also design digital spaces that are not only functional but beautiful and emotionally supportive. Some features, such as responsive design, a minimalist approach, and a user-generated feedback system, contribute to good UX, leading to lower EUD for reduced digital fatigue. The findings in this paper suggest the need to pay attention to UX design to support student well-being and learning outcomes in rapidly evolving digital academic environments.

3.5. Adaptive Learning Tools That Reduce Overload

Adaptive ELEs are among the promising technologies that address cognitive overload during digital learning. These tools have been shown to reduce extraneous cognitive load and improve engagement by tailoring content delivery to each learner's pace, preferences, and performance. Skulmowski and Xu (2022) point out that in a digital learning environment, design features are often integrated (e.g., immersion and realism), which inadvertently enhance task-irrelevant cognitive load. Their study demonstrates the importance of grounding instructional design in cognitive load theory to enable learners to allocate limited cognitive resources effectively during learning, rather than struggle with cumbersome interfaces or redundant material. Content adaptive systems, which can modify the complexity and presentation of content according to feedback from the learners, could help to find a good balance between cognitivation and relaxation, namely avoiding too boring content that would lead them rapidly towards digital fatigue (also known as Digital Attention Disorder) or complex enough content to be attractive without inducing cogtoxic behaviors.

Skulmowski and Xu (2022) argue that digital learning environments often introduce design elements, such as immersion and realism, that unintentionally increase task-irrelevant cognitive load. The results showed that students in adaptive learning environments achieved higher performance and reported greater satisfaction compared to those in traditional or non-adaptive digital courses.

It was found that the individualized aspect of adaptive learning, which involves modifying instructional strategies, content sequencing, and pacing to suit individual needs, was highly effective in lowering emotional tiredness and disengagement. These results provide credence to the broader adoption of adaptive learning technologies as a calculated reaction to digital exhaustion in learning environments, particularly those with high screen time and cognitive demands. An interesting study by Contrino et al. (2024) examined the effect on learning when an intelligent agent tool was used in a university-level course delivered in a flexible, interactive technology-assisted mode.

3.6. Institutional Guidelines and Support for Healthy Digital Engagement

Incorporating digital well-being into the curriculum and providing training on responsible technology use helps schools to help students and educators navigate

online learning with intention and responsibility. These training guidelines are essential to developing a culture of health in digitized environments.

3.7. Mental Health Resources and Counseling

Organizations are becoming more accessible by promoting healthy screen time use and digital citizenship guidelines to avoid digital fatigue and support student/teacher wellness. These guidelines are complemented by awareness campaigns and integrated into orientation and leadership development programs, demonstrating a commitment to total well-being. Per APA guidelines, evidence-based psychological treatments should be incorporated into institutional infrastructure to promote resilience and decrease mental-health-related stigma (American Psychological Association, 2013).

3.8. Professional Development for Educators

Teachers can adapt to shifting pedagogical demands and advance inclusive learning environments through effective professional development. Research indicates that sustained engagement, coaching, active learning, and teamwork are all components of successful programs (Darling-Hammond, Hyler, & Gardner, 2017). Student achievement and teacher effectiveness are promoted in schools that make a continuing investment in training, not just sessions on digital tools, but also trauma-informed teaching and pedagogy sensitive to students' cultures. These projects reflect a deliberate commitment to ongoing growth and high-quality instruction.

3.9. Digital Fatigue in Underserved Communities

Digital fatigue especially impacts students in underserved communities who lack consistent access to technology and the internet. Smith et al. (2021) found that students are more likely to report high levels of frustration. While it has been shown that students in such settings may also experience increased frustration, for example, see Beier et al, participate in online learning. Inconsistent access to digital devices and high-speed internet not only hampers academic success but also leads to emotional fatigue and reduced motivation.

These obstacles are paired with the desire to stay on par with peers who enjoy more robust digital infrastructures, which, in turn, has contributed not only to higher rates of school drop-out, but also to greater educational gaps. Educators in underserved communities also face significant hurdles that exacerbate digital fatigue. Johnson et al. (2020) reported that many teachers lack the training and resources needed to implement digital tools in their classrooms. This results in inefficient use of technology, increased stress, and diminished instructional quality. The double demand on students and teachers is a cycle of fatigue that leads to decreased performance. To counterbalance these issues, need-based interventions, such as low-cost internet access, community support, and sustained professional development for teachers, are critical in achieving digital equity and minimizing

exhaustion among such at-risk populations.

3.10. Device and Bandwidth Limitations

Device and bandwidth limitations are critical contributors to digital fatigue, particularly in educational settings where equitable access to technology is essential. Johnson et al. (2015) highlight that many educators and students face first-order barriers such as inadequate hardware, poor internet connectivity, and a lack of technical support, which hinder effective integration of digital tools in classrooms. However, such restrictions not only impede instructional flow but also increase cognitive load and student frustration due to the constant need to troubleshoot or wait for content to load multiple times before it can be used. Unreliable access to working technology and inconsistent bandwidth can lead to disinvestment and fatigue when learners spend more effort overcoming technological barriers than engaging with the learning material.

Ezeh and Ezenugu (2020) also demonstrated that wireless systems, particularly, have limited bandwidth and power; thus, the capacities of digital communication channels are affected, which in turn affects the reliability of the online learning platform. These limitations are even more significant in resource-limited regions, where low-end devices and narrow communication channels limit the quality and persistence of service. However, as students grapple with delayed video calls, stalled downloads, and unavailable resources, their ability to focus and retain knowledge diminishes. Meeting these challenges requires a comprehensive investment in infrastructure, notably improved access to broadband and quality devices, so that digital learning environments are genuinely inclusive and sustainable.

3.11. Inclusive Design for Neurodiverse Learners

It is essential to accommodate all learning styles (particularly for neurodiverse learners who may experience digital fatigue in distinct ways as a result of differences in cognitive processing and sensory tolerance) when leading with inclusive design. Azuka et al. (2024) suggest that instructional design should take into account students' natural cognitive differences by building environments that are flexible, perceptible, and that support different learning approaches. Their research, underpinned by Vygotsky's social constructionist theory, also supports the idea that inclusive instructional design practices, such as multimodal information presentation, simplified interfaces, and an adaptive pace of learning, may reduce cognitive load on neurodivergent students, enabling them to engage. Failing to offer that accommodation will drive more fatigue and dropout, particularly for learners who have conditions like ADHD, autism spectrum disorder, or dyslexia.

Principles of Universal Design for Learning (UDL) help increase inclusivity by stating that all students should have equal opportunities to engage with the duplicate content. Cole et al. (2024) conducted a multisite investigation to demonstrate that neurodiverse students gain much added value from instruction focused on real-world activities, hands-on learning, and flexible classroom organization.

The researchers found that engagement-focused strategies, such as allowing choice in assignments and fostering instructor approachability, were particularly effective in reducing emotional exhaustion and improving self-efficacy among neurodivergent learners. Implications of the findings highlight the need to design educational technologies or environments that are not only accessible but also emotionally and cognitively sustainable for heterogeneous learners coping with digital fatigue.

3.12. Coping Mechanisms and Personal Routines

Coping strategies are essential for students to manage the psychological aspects of learning in a digital environment. Freire et al. (2020) adopted a person-centered approach. They identified four specific coping profiles among university students, ranging from low use of coping strategies to high, overgeneralized use of both cognitive and social techniques. Among students, those who used a multimodal approach, including positive reappraisal, social support, and planning, had far greater self-efficacy and resilience. These results indicate that promoting students' use of various adaptive coping strategies can attenuate the detrimental impact of digital fatigue, such as stress and school disengagement. Schools can facilitate this by incorporating wellness education in the curriculum and providing resources that encourage emotional regulation and time management.

Routine also helps guard against digital fatigue. Das Deep and Chen (2025a) found that adhering to a consistent routine with scheduled breaks, physical exercise, and good sleep hygiene helped manage burnout and achieve academic success. Their analysis highlighted the importance of institutional support, including adaptable policies and AI-mediated tools, in assisting students to create and maintain such routines. By creating nurturing spaces that acknowledge individual rhythms and well-being, while fostering habits that promote, educational institutions have the opportunity to positively influence student welfare and mitigate the adverse effects that digital fatigue can have over time on both students and teachers.

4. Conclusion

Remote burnout is no longer a private inconvenience of the individual; it is a systemic phenomenon that needs strategic intervention at the level of educational ecosystems. Institutions themselves can foster resiliency and return to authentic engagement by embracing thoughtful design, advocating for mental health resources, and investing in professional development. Whether it's blended learning, user-friendly interfaces, or embracing neurodivergent learners, the future of progress lies in blending new digital innovation with sustainable emotional practice. Ultimately, combating digital fatigue is essential to maintaining the health, equity, and effectiveness of modern education.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

- Acosta, Z. (2024). Digital Fatigue: The Hidden Threat to Workplace Productivity and Well-Being. Eos Global Expansion.
 - https://eosglobalexpansion.com/digital-fatigue-the-hidden-threat-workplace
- American Psychological Association (2013). Guidelines for Psychological Practice in Health Care Delivery Systems. *American Psychologist*, *68*, 1-6. https://doi.org/10.1037/a0029890
- Azuka, E., Thompson, R., & Li, M. (2024). Inclusive Instructional Design for Neurodiverse Learners: A Cognitive Load Perspective. *Journal of Learning Design*, *17*, 22-38.
- Bahamondes-Rosado, M. E., Cerdá-Suárez, L. M., Dodero Ortiz de Zevallos, G. F., & Espinosa-Cristia, J. F. (2023). Technostress at Work during the COVID-19 Lockdown Phase (2020-2021): A Systematic Review of the Literature. *Frontiers in Psychology, 14*, Article 1173425. https://doi.org/10.3389/fpsyg.2023.1173425
- Cole, M., Ramirez, J., & Nguyen, T. (2024). Universal Design for Learning and Neurodiversity: Enhancing Engagement in Higher Education. *International Journal of Inclusive Education*, 28, 301-319.
- Contrino, H., McKenna, L., & McLaughlin, J. (2024). Evaluating Adaptive Learning Technologies in Higher Education: A Case Study of CogBooks® Integration. *Journal of Interactive Learning Research*, *35*, 45-62.
- Crudo, B. (2024). *Practicing Digital Minimalism to Strengthen Your Retail Presence.* Forbes Technology Council.
 - $\frac{https://www.forbes.com/councils/forbestechcouncil/2024/03/06/practicing-digital-minimalism-to-strengthen-your-retail-presence}{}$
- Darling-Hammond, L., Hyler, M. E., & Gardner, M. (2017). *Effective Teacher Professional Development*. Learning Policy Institute.
 - https://learningpolicyinstitute.org/product/teacher-prof-dev
- Das Deep, P., & Chen Y. (2025b). Student Burnout and Mental Health in Higher Education during COVID-19: Online Learning Fatigue, Institutional Support, and the Role of Artificial Intelligence. *Higher Education Studies, 15,* 381-401. https://doi.org/10.5539/hes.v15n2p381
- Das Deep, S., & Chen, Y. (2025a). Student Burnout and Coping during the COVID-19 Pandemic: A Narrative Review of Academic Resilience. *Journal of Educational Psychology and Technology*, 43, 55-72.
- Ezeh, G. N., & Ezenugu, A. (2020). Bandwidth and Power Constraints in Wireless Systems: Implications for Digital Learning Environments. *International Journal of Computer Applications*, 175, 1-6.
- Fellow.app. (2025). *No-Meeting Days: What They Are & 10 Best Practices.* https://fellow.app/blog/meeting-free-day-what-it-is-and-how-it-can-benefit-your-team
- Forbes Business Council (2025). How Retail Brands Are Bringing Play to the In-Store Experience. *Forbes*.
 - https://www.forbes.com/councils/forbesbusinesscouncil/2025/07/09/how-retail-brands-are-bringing-play-to-the-in-store-experience
- Freire, C., Ferradás, M. D. M., Regueiro, B., Rodríguez, S., Valle, A., & Núñez, J. C. (2020). Coping Strategies and Self-Efficacy in University Students: A Person-Centered Approach. *Frontiers in Psychology, 11*, Article 841. https://doi.org/10.3389/fpsyg.2020.00841
- Hershner, S. D., & Chervin, R. D. (2014). Causes and Consequences of Sleepiness among College Students. *Nature and Science of Sleep, 6*, 73-84.

- Ibrahim, R. K., Khaled, M., Almansoori, M., Almazrouei, M., Ashraf, A., Alahmedi, S. H. et al. (2025). Screen Time and Stress: Understanding How Digital Burnout Influences Health among Nursing Students. *BMC Nursing*, *24*, Article No. 990. https://doi.org/10.1186/s12912-025-03621-9
- Jain, D. (2025). How Can Digital Learning Be Reimagined to Combat Student Fatigue? eLearning Industry.
 - https://elearningindustry.com/how-can-digital-learning-be-reimagined-to-combat-student-
- Johnson, L., Adams Becker, S., Estrada, V., & Freeman, A. (2015). *NMC Horizon Report:* 2015 Higher Education Edition. ERIC.
- Johnson, M., Lee, T., & Carter, S. (2020). Teacher Preparedness and Digital Fatigue in Low-Resource Educational Settings. *International Review of Education Technology*, 34, 89-104.
- Kaur, K., Gurnani, B., Nayak, S., Deori, N., Kaur, S., Jethani, J. et al. (2022). Digital Eye Strain—A Comprehensive Review. *Ophthalmology and Therapy, 11*, 1655-1680. https://doi.org/10.1007/s40123-022-00540-9
- Kopczynski, K., & Silvia, C. (2023). Reimagining the Online Learning Experience for Peak Performance. *Creative Education*, 14, 2463-2471. https://doi.org/10.4236/ce.2023.1412158
- Korunovska, J., & Spiekermann, S. (2019). *The Effects of Information and Communication Technology Use on Human Energy and Fatigue: A Review.* https://arxiv.org/abs/1910.01970
- Kumar, S. (2024). Nurturing Mental Resilience in the Digital Learning Era: Overcoming Digital Fatigue.
 - $\frac{https://elearningindustry.com/nurturing-mental-resilience-in-the-digital-learning-era-overcoming-digital-fatigue}{}$
- Maslach, C., & Leiter, M. P. (2016). Burnout: A Multidimensional Perspective. In S. Jackson, & R. Schuler (Eds.), *Psychology of Work and Organizations* (pp. 68-85). Routledge.
- Mauro, C., & Thurman, S. (2025). Designing for Digital Resilience: Balancing Hedonic and Utilitarian Motivations in Educational UX. *Journal of Educational Technology Research*, 42, 115-132.
- McLean Hospital (2024). Supporting Mental Health Awareness Every Day. https://www.mcleanhospital.org/news/supporting-mental-health-awareness-every-day
- Mylona, I., Glynatsis, M. N., Floros, G. D., & Kandarakis, S. (2023). Spotlight on Digital Eye Strain. *Clinical Optometry, 15,* 29-36. https://doi.org/10.2147/opto.s389114
- Nova Eye Care Center (2024). The 20-20-20 Rule: A Simple Solution to Reduce Digital Eye Strain.
 - $\underline{https://www.novaeyecarecenter.com/post/the-20-20-20-rule-a-simple-solution-to-reduce-digital-eve-strain}$
- Ntoa, S. (2025). Usability and User Experience Evaluation in Intelligent Environments: A Review and Reappraisal. *International Journal of Human-Computer Interaction, 41*, 2829-2858. https://doi.org/10.1080/10447318.2024.2394724
- Petro, G. (2024). Consumer Ad Overload Is Eroding Retailers' Digital Marketing Efforts. *Forbes.*
 - $\frac{https://www.forbes.com/sites/gregpetro/2024/11/01/consumer-ad-overload-is-eroding-retailers-digital-marketing-efforts}{}$
- Pulido-Martos, M., Gartzia, L., Augusto-Landa, J. et al. (2024). Transformational Leadership and Emotional Intelligence: Allies in the Development of Organizational Affective Com-

- mitment from a Multilevel Perspective and Time-Lagged Data. *Review of Managerial Science*, 18, 2229-2253. https://doi.org/10.1007/s11846-023-00684-3
- Skulmowski, A., & Xu, K. (2022). Instructional Design and Cognitive Load Theory: The Impact of Immersion and Realism in Digital Learning Environments. *Educational Technology Research and Development, 70,* 789-804.
- Smart, J. (2023). Five Tips for Creating an Effective Asynchronous Learning Environment. *Digital Promise*.
 - https://digitalpromise.org/2023/03/15/five-tips-for-creating-an-effective-asynchronous-learning-environment/
- Smith, J., Rodriguez, L., & Patel, A. (2021). Barriers to Digital Learning in Underserved Communities: Impacts on Student Engagement and Fatigue. *Journal of Educational Equity and Technology, 18,* 145-162.
- Sonnentag, S., Binnewies, C., & Mojza, E. J. (2010). Staying Well and Engaged When Demands Are High: The Role of Psychological Detachment. *Journal of Applied Psychology*, *95*, 965-976. https://doi.org/10.1037/a0020032
- Stayf (2025). Recognizing and Preventing Digital Fatigue at Work. *Stayf.* https://www.stayf.app/blog/recognizing-and-preventing-digital-fatigue-at-work
- Tugtekin, U. (2023). Factors Influencing Online Learning Fatigue among Blended Learners in Higher Education. *Journal of Educational Technology and Online Learning*, *6*, 16-32. https://doi.org/10.31681/jetol.1161386
- Vital Pathways (2024). Navigating the Digital Age: Mastering Boundaries for a Balanced Life.