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Abstract 
In order to improve the teaching effect of the course of Principles of Com-
puter Composition, this article has conducted a more in-depth discussion on 
the teaching of complements. Complementary code is a difficult point in com-
puter science. In the process of teaching, students feel that there are various 
difficulties in truly understanding this concept. Through the explanation of 
various forms of complements, including integers, decimals, and deformed 
complements, this article strives to make this concept concrete and visualized, 
so as to provide some help to the teaching of this concept in the teaching 
process. The teaching effect shows that the methods discussed in the article 
are helpful to improve the teaching effect. 
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1. Introduction 
Computer complement has always been a difficult point in computer science 
teaching. The difficulty lies in the fact that complements require more mathe-
matical knowledge (Kurabayashi et al., 2018; Sarkar, Majhi, & Liu, 2019; Ho-
lubnychyi & Konakhovych, 2018; Alexeev, 2021), and computer students are 
relatively lacking in this area. In the course of teaching this content, I have 
tried many methods in order to improve the teaching effect. This article writes 
down these tried methods, hoping to promote the teaching of complement 
codes. 

2. The Definition of Complement 

[ ]
( )1

0, , when 2 0
2 , when 0 2 mod 2

n

com n n

x x
x

x x+

 > ≥
= 

+ > ≥ −
              (1) 

How to cite this paper: Wu, W. B., Wu, Y. 
P., & Xiong, J. Q. (2021). Explanation of 
Several Problems with Complementary Code. 
Creative Education, 12, 2954-2958. 
https://doi.org/10.4236/ce.2021.1212221  
 
Received: November 18, 2021 
Accepted: December 28, 2021 
Published: December 31, 2021 
 
Copyright © 2021 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/

  Open Access

https://www.scirp.org/journal/ce
https://doi.org/10.4236/ce.2021.1212221
https://www.scirp.org/
https://doi.org/10.4236/ce.2021.1212221
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


W. B. Wu et al. 
 

 

DOI: 10.4236/ce.2021.1212221 2955 Creative Education 
 

where [ ]comx  represents the Complementary code of x, and x is the true value 
and n is the number of digits in the integer As can be seen from the above defi-
nition, for negative numbers, 

[ ] 12n
comx x+= +                          (2) 

Here x represents a negative number, for example, x = −1011, n represents the 
number of digits of the negative number of x that does not consider the value of 
the sign bit, here it is equal to 4. Equation (2) can become 

[ ] 12n
comx x ++ =                         (3) 

This means that the complement of a negative number plus the absolute value 
of the negative number will return to zero, such as 

1011
0101

10000
+  

Here 1011 is the complement of −5, and the highest bit is the sign bit. According 
to the definition in Equation (3), n here is equal to 3, so the complement of −5 
1011 plus the absolute value of −5, that is, 0101, the answer is 2 to the 4th power, 
and the result at this time has exceeded the number of digits (including the sign 
bit 4), so the highest bit is Abandon, that is, the phenomenon of returning to 
zero has appeared. 

3. Representation Range of Complement 

A byte is 8 bits, if the original code is used to represent a positive integer (in-
cluding 0), it can express 0 - 255, that is, 28 = 256, a total of 256 states, various 
permutations and combinations from all 0 to all 1. If you want to represent a 
negative number, the sign bit needs to occupy one bit (the highest bit, 1 represents a 
negative number, 0 represents a positive number), so the maximum absolute 
value range is 0 - 127, that is, 27 = 128, a total of 128 positive and negative Status, 
if no special processing is used, at this time 0 occupies 2 codes, 10000000 is neg-
ative 0, and 00000000 is positive 0, the data representation range is −127 to −0 
and +0 to 127, so that overall a byte is only 255 A state, because 0 has positive 0 
and negative 0 points, which does not conform to the mathematical meaning 
and wastes a code. Therefore, people think of using negative 0, that is, when en-
countering a negative number, using the complement code to represent this prob-
lem can be solved, and when encountering a positive number or 0, the original 
code representation is still retained. Therefore, this negative 0 is naturally used 
after being processed by the complement algorithm to represent −128. 

In order to prove that the negative 0 of 10000000 represents the correctness of 
−128’s complement, consider 

10000000
01111111
11111111

+  

https://doi.org/10.4236/ce.2021.1212221


W. B. Wu et al. 
 

 

DOI: 10.4236/ce.2021.1212221 2956 Creative Education 
 

Because 01111111 is the original code of +127, the above calculation is equiv-
alent to calculating the result of (−128 + 127). Obviously, the result should be 
−1, and 11111111 is the complement of −1. Others can be deduced by analogy, 
so 10000000. It means −128 complement is correct. The above calculation also 
shows that the important function of the complement is to turn the subtraction 
(127 - 128) operation into the addition (−128 + 127) operation. In summary: 
Complement code: 8-bit complement code can represent the range of −128 - 
127. 

Because 01111111 is the original code of +127, the above calculation is equiv-
alent to calculating the result of (−128 + 127). Obviously, the result should be -1, 
and 11111111 is the complement of −1. Others can be deduced by analogy, so 
10000000. It means −128 complement is correct. 

The above calculation also shows that the important function of the comple-
ment is to turn the subtraction (127 - 128) operation into the addition (−128 + 
127) operation. In summary: Complement code: 8-bit complement code can 
represent the range of −128 - 127. 

4. Decimal Complementary Code 

For decimals, its complement is defined as 

[ ] , when 1 0
2 , when 0 1com

x x
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> ≥

=  + > ≥ −
                    (4) 

For example: 

0.1110x = + , [ ] 0.1110comx =  

0.1100x = − , [ ] ( )2 0.1100 10.0000 0.1100 1.0100comx = + − = − ==  

That is, in the definition of the decimal’s complement, the one in the integer 
part is used to represent the sign bit. 

5. Deformation Complementary Code 

[ ] , when 1 0
100 , when 0 1defom

x x
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The definition of Equation (5) is also for decimals, where 100 is binary, which 
represents the number 4. This definition means that each decimal has two sign 
bits. 

Deformed complement is represented by “00” for positive and “11” for nega-
tive, which is also called modulo 4’s complement. When adding and subtracting 
operations with deformed complement, when the sign bit of the operation result 
appears “01” or “10”, it means that an overflow has occurred. The most signifi-
cant bit (the first sign bit) of the anamorphic complement always represents the 
correct sign. For example, “00” and “01” represent positive numbers and positive 
overflow (overflow) respectively, and “11” and “10” represent negative numbers, 
Negative overflow (underflow). 
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1 100.01011, 00.01001
2 2defom defom

X Y   = =      
 

( )1 1 1 00.01011 00.01001 00.10100
2 2 2defom defom defom

X Y X Y     + = + = + =          
 

Here is the addition of two positive decimals. There is no overflow in this case. 
This is because the two decimals are less than 0.5, so their sum is less than 1. If it 
is 00.11 + 00.10, the result is 01.01, in this case An overflow occurs because the 
sum of the two decimals has exceeded 1. Another example 

1 111.10101, 11.10111
2 2defom defom

X Y   = =      
 

( )1 1 1 11.10101 11.10111 11.01100
2 2 2defom defom defom

X Y X Y     + = + = + =          
 

This is the addition of the two’s complement of two negative decimals, and 
the result does not overflow. But if you look closely, you can see that during the 
addition process, a carry from the most significant bit of the decimal to the sign 
bit occurs, so why is there no overflow? This is because the numerical parts of 
the two decimals’ complements 11.10101 and 11.10111 are both greater than 0.5, 
which means that the absolute value of two negative decimals is less than 0.5, 
and the two decimals whose absolute value is less than 0.5 are added together. 
The absolute value cannot be greater than 1, and if the addition is used, the ab-
solute value of the addition will exceed 1, so a carry will occur, but because it is 
the addition of two negative numbers, that is 

11.11 0.75
11.10 0.5

111.01 1.25

= −
+ = −

= −
 

Keep the decimal part = −0.25 

The highest 1 is removed, leaving 11.01, that is, the carry generated by the ad-
dition of the two complements of the above two negative decimals, which is just 
offset by the addition of their sign bits. 

6. Conclusion 

Through the above explanation of the various situations of complements, it is 
hoped that in teaching, teachers and students who find it difficult to learn this 
aspect can provide a little help. 
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