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Abstract 

The impact of lipophilicity as represented by the logarithm of octanol/water 
partition coefficient (logP), the combined steric/polarizability effect as repre- 
sented by molar refractivity (MR) and bulk as represented by molar volume 
(MV) on the biological activity of 29 known aminopyrimidoisoquinolinequi-
nones APIQ were analyzed using quantitative structure activity relationships 
methodology (QSAR). The activity data chosen was the inhibitory concentra-
tion (IC50) against human gastric adenocarcinoma (AGS) cell line. On running 
regression analysis, the physicochemical parameters and IC50 show very weak 
correlations as evident by the low values of Pearson Correlation R2 (0.1 to 
0.2). Since the individual compounds show appreciable activity (ranging from 
20 to 0.5 μM), classification was resorted to in order to expose mechanistic 
nesting subgroups. This was done by clustering data points around various 
trend lines extracted from the scattered plot relating parameters to activity 
using R2 as an index. The correlation of IC50 versus MV was chosen a base of 
classification owing to higher statistical metrics it yield. This gave five regres-
sion lines, each of which is believed to represent a separate mechanistic pro-
file. Additional descriptors were used to consolidate the clustering approach 
and to give depth to the assumed mechanistic profiles of each cluster. 
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1. Introduction 

The quinone moiety has been showed to possess anticancer activity and numer-
ous cancer drugs in clinical use contain this unit since the discovery of daunoru-
bicin (daunomycin 1a) and adriamycin (doxorubicin 1b) in 1960’s [1] [2] [3]. 
These two compounds are commonly used clinical agents in the therapy of var-
ious types of cancers (hematologic, solid tumors, …, etc.) [4]. They belong to 
anthracycline class of compounds which are featured by anthracene-9,10-dione 
chromophore to which is fused a six-membered alicyclic ring with a carbethoxy 
group at C9 and a sugar moiety at C7 [5]. 
 

 
 

These compounds are naturally occurring antibiotic isolated from cultures of 
streptomyces species [2]. They relate to tetracycline antibiotics but are far more 
toxic. Drawbacks of anthracycline therapy include, among others, pronounced 
dose-dependent cardiotoxicity (heart failure in some patients) stem from gene-
rationof hydrogen peroxide and reactive oxygen species (ROS) through redox 
cycling [6] [7]. This is also true for ametantrone 2a, which is a derivative of 
anthraquinone (anthracene-9-10-diones), that has high cardiotoxicity riskand 
mitoxantrone 2b, another synthetic derivative of anthracene-9-10-dionewhich 
induces an acute myocarditis and arrhythmia during infusion [8] [9]. 
 

 
 

Pixantrone 3 is a modified ametantroneazaanolgue where the C-atom at posi-
tion 9 was replaced by N-atom. It was proved to have anticancer activity with 
lower cardiotoxicity. This drug, however, fail to obtain FDA approval in the USA 
due to inconsistence of Phase II and Phase III data regarding cardiotoxicity. Re-
cent studies shades doubts about its alleged reduced cardiotoxicity [10] [11]. 
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Research efforts were directed toward obtaining better agents in an attempt to 
mitigate the cardiotoxicity of the initial anthracycline exposure, thereby pre-
serving the myocardial integrity [12]. Chromophore modification to alleviate 
cardiotoxicity yielded anthrapyrazoles and their aza analogues4, which related to 
ametantrone and mitoxantrone. The most active compounds from these catego-
ries is losoxantrone 4a, which is an anthrapyrazole, and BBR3438 4b which is an 
aza anthrapyrazole. The modification includes the incorporation of a pyrazole 
ring converting the quinone moiety into quasi quinone and, in case of aza ana-
logues, incorporation of an N atom in position 9 [13] [14]. 
 

 
 

Angucyclinones 5a are aromatic polyketides and naturally occurring biologically 
active angular benz (a) anthrathene-9,10-dione derivatives [15]. They look like the 
anthracyclines in that they are naturally occurring isolated from numerous strains 
of Streptomyces [16], in addition to their derivation from the same chromophore. 
They show antifungal, antiviral, antibiotic, antitumor activities [17]. The capability 
of modification in the angucyclinones rouses arouses a considerable interest in 
their synthesis toward development of a new antitumor drug [18]. 
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Reports about the aza analogues 5b of angucyclinone are less common and are 
due mainly to Valderrama [19]. These workers synthesized a number of azaana-
logues of angucyclinone which show good activity when tested against a panel of 
cancer cell lines. The same group reported the synthesis and anticancer evalua-
tion of two groups of tricyclic aza analogues with ring D removed. The angular 
ring isdimethylprimidodione in one group, (8-aminopyrimido [4,5-c] isoquino-
linequinones, APIQ’s) [20] anda cyclohexanone in the other (8- and 9-pheny- 
lamino-3,4-tetrahydro-phenanthridine-1,7,10 (2H)-triones, PPT) [21]. Both groups 
show comparable activity which is generally better than that of angucyclinones. 
In this paper we study the activity of APIQ’s in attempt to expose mechanistic 
aspects via Quantitative structure-activity relationships (QSAR) mythology. 

QSAR is a mature scientific discipline which aids to find a mathematical rela-
tionship between the biological response of a series of congeneric molecules and 
various aspects of molecular behavior encoded by numerous molecular descrip-
tors or physicochemical parameters [22]. To that end, computational methods 
become an indispensable tool for drug designers to obtain molecular descriptors 
and to derive the mathematical correlation [23]. 

If the sole purpose of a model is prediction of activity of related untested 
compounds, regression analysis is used, but if the purpose of analysis is to cate-
gorize data according to a specific criterion, then classification methods is re-
sorted to. There are several algorithms to perform each of these types of QSAR 
analyses. Regression could be done by linear regression, partial least squire re-
gression, principle component analysis among others. Classification, on the oth-
er hand, could be performed by decision tree, random forest, K-nearest neighbor 
and regression clustering [24] [25]. The principle of classification analysis is to 
break down a larger data set with poor correlation metrics into smaller subsets 
with much improved metrics [26]. Regression clustering could be used in me-
chanistic study to furnish the attractive features of explaining the variabilities of 
descriptors with response. Linear regression and regression clustering are used 
in the present study to extract information about predictive ability and about 
hidden mechanistic trends of a data set of 29 known aminopyrimidoisoquinoli-
nequinones (APIQ’s). 

2. Method and Material 

Drawing of structures and calculating the descriptors was carried out using AC-
Dlab/chemsketchfreeware2015.2.5, Arguslab 4 and Molecular operation envi-
ronment (MOE) 2008 software. The descriptors used in the present study in-
clude the logarithm of octanol/water partition coefficient (Log P), moler volume 
(MV), molar refractivity (MR), sum of atomic polarizabilities (apol), electrophi-
licity index (ω), surface rugosity (Rug) and hydrogen bond donor capacity 
(HBD). Statistical analysis was performed using Microsoft Excel 2010 program. 
Classification through regression clustering was performed as we described be-
fore [27]. The biological activity used in the present study is the anticancer activ-
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ities of compounds 1-29 against human gastric adenocarcinoma (AGS) cell line 
which were taken from literature (Vasquez et al. 2010). Table 1 below shows the 
structures of compounds used in the present study. 

The molecular descriptors and biological activity data of APIQ’s are shown in 
Table 2 below. 
 
Table 1. Chemical structures of aminopyrimidoisoquinolinequinones (APIQ’s). 

 
 

No R1 R2 R3 

1 H - - 

2 Me- - - 

3 H H Ph- 

4 H Hp-HO-Ph-  

5 H Hp-MeO-Ph-  

6 H Hp-F-Ph-  

7 H Ho-MeOph-  

8 H H o-F-Ph- 

9 H Ho,m-diMeO-Ph-  

10 H Me Ph- 

11 H Et Ph- 

12 H H n-But 

13 H Morpholinyl  

14 H Hcyclohexyl  

15 H H adamantanyl 

16 Me H Ph- 

17 Me H p-HO-Ph- 

18 Me H p-MeO-Ph- 

19 Me H p-F-Ph- 

20 Me H p-nitro-ph- 

21 Me H o-MeO-Ph- 

22 Me H o-F-Ph- 

23 Me H o,m-diMeO-Ph- 

24 Me Me Ph- 

25 Me Et Ph- 

26 Me H n-But 

27 Me Morpholinyl  

28 Me H cyclohexyl 

29 Me H adamantanyl 
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Table 2. Molecular descriptors and biological activity data of compounds 1 - 29. 

No LogP MR MV IC50 (AGS*) (μM) 

1 −0.35 65.36 177.7 75.2 

2 0.11 70.19 193.9 82.1 

3 0.75 94.59 240.6 2.5 

4 0 96.47 239 15.5 

5 0.7 101.26 264.6 2.8 

6 1.19 94.58 244.8 3 

7 0.64 101.26 264.6 4 

8 0.71 94.58 244.8 5.2 

9 0.95 107.94 288.6 9.1 

10 0.88 99.29 259.1 2.1 

11 1.42 103.92 275.6 3.9 

12 0.99 87.57 242 2.5 

13 0.33 87.02 237.9 4.6 

14 1.46 94.77 256.2 NA** 

15 2.28 109.17 284.8 2 

16 1.21 99.41 256.9 1 

17 0.46 101.29 255.3 3.3 

18 1.16 106.09 280.9 5.5 

19 1.65 99.4 261.1 1 

20 1.66 105.96 268.7 1 

21 1.1 106.09 280.9 >100 

22 1.17 99.4 261.1 1.9 

23 1.41 112.77 304.9 31.7 

24 1.34 104.11 275.4 4.7 

25 1.88 108.75 291.9 19.2 

26 1.45 92.19 257.7 5.2 

27 0.79 91.85 254.1 3.9 

28 1.92 99.39 271.9 2.2 

29 2.74 113.79 300.4 4.2 

AGS* human gastric adenocarcinoma cell line; NA** = not available. 

3. Results and Discussion 

1) Regression analysis of log P, MR, MV and their combination versus IC50 
Biological activity data was first curated by removing problematic data points. 

These are namely points 1 and 2 because of their high standard error of the 
mean; point 14 for which no datum is available (NA) and point 21 for which the 
value is not specified (>100). The rest of data points were used to develop QSAR 
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equations. We run both simple and multiple linear regressions to find the degree 
of correlation of each parameter with IC50 and that of them, combining two at a 
time, with IC50. The combination of two parameters is done after referring to 
their correlation matrix (Table 3 below).  

LogP could be combined with both MR and MV owing to its low collinearity 
with each of them (R2 = 0.36 and 0.48 respectively). MR and MV cannot, how-
ever, be combined in one and the same equation owing to their collinearity (R2 = 
0.8). The resulting equations are as follows: 

Correlation of logP versus IC50: 

50IC 0.2444logP 5.97= − +                       (1) 

n = 25, R2 = 0.00048, S = 7.04, F = 0.0111 
Correlation of MR versus IC50: 

50IC 0.372MR 31.68= −                        (2) 

n = 25, R2 = 0.15, S = 6.5, F = 4.04 
Correlation of MV versus IC50 

50IC 0.161MV 36.862= −                        (3) 

n = 25, R2 = 0.2, S = 6.308, F = 5.7 
Correlation of both logP and MR versus IC50 

50IC 0.598MR 4.376logP 49.227= − −                  (4) 

n = 25, R2 = 0.25, S = 6.243, F = 3.646 
Correlation of both logP and MV versus IC50 

50IC 0.32MV 7.08logP 70.613= − −                   (5) 

n = 25, R2 = 0.41. S = 5.54, F = 7.622. 
Equations (1)-(5) indicate that the models are not predictive as evident from 

poor statistical materics. Equation (1) represents correlation between lipophilic-
ity measured by logP and biological response. The nearly zero value for Pearson 
coefficient (R2) indicates that the variation in biological activity of APIQ’s is to-
tally independent from variation in lipophilicity. MR is a descriptor of both po-
larizability and volume of the molecule and it accounts for about 15% (R2 = 0.15, 
Equation (2)) of the variation of biological activity. Owing to the higher contri-
bution of MV in explaining the variation of biological activity (~20%, Equation 
(3)), it seems that the presence of a term for molecular polarizability in the ex-
pression of MR lower overall contribution in explaining the variability of the bi-
ological response. Combination of LogP and MR give improved correlation  
 
Table 3. Correlation matrix of descriptors and response. 

 LogP MR MV IC50 (AGS) 

LogP 1    

MR 0.36 1   

MV 0.48 0.8 1  

IC50 (AGS) 0.000483 0.15 0.2 1 
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(25% explained variability). Abetter correlation was obtained by combining logP 
with MV (41% explained variability). Still the model could not be used for pre-
dictive purposes. Individual compounds exhibit appreciable activity against 
cancer although the present sets of descriptors could not capture the variability 
of the biological activity. This may result from the existence of various sub-
groupshidden in the main dataset, which oppose each other leading to weaken-
ing of a unifying trend line correlating the descriptors with their response. These 
descriptors could, therefore, be used to expose these supposed subgroups. This is 
done through classification. 

2) Classification analysis 
Each of data set used to develop Equations (1)-(3) above, were subjected to a 

process of simple clustering described before [27]. The clustering was based on 
each of the parameters in turns. Upon scrutiny, we choose the clustering based 
on MV to explore mechanistic trends. The reasons for this choice are: 1) MV 
gave us the highest R2 value in regression analysis of the original data set (R2 = 
0.2); 2) it gave five clusters each containing five data points therefore obeying the 
rule of thumb of QSAR (5 data points for each parameter). The regression clus-
tering output thus obtained is shown in Table 4 below. 

The regression lines along which data points of each clusterlie are illustrated 
in Figure 1 below. 
 

 
Figure 1. Regression lines for various clusters. 

 
Table 4. Statistical metrics for clustering based on (MV). 

Clusters Data Points Equation (Linear) n R2 S F 

1 7, 10, 16, 22, 25 IC50 = 0.532MV − 136.2 5 0.99 0.7 480 

2 5, 17, 18, 19, 23 IC50 = 0.588MV − 152.0 5 0.84 5.9 15.74 

3 4, 11, 15, 24, 26 IC50 = −0.269MV+ 77.98 5 −0.86 2.33 17.76 

4 3, 6, 8, 9, 12 IC50 = 0.129MV − 28.23 5 0.88 1.12 22.45 

5 13, 20, 27, 28, 29 IC50 = −0.011MV + 6.279 5 −0.03 1.73 0.09 
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It is noticed that cluster 5 is not depicted in Figure 1 above owing to the 
poorness of its MV/IC50 correlation as evident from the R2 value (−0.03). In or-
der to justify our classification, we selected some other parameters which reflect 
different aspects of molecular behavior. These include, in addition to logP, sum 
of atomic polarizabilities (apol) to describe dispersion forces such as van der 
Waal interaction; surface rugosity or roughness (Rug) to follow surface topology 
of the legend; hydrogen bond donor capacity HBD to capture the ability of le-
gend to act as a donor in hydrogen bonding with receptor and electrophilicity 
index ω which reflects the ability of legend to act as an electrophile accepting 
electrons from the receptor. All the above described descriptors were regressed 
against IC50 both linearly and parabolically and Pearson coefficients are collected 
in Table 5 below.  

The presence of mechanistic subgroup nested in APIQ data set could be justi-
fied by examining Table 5 above. We are going to discuss the variation of bio-
logical activity with each parameter for clusters 1 - 5, one at time, to demark the 
mechanistic difference among these clusters. 

Sum of atomic polarizabilities (apol): this could be considered as an indicator 
of dispersion interaction of APIQ’s with their receptor [28]. Figure 2 below 
shows the plots of apol vs IC50 for each cluster exhibited side by side for easy 
comparison. It could be seen from the plots that clusters 1, 2 and 4 show high 
association between apol and IC50 ( 2 0.99LR = , 0.87 and 0.86 respectively) but 
they traverse different response space; cluster 1 exists between (0 - 20) response 
units while cluster 2 exists between (~0 - 30) response unit; cluster 4 exists be-
tween (2 - 10) response units. For these clusters the response is directly propor-
tional to descriptor. Cluster 3 shows moderate association between the descrip-
tor and the response ( 2 0.53LR = − ) and spans between (0 - 15) response units. 
The response has an inverse proportionality to descriptor in cluster 3. No linear  
 
Table 5. Pearson coefficient for correlation between IC50 and selected parameters for 
clusters 1 - 5. 

Descriptors Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

Apol 
2
LR  0.99 2

LR  0.87 2
LR  −0.53 2

LR  0.86 2
LR  −0.00 

2
PR  0.99 2

PR  0.99 2
PR  0.75 2

PR  −0.86 2
PR  0.79 

Rug 

2
LR  0.79 2

LR  0.97 2
LR  −0.33 2

LR  0.61 2
LR  0.02 

2
PR  0.95 2

PR  0.98 2
PR  −0.86 2

PR  0.94 2
PR  0.83 

HBD 

2
LR  −0.67 2

LR  −0.52 2
LR  0.81 2

LR  −0.16 2
LR  0.03 

2
PR  0.94 2

PR  0.93 2
PR  0.95 2

PR  0.29 2
PR  0.56 

Ѡ 

2
LR  −0.03 2

LR  0.87 2
LR  −0.10 2

LR  0.05 2
LR  0.14 

2
PR  −0.09 2

PR  0.99 2
PR  −0.38 R2

P −0.03 2
PR  0.14 

LogP 

2
LR  0.63 2

LR  0.11 2
LR  −0.92 2

LR  −0.01 2
LR  −0.08 

2
PR  0.99 2

PR  −0.21 2
PR  0.99 2

PR  −0.16 2
PR  0.84 
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Figure 2. The shape regression lines resulted from plotting IC50 vs apol for the clusters 
obtained based on MV.  
 
correlation is to be found between the descriptor and the response in case of 
cluster 5 ( 2 0LR ≈ ). All the above arguments indicate the existence of different 
mechanistic profiles among our five clusters of APIQ’s as far as dispersion inte-
raction-represented by apol is concerned. 

Both linear and parabolic fittings are similar for clusters 1 and 4;  
2 2 0.99L PR R= =  for cluster 1, compared to 2 0.86LR =  and 2 0.86PR = −  for  

cluster 4. For the rest of clusters, the parabolic fitting gives higher R2 compared 
to linear fitting. This is dramatically borne out by cluster 5 where R2 rises from 
0.00 for linear fitting to almost 0.79 for parabolic fitting. Similarly, for cluster 2 
the rise in R2 is also sharp; 0.87 for linear to 0.99 for parabolic. Cluster 3 exhibits 
a milder increase; 2 0.53LR = −  to 2 0.75PR = . The foregoing argument implies 
that for clusters 3 and 5, the descriptor apol explains the variability in the bio-
logical response in non-linear manner. The overall good linear and/or parabolic 
correlations indicate that the distribution of electron along the entire volume of 
the legend has something to complement with inside the receptor pocket. 

Surface rugosity (Rug) is a descriptor for molecular surface roughness. It 
represents the ratio of volume to surface. The smaller the ratio is, the larger the 
rugosity [29]. It is apparent from Table 5 above that the correlation between 
Rug and IC50 is parabolic rather than linear for all clusters ( 2 0.95PR = , 0.98, 
−0.86, 0.94 and 0.83 for 1, 2, 3, 4 and 5 respectively). 

Hydrogen bond donor capacity HBD: expressed in terms of the number of 
possible hydrogen-bond donors [29]. This is inversely correlated with the re-
sponse for clusters 1, 2, and 4 and directly correlated with the response for clus-
ters 3 and 5. Again the relations are parabolic rather than linear. Clusters 1, 2 
and 3 show high positive non-linear (parabolic) correlations ( 2 0.94PR = , 0.93 
and 0.95 respectively) while cluster 4 shows a poor positive non-linear correla-
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tion ( 2 0.29PR = ). Cluster 5 shows a moderate ( 2 0.56PR = ) positive correlation. 
Electrophilicity index ω: measures the tendency of a molecule as a whole to 

accommodate electrons [29]. The descriptor ω shows very poor correlation for 
all the clusters with exception to cluster 2 which exhibits very good correlation 
both linearly ( 2 0.87LR = ) and parabolically ( 2 0.99PR = ). Upon contemplating 
the structures of the member compounds of this cluster we noticed that four of 
them (5, 17, 18 and 19) carry a strong electronegative groups at the para position 
of aniline ring attached at C8 of the parent molecules; namely methoxy, hydroxy, 
methoxy and flouro respectively. The fifth compound (compound 23) carries 
two methoxy groups at ortho and meta positions. It seems that the presence of 
these electronegative atoms in these compounds increase their ability to ac-
commodate electrons hence the compliance between ω and the observation 
(presence of electronegative atoms) discussed above. This fits nicely with our 
finding and gives a good credit for our clustering methodology. We can add a 
comment about the complimentary receptor site receiving such molecules; 
which must be nucleophilic, capable of donating electrons to be accommodated 
by our compounds. A detailed quantum mechanical study of electronic disposi-
tion of the compounds of cluster 2 will be published in a separate paper. 

Logarithm of octanol/water partition coefficient Log P: this parameter shows 
high linear and/or parabolic correlations with the response for clusters 1  
( 2 0.63LR = , 2 0.99PR = ), cluster 3 ( 2 0.92LR = − , 2 0.99PR = ) and cluster 5  
( 2 0.08LR = − , 2 0.844PR = ). For clusters 2 and cluster 4 the correlations are very 
poor ( 2 0.11LR =  and −0.01 respectively). 

4. Conclusion 

We conclude that for this particular group of APIQ’s, the absence of universal 
correlation between their anticancer activity and the descriptors for lipophilicity 
and volume/polarizability is due to presence of nesting subgroups exhibiting 
varied mechanistic profiles. We have used a simple clustering method to segre-
gate the data set into 5 clusters, each of which fits a separate trend line based on 
MV. We used five descriptors to emphasize the divergence of APIQ’s into dis-
tinct mechanistic profiles. 
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