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Abstract 
Linear algebra is a relatively abstract science. Through the geometric explana-
tion of several algebraic concepts, this article strives to make these concepts 
easy to understand in teaching. Through the visualization of concepts such as 
determinants, linear transformations and eigenvalues, this course has changed 
from abstract equations to concrete geometric shapes in the teaching process, 
so as to achieve the purpose of improving the teaching effect. 
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1. Introduction 

The teaching of algebra class is often boring and monotonous, so how to make 
the explanation of this class lively and interesting is an important issue that 
teachers of this class should consider. This article explains geometrically several 
basic concepts in algebra, which should be helpful to the teaching of this course. 

2. The Geometric Meaning of Equations 

The linear equation of two variables geometrically represents a straight line, and 
the system of equations containing two linear equations of two variables geome-
trically represents the positional relationship of the two straight lines: 

Intersect ====> has a unique solution, Parallel ====> no solution.  
Coincidence ====> Infinitely many solutions. 
A system of equations composed of three ternary linear equations: If there is 

only one intersection of three planes, that is, the system of equations has a unique 
solution; If the three planes intersect on a straight line, the equation system has 
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infinitely many solutions; If there is no intersection or line of intersection be-
tween the three planes, the equation system has no solution. 

3. The Geometric Meaning of the Second and Third Order  
Determinants  

Two-dimensional case: There is a parallelogram OACB on the plane. The coor-
dinates of points A and B are respectively: ( )1 1,a b , ( )2 2,a b , as shown in the 
figure below, find the area of the parallelogram OACB. Analysis: Cross point A 
as the vertical line of the x axis, and cross the x axis at point E; cross point B as a 
line parallel to the x axis and cross point C as a line parallel to the y axis and 
cross at point D. Obviously we can get the triangle CDB and triangle AEO con-
gruence, then:  

OACD OEDB CDB AEO AEDC OEDB AEDC 1 2 2 1S S S S S S S a b a b= + − − = − = − , 

as shown in Figure 1. 
According to the definition of the second-order determinant, the area of the 

parallelogram is just the second-order determinant formed by the coordinates of 
A and B: 

1 1

2 2

a b
a b

 

In general, it can also be proved that the area of a parallelogram formed by 
two straight lines (vectors) passing through the origin, such as OA and OB, is 
the absolute value of the second-order determinant formed by the coordinates of 
A and B.  

In three-dimensional situation, three vectors are known  
( ) ( ) ( )1 2 3 1 2 3 1 2 3, , , , , , , ,u a a a v b b b w c c c= = = , that is 

1 1 1

2 2 2

3 3 3

a b c
a b c
a b c

 

The volume of the parallelepiped formed by these three vectors is the absolute 
value of the third-order determinant, as shown in Figure 2. 

 

 
Figure 1. The area of the second determinant. 
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Figure 2. The volume of the third determinant. 

4. The Geometric Meaning of Linear Transformation (y = Ax)  
on the Plane 

Let 

1 0
0 1

A  
=  
 

 

In the A matrix, let the first row (1, 0) represent the X axis and (0, 1) represent 

the Y axis, then AX obtains the coordinate (2, 1) of x in the 
2
1

x  
=  
 

 XOY 

plane. 

1

1 0
0 1

A
− 

=  
 

 

Then the result of A1x is (−2, 1). The first line of A1 is (−1, 0), which is equiv-
alent to the X axis in the new coordinate system, which can be considered as the 
opposite of the X axis in the previous coordinate system. 

2

1 0
0 1

A  
=  − 

 

3

0.5 0
0 2

A  
=  
 

 

4

cos sin
sin cos 3

A
α α  π = α =  − α α   

 

Observe A1x, the result of its transformation is that the coordinate system is 
changed (X-axis is reversed), but the relative position of the vector X in the new 
coordinate system remains unchanged. The result of A1x is the coordinates of 
the transformed vector X in the old coordinate system. Other A2 to A4 can be 
understood by reference (the new coordinate system can be shrunk and rotated). 

The result of the transformation from A1 to A4 is shown in Figure 3. 

5. The Geometric Meaning of Eigenvalues 

Suppose A is a square matrix of order n. If the number λ and the n-dimensional 
non-zero column vector x make the relationship Ax = λx hold, then such a 
number λ is called the eigenvalue of matrix A, and the non-zero vector x is called 

u

v

w

O
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the corresponding feature of A The eigenvector of the value λ. The formula Ax = 
λx can also be written as (A − λE)X = 0. This is a homogeneous system of linear 
equations with n unknowns and n equations. The necessary and sufficient con-
dition for it to have a non-zero solution is that the coefficient determinant |A − 
λE| = 0. 

When the vector x is dragged with the mouse to rotate clockwise, Ax also 
starts to rotate. The trajectory of the vector x is a circle, and the trajectory of the 
vector Ax is generally an ellipse. Draw graphics as shown in Figure 4. 

When the vector x is rotating, if the vector x and the vector Ax are collinear 
(including the same direction and the reverse direction), then there is an equa-
tion 

1A x x= λ  

λ is a real multiplier, λ is positive means that the two vectors are in the same  
 

 
Figure 3. The volume of the third determinant. 
 

 
Figure 4. The volume of the third determinant. 
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direction, and λ is negative means that the two vectors are reversed. People call 
the position where the vector Ax and the vector x are collinear as the characte-
ristic position, where the real number λ is called the eigenvalue of the matrix, 
and at this time x is the eigenvector of the matrix A belonging to λ. The eigen-
value represents the amount of enlargement (reduction) of the linear transfor-
mation Ax in the direction of the eigenvector x. 

6. Conclusion  

Linear algebra is a relatively boring course, and there are greater difficulties in 
the teaching process. In order to solve this difficulty, various attempts have been 
made in the literature (White et al., 2021; Yildiz & Senel, 2017; Guo et al., 2016; 
Ding & Rhee, 2011; Shakir, Rao, & Alouini, 2011). This article is also an attempt 
to improve the specificity and interest of this course. By displaying various equa-
tions in geometric form, I hope this method can provide some help to the teaching 
of this course. 
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