
Creative Education, 2021, 12, 2954-2958
https://www.scirp.org/journal/ce

ISSN Online: 2151-4771
ISSN Print: 2151-4755

DOI: 10.4236/ce.2021.1212221 Dec. 31, 2021 2954 Creative Education

Explanation of Several Problems with
Complementary Code

Wenbing Wu, Yupeng Wu, Jinquan Xiong

Nanchang Normal University, Nanchang, China

Abstract
In order to improve the teaching effect of the course of Principles of Com-
puter Composition, this article has conducted a more in-depth discussion on
the teaching of complements. Complementary code is a difficult point in com-
puter science. In the process of teaching, students feel that there are various
difficulties in truly understanding this concept. Through the explanation of
various forms of complements, including integers, decimals, and deformed
complements, this article strives to make this concept concrete and visualized,
so as to provide some help to the teaching of this concept in the teaching
process. The teaching effect shows that the methods discussed in the article
are helpful to improve the teaching effect.

Keywords
Complement Code, Decimal Complementary Code, Deformation
Complementary Code, Teaching

1. Introduction
Computer complement has always been a difficult point in computer science
teaching. The difficulty lies in the fact that complements require more mathe-
matical knowledge (Kurabayashi et al., 2018; Sarkar, Majhi, & Liu, 2019; Ho-
lubnychyi & Konakhovych, 2018; Alexeev, 2021), and computer students are
relatively lacking in this area. In the course of teaching this content, I have
tried many methods in order to improve the teaching effect. This article writes
down these tried methods, hoping to promote the teaching of complement
codes.

2. The Definition of Complement

[]
()1

0, , when 2 0
2 , when 0 2 mod 2

n

com n n

x x
x

x x+

 > ≥
=

+ > ≥ −
 (1)

How to cite this paper: Wu, W. B., Wu, Y.
P., & Xiong, J. Q. (2021). Explanation of
Several Problems with Complementary Code.
Creative Education, 12, 2954-2958.
https://doi.org/10.4236/ce.2021.1212221

Received: November 18, 2021
Accepted: December 28, 2021
Published: December 31, 2021

Copyright © 2021 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

 Open Access

https://www.scirp.org/journal/ce
https://doi.org/10.4236/ce.2021.1212221
https://www.scirp.org/
https://doi.org/10.4236/ce.2021.1212221
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

W. B. Wu et al.

DOI: 10.4236/ce.2021.1212221 2955 Creative Education

where []comx represents the Complementary code of x, and x is the true value
and n is the number of digits in the integer As can be seen from the above defi-
nition, for negative numbers,

[] 12n
comx x+= + (2)

Here x represents a negative number, for example, x = −1011, n represents the
number of digits of the negative number of x that does not consider the value of
the sign bit, here it is equal to 4. Equation (2) can become

[] 12n
comx x ++ = (3)

This means that the complement of a negative number plus the absolute value
of the negative number will return to zero, such as

1011
0101

10000
+

Here 1011 is the complement of −5, and the highest bit is the sign bit. According
to the definition in Equation (3), n here is equal to 3, so the complement of −5
1011 plus the absolute value of −5, that is, 0101, the answer is 2 to the 4th power,
and the result at this time has exceeded the number of digits (including the sign
bit 4), so the highest bit is Abandon, that is, the phenomenon of returning to
zero has appeared.

3. Representation Range of Complement

A byte is 8 bits, if the original code is used to represent a positive integer (in-
cluding 0), it can express 0 - 255, that is, 28 = 256, a total of 256 states, various
permutations and combinations from all 0 to all 1. If you want to represent a
negative number, the sign bit needs to occupy one bit (the highest bit, 1 represents a
negative number, 0 represents a positive number), so the maximum absolute
value range is 0 - 127, that is, 27 = 128, a total of 128 positive and negative Status,
if no special processing is used, at this time 0 occupies 2 codes, 10000000 is neg-
ative 0, and 00000000 is positive 0, the data representation range is −127 to −0
and +0 to 127, so that overall a byte is only 255 A state, because 0 has positive 0
and negative 0 points, which does not conform to the mathematical meaning
and wastes a code. Therefore, people think of using negative 0, that is, when en-
countering a negative number, using the complement code to represent this prob-
lem can be solved, and when encountering a positive number or 0, the original
code representation is still retained. Therefore, this negative 0 is naturally used
after being processed by the complement algorithm to represent −128.

In order to prove that the negative 0 of 10000000 represents the correctness of
−128’s complement, consider

10000000
01111111
11111111

+

https://doi.org/10.4236/ce.2021.1212221

W. B. Wu et al.

DOI: 10.4236/ce.2021.1212221 2956 Creative Education

Because 01111111 is the original code of +127, the above calculation is equiv-
alent to calculating the result of (−128 + 127). Obviously, the result should be
−1, and 11111111 is the complement of −1. Others can be deduced by analogy,
so 10000000. It means −128 complement is correct. The above calculation also
shows that the important function of the complement is to turn the subtraction
(127 - 128) operation into the addition (−128 + 127) operation. In summary:
Complement code: 8-bit complement code can represent the range of −128 -
127.

Because 01111111 is the original code of +127, the above calculation is equiv-
alent to calculating the result of (−128 + 127). Obviously, the result should be -1,
and 11111111 is the complement of −1. Others can be deduced by analogy, so
10000000. It means −128 complement is correct.

The above calculation also shows that the important function of the comple-
ment is to turn the subtraction (127 - 128) operation into the addition (−128 +
127) operation. In summary: Complement code: 8-bit complement code can
represent the range of −128 - 127.

4. Decimal Complementary Code

For decimals, its complement is defined as

[] , when 1 0
2 , when 0 1com

x x
x

x x
> ≥

= + > ≥ −
 (4)

For example:

0.1110x = + , [] 0.1110comx =

0.1100x = − , [] ()2 0.1100 10.0000 0.1100 1.0100comx = + − = − ==

That is, in the definition of the decimal’s complement, the one in the integer
part is used to represent the sign bit.

5. Deformation Complementary Code

[] , when 1 0
100 , when 0 1defom

x x
x

x x
≥ ≥

= + ≥ > −
 (5)

The definition of Equation (5) is also for decimals, where 100 is binary, which
represents the number 4. This definition means that each decimal has two sign
bits.

Deformed complement is represented by “00” for positive and “11” for nega-
tive, which is also called modulo 4’s complement. When adding and subtracting
operations with deformed complement, when the sign bit of the operation result
appears “01” or “10”, it means that an overflow has occurred. The most signifi-
cant bit (the first sign bit) of the anamorphic complement always represents the
correct sign. For example, “00” and “01” represent positive numbers and positive
overflow (overflow) respectively, and “11” and “10” represent negative numbers,
Negative overflow (underflow).

https://doi.org/10.4236/ce.2021.1212221

W. B. Wu et al.

DOI: 10.4236/ce.2021.1212221 2957 Creative Education

1 100.01011, 00.01001
2 2defom defom

X Y = =

()1 1 1 00.01011 00.01001 00.10100
2 2 2defom defom defom

X Y X Y + = + = + =

Here is the addition of two positive decimals. There is no overflow in this case.
This is because the two decimals are less than 0.5, so their sum is less than 1. If it
is 00.11 + 00.10, the result is 01.01, in this case An overflow occurs because the
sum of the two decimals has exceeded 1. Another example

1 111.10101, 11.10111
2 2defom defom

X Y = =

()1 1 1 11.10101 11.10111 11.01100
2 2 2defom defom defom

X Y X Y + = + = + =

This is the addition of the two’s complement of two negative decimals, and
the result does not overflow. But if you look closely, you can see that during the
addition process, a carry from the most significant bit of the decimal to the sign
bit occurs, so why is there no overflow? This is because the numerical parts of
the two decimals’ complements 11.10101 and 11.10111 are both greater than 0.5,
which means that the absolute value of two negative decimals is less than 0.5,
and the two decimals whose absolute value is less than 0.5 are added together.
The absolute value cannot be greater than 1, and if the addition is used, the ab-
solute value of the addition will exceed 1, so a carry will occur, but because it is
the addition of two negative numbers, that is

11.11 0.75
11.10 0.5

111.01 1.25

= −
+ = −

= −

Keep the decimal part = −0.25

The highest 1 is removed, leaving 11.01, that is, the carry generated by the ad-
dition of the two complements of the above two negative decimals, which is just
offset by the addition of their sign bits.

6. Conclusion

Through the above explanation of the various situations of complements, it is
hoped that in teaching, teachers and students who find it difficult to learn this
aspect can provide a little help.

Funding

This paper is supported by Research Foundation of the Nanchang Normal Uni-
versity for Doctors (NSBSJJ2018014). Key R&D Project of Jiangxi Provincial De-
partment of Science and Technology (20192BBEL50040, 20192BBHL80002).

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

https://doi.org/10.4236/ce.2021.1212221

W. B. Wu et al.

DOI: 10.4236/ce.2021.1212221 2958 Creative Education

References
Alexeev, B. (2021). Nonlocal Physics in the Wave Function Terminology. Journal of Ap-

plied Mathematics and Physics, 9, 2889-2908.
https://doi.org/10.4236/jamp.2021.911183

Holubnychyi, A. H., & Konakhovych, G. F. (2018). Multiplicative Complementary Binary
Signal-Code Constructions. Radioelectronics and Communications Systems, 61, 431-443.
https://doi.org/10.3103/S0735272718100011

Kurabayashi, M., Tsuchimochi, H., Komuro, I. et al. (2018). Molecular Cloning and Cha-
racterization of Human Cardiac Alpha- and Beta-Form Myosin Heavy Chain Com-
plementary DNA Clones. Regulation of Expression during Development and Pressure
Overload in Human Atrium. Journal of Clinical Investigation, 82, 524-531.
https://doi.org/10.1172/JCI113627

Sarkar, P., Majhi, S., & Liu, Z. (2019). Optimal Z-Complementary Code Set from Genera-
lized Reed-Muller Codes. IEEE Transactions on Communications, 67, 1783-1796.

https://doi.org/10.4236/ce.2021.1212221
https://doi.org/10.4236/jamp.2021.911183
https://doi.org/10.3103/S0735272718100011
https://doi.org/10.1172/JCI113627

	Explanation of Several Problems with Complementary Code
	Abstract
	Keywords
	1. Introduction
	2. The Definition of Complement
	3. Representation Range of Complement
	4. Decimal Complementary Code
	5. Deformation Complementary Code
	6. Conclusion
	Funding
	Conflicts of Interest
	References

