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Abstract 
There are many important concepts in linear algebra, such as linear correla-
tion and linear independence, eigenvalues and eigenvectors, and so on. Among 
them, linear correlation and linear independence have irreplaceable importance, 
and have important applications in fields such as algebra, signal processing, 
and artificial intelligence. This article provides a graphical explanation of how 
to distinguish between the concepts of linear correlation and linear indepen-
dence, the method provided in the paper is easy to grasp. The conclusion 
points out that linear independence means that there are no two (base) vec-
tors with the same direction in a vector graph; otherwise, it is a linear correla-
tion. 
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1. Introduction 

Linear algebra is a compulsory course for engineering majors in universities. 
There are many important concepts in linear algebra. For example, linear corre-
lation and linear independence, solution space of equations, eigenvalues and ei-
genvectors, similarity transformation of matrices, congruent transformation, or-
thogonal transformation; diagonalization of matrices, and so on. 

For beginners, it is difficult to truly understand the differences between the 
concepts of linear correlation and linear independence without specific methods. 
The intuitive form provided by graphics usually helps learners better understand 
the differences between these two concepts. So the way to learn linear algebra 
well is to accurately grasp the connections and differences between the above 
concepts through graphics. 

This article mainly introduces how to distinguish between the concepts of li-
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near correlation and linear independence (Buffa, Cho, & Sangalli, 2010; Floater 
& Quak, 2000; Farnoosh & Haibe-Kains, 2021; Veiga et al., 2013; Bownik & 
Speegle, 2013; Magalhes, 2021; Ashur, Khan, & Nyberg, 2022; Esmi et al., 2023). 

Linear independence refers to the fact that no quantity in a set of data can be 
represented by other quantities, corresponding to linear correlation. In linear 
algebra, if there is no vector in a set of elements of a vector space that can be 
represented by a finite linear combination of other vectors, it is called linear in-
dependence. On the contrary, it is called linear correlation. 

Let’s start with the simplest two-dimensional plane, as shown in Figure 1. 
The decomposition of forces in a two-dimensional plane is a simple operation, 

where force F can be decomposed along the X and Y axes.  
The same is true in three-dimensional space (in Figure 2), where point p in 

the figure above can be represented as OP = 4x + 5y + 3z. 
Expand this concept to n-dimensional space and imagine each coordinate axis 

as a vector, resulting in Figure 3. 
So, point x (actually an n-dimensional vector) in Figure 3 can be represented 

as: 
X = k1x1 + k2x2 + … + Knxn, where k1, k2, Kn is the coordinate value of the 

coordinate axis. This expression is called a linear space, which means decom-
posing any vector x in an n-dimensional space to obtain the corresponding 
coordinate values. 

So, what do the so-called linear independence and linear correlation mean?  
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From Figure 4, it can be seen that any point in the two-dimensional plane can 
be decomposed along the X (1, 0) and Y (0, 1) axes, or by the following two 
column vectors: 
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But if you replace the X and Y axes with the X (1, 0) and Y (2, 0) axes: 
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Figure 1. Two-dimensional plane. 
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Figure 2. Three-dimensional space. 

 

 
Figure 3. Vector graph. 

 

 
Figure 4. Vector in a two-dimensional space. 

 
We see that when b is not equal to 0, the above figure is solveless, which 

means that the vector formed by point P (2, 3) in Figure 2 cannot be decom-
posed along (1, 0) and (2, 0). In fact, (1, 0) and (2, 0) are the same vector, both 
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on the X-axis. In this case, the vector OP in Figure 2 cannot be decomposed 
solely along the X-axis because its vertical component cannot be obtained. 

Linear independence refers to: k1x1 + k2x2, the equation system with knxn = 
0 only has 0 solutions, which is k1, k2, when kn must be equal to 0, this equation 
will be equal to 0. At this point, we call vectors x1, x2, x3 Xn is linearly indepen-
dent. 

Referring to Figure 1, the so-called linear independence actually means that 
there are no vectors with the same direction in the n vectors in Figure 1. If there 
are, then these n vectors are linearly related. 

For example, assuming x1 and x2 are two vectors (1, 0) and (2, 0), the equa-
tion system can be obtained from k1x1 + k2x2 = 0: 

k1 + 2k2 = 0 
0k1 + 0k2 = 0 

The above equation system has non-zero solutions, so the vectors (1, 0) and 
(2, 0) are linearly correlated. 

Assuming vectors x1, x2, x3. If the xn vector forms matrix A, then for the eq-
uation system Ax = 0, it is obvious that when the determinant of A is not equal 
to 0, there is only 0 solution, which means that x1, x2, x3. The n vectors xn are 
linearly independent; if the determinant of A is equal to 0, then it is linearly cor-
related. 

For the equation system Ax = b, when the determinant of A is not equal to 0, 
the equation system has a unique solution, which is the vector decomposition x 
= k1x1 + k2x2 + … + Knxn will obtain a set of determined k1, k2, the kn value is 
the coordinate value of the vector x. And if the determinant of A is not equal to 
0, it means that the vectors x1, x2, x3 Xn is linearly independent (Zhao, 2021; 
Guo, Li, & Yang, 2023; Ma et al., 2022; Aparkin, 2021). 

We know that if a determinant is equal to 0, it means that there are equal or 
proportional rows or columns in the determinant, and if two rows or columns 
are proportional, it precisely indicates that these two row or column vectors are 
vectors with the same direction, that is, the same vector. 

2. Conclusion 

Linear independence means that there are no two (basis) vectors with the same 
direction in Figure 1; otherwise, it is a linear correlation. 

This article explains the concepts of linear correlation and linear indepen-
dence through graphical methods. The intuitive nature of graphics makes ab-
stract mathematical concepts more concrete, thereby reducing learning difficulty 
and enabling learners to gain a deeper understanding while learning these con-
cepts, as well as enhancing memory and understanding. 
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