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Abstract 
The semi-arid Southern Plains region of the United States holds a large share 
of cotton (Gossypium hirsutum L.) production in this country. This region is 
vulnerable to drought and is projected to experience a drier climate in the fu-
ture. Droughts that coincide with the critical phenological phases of cotton 
can be remarkably costly. Although drought cannot be avoided, its impacts 
can be minimized through appropriate mitigation measures if it is predicted 
in advance. Predicting the yield loss of cotton due to drought is an important 
need of cotton producers in this region. One reliable way to meet this need is 
using an agricultural drought index, such as Agricultural Reference Index for 
Drought (ARID). As a plant physiology-based drought index, ARID can accu-
rately map drought-yield relationships. By using cotton yield and weather data 
spanning 26 seasons during 1999 to 2024 collected at four locations in the re-
gion – Lubbock and Lamesa in Texas and Chickasha and Fort Cobb in Okla-
homa – this study developed an ARID-based yield model for predicting the 
drought-induced yield loss for cotton in this region by accounting for its phe-
nological phase-specific sensitivity to drought. The modeling results showed 
that, of all the phenological phases of cotton studied, the pinhead square-first 
bloom phase was the most sensitive to drought, whereas cotton yields were 
positively impacted by water stress that occurred during the emergence-pin-
head square phase. The rational values of the parameters of the yield model 
indicated that it reasonably could reflect the phenomenon of water stress de-
creasing the cotton yields in this region. The values of the various measures 
used to evaluate the model, including the percentage error (22), the Nash-Sut-
cliffe Index (0.45), and the Willmott Index (0.83), indicated that the yield 
model performed fairly well. The yield model can contribute to predicting the 
drought-induced yield loss for cotton in the study region and scheduling irri-
gation allocation based on phenological phase-specific sensitivity to drought 
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1. Introduction 

The semi-arid Southern Plains region of the United States (US) encompassing 
northwestern Texas and southwestern Oklahoma represents a substantial portion 
of the agricultural land mass in the US and is responsible for a large share of cotton 
(Gossypium hirsutum L.) production. Over several decades, Texas has consist-
ently accounted for approximately one-half of the total cotton production area in 
the US [1]. The High Plains region within Texas is particularly well-suited for 
cotton production and contributes the largest portion of the state’s total yield. In 
Oklahoma, cotton cultivation is concentrated in the southwestern part due to im-
proved production efficiency and the deep-rooted traditions of producers [2].  

The Southern Plains region is vulnerable to persistent drought. When low pre-
cipitation is combined with high temperatures, drought can rapidly develop. Re-
search has shown that this region will experience a drier climate in the future [3]. 
The elevated temperatures in this region due to climate change will cause more 
intense droughts [4]-[6] and a longer dry spell between two rain events [7].  

The primary source of water for nearly all irrigated agriculture in the Southern 
Plains region is the Ogallala Aquifer, which lies beneath the region. However, the 
ongoing depletion of this aquifer due to unsustainable water use has decreased the 
potential of irrigating cotton crops in this region in the future [8]. This region, 
particularly the heavily irrigated areas, which have already been plagued by water 
shortage, will experience further stress on the water supply due to continued ur-
banization [9]. These circumstances have forced cotton producers in this region 
to efficiently manage irrigated as well as rainfed farming systems [8]. 

Drought in this region may occur during any time of the year. However, 
droughts, especially those that occur during the critical phenological phases of a 
crop, can be very costly [9]. Many local economies and communities in the region 
have been facing huge challenges caused by drought for several decades. In Texas 
alone, drought has cost up to $50 billion over the last 40 years [9]. 

Although an imminent drought cannot be prevented, its impacts can be mini-
mized through mitigation measures if it is predicted in advance [10]. Predicting 
yield loss due to an impending drought is a crucial need of farmers. The ability to 
predict yield loss can help stakeholders with decisions regarding applying appro-
priate mitigation measures. The impact of drought depends on the sensitivity of a 
crop to water stress, which is different across phenological stages [11]-[13]. The 
yield loss caused by drought may be predicted using yield models that are based 
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on various methods, including drought indices [14]. Relative to other methods, 
drought indices are simpler, yet they provide a comprehensible big picture on 
drought conditions [15] [16]. 

A drought can be meteorological, hydrological, or agricultural. An agricultural 
drought is a temporary condition where the amount of plant available water in the 
soil cannot meet the consumptive demand of crops [16]. A number of drought 
indices are available that can monitor or predict an agricultural drought [15] [17], 
However, only a plant physiology-based drought index, such as the Agricultural 
Reference Index for Drought (ARID) [18], can predict the yield loss due to 
drought more accurately because yield formation is a plant physiological process. 
The ARID is biophysically sound, computationally simple, and generally applica-
ble; it is able to characterize an agricultural drought better than many similar in-
dices [19]. The ARID is calculated with a daily time-step as the ratio of crop water 
deficit to crop water need as: 

d
d

d

ARID 1 ,
ET
Ť

= −                     (1) 

where the subscript d stands for the d-th day, Ť is transpiration, and ET is the 
reference grass evapotranspiration [20] [21]. The ARID value ranges from 0 (no 
water stress) to 1 (full water stress). 

To estimate the water-stressed yield relative to the non-water-stressed yield, 
hereafter referred to as the relative yield (Ý) and, ultimately, the fraction of 
drought-induced yield loss (1 − Ý) for a flowering crop having several distinct 
phenological phases with differing drought sensitivities, [22] developed Equation 
(2) using the phenological phase-specific values of ARID. 

( ) p
P

λ
p

p 1
Ý 1 ARID ,

=

= −∏                   (2) 

where Ý is the relative yield of a crop, the symbol Π indicates a product, p is a 
phenological phase, P is the total number of phases considered during the crop 
season, and pλ  is the relative sensitivity of the crop to water stress during the p-
th phase. 

The objective of this study was to develop an ARID-based relative yield model 
for predicting the drought-induced yield loss for cotton in the Southern Plains 
region of the US by estimating the phase-specific drought sensitivity coefficient 
( pλ ) values for various phenological phases (P) of cotton to be used in the yield 
model (Equation 2). 

2. Materials and Methods 
2.1. Obtaining the Yield Data 

To calculate the relative yields of cotton, its absolute lint yields (kg ha−1) under 
both irrigated and dryland farming conditions, with the same input except the 
water, would be needed. In the Southern Plains region, such yields were available 
only for Lubbock and Lamesa in northwestern Texas and Chickasha and Fort 
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Cobb in southwestern Oklahoma. These data (Table 1) were obtained from the 
Cotton Performance Trials conducted at Texas A&M AgriLife Research at Lub-
bock (https://lubbock.tamu.edu/programs/crops/cotton/general-production/cot-
ton-performance-trials/) and the USDA ARS National Cotton Variety Test website 
(https://www.ars.usda.gov/southeast-area/stoneville-ms/crop-genetics-re-
search/docs/national-cotton-variety-test/). At these locations, a trial season in-
volved up to 55 cultivars. However, as new cultivars evolved every year, there was 
no cultivar that was grown under both dryland and irrigated conditions for a pe-
riod sufficiently long for statistical analyses. To maximize consistency in the data 
while minimizing variability and ensuring that the data reflected standard man-
agement, the cultivars that were within 95% of the highest yield at a location each 
year under irrigated conditions were picked and considered as high-yielding cul-
tivars for that location-year. Because maximizing crop productivity is a primary 
objective of a farmer, a cotton producer would obviously be interested in high-
yielding cotton cultivars. Thus, we picked such cultivars for developing the yield 
model. From the irrigated and unirrigated (dryland) yields of each of these culti-
vars, the relative yield of that cultivar for a given location-year was calculated us-
ing Equation (3). 

U
 L,y,c

L,y,c I
 L,y,c

Y
Ý ,

Y
=                      (3) 

where L,y,cÝ , U
L,y,cY , and I

L,y,cY , respectively, are the relative, unirrigated, and 
irrigated yields of the c-th high-yielding cultivar at the L-th location in the y-th 
year. 

The L,y,cÝ  of all the high-yielding cultivars in the y-th year at the L-th location 
were then averaged. This average was assumed to be the relative yield of a general, 
high-yielding cotton cultivar grown in the y-th year at the L-th location. Accord-
ingly, there were 12 Ý for Lubbock, 7 for Lamesa, 6 for Chickasha, and 1 for Fort 
Cobb, thus totaling 26 Ý for the study region (Table 1). These Ý values were used 
as the relative yields of cotton for further analyses. 

2.2. Obtaining the Weather Data 

The daily weather data on precipitation, solar radiation, windspeed, and ambient 
temperatures (minimum, maximum, and dewpoint), which were needed for cal-
culating ARID and the thermal time to estimate the durations of various pheno-
logical phases of cotton, for the locations and years associated with the yield data 
(Table 1) were obtained online from various sources, including the National Cen-
ters for Environmental Information (NCEI;  
https://www.ncei.noaa.gov/access/search/data-search/daily-summaries). Due to 
the lack of measured data, the daily solar radiation data for these locations and 
years were generated using a reliable global solar radiation model for the south-
eastern US [23]. This model performed the best among the 16 similar models ref-
erence [23] studied across 30 locations in the southeastern region of the United 
States, with the lowest root mean square (RMSE) value of 0.29, the lowest R2 value 

https://doi.org/10.4236/as.2025.167040
https://lubbock.tamu.edu/programs/crops/cotton/general-production/cotton-performance-trials/
https://lubbock.tamu.edu/programs/crops/cotton/general-production/cotton-performance-trials/
https://www.ars.usda.gov/southeast-area/stoneville-ms/crop-genetics-research/docs/national-cotton-variety-test/
https://www.ars.usda.gov/southeast-area/stoneville-ms/crop-genetics-research/docs/national-cotton-variety-test/
https://www.ncei.noaa.gov/access/search/data-search/daily-summaries


P. Woli et al. 
 

 

DOI: 10.4236/as.2025.167040 633 Agricultural Sciences 
 

of 0.85, and the highest modeling efficiency value of 0.83.  
The daily data on some meteorological variables, especially temperature and 

precipitation, for some locations (weather stations) in certain years were missing. 
Those data gaps were filled in with the corresponding data obtained from the clos-
est weather station. The missing value of average daily windspeed for a given day 
of a given year at a given location was estimated by averaging the windspeed data 
for that day obtained from the other years for which such data were available. The 
missing daily dewpoint temperature values were estimated from the correspond-
ing minimum temperature values.  

 
Table 1. The number of seasons and years for which both dryland and irrigated cotton lint 
yield data were available at four locations in the Southern Plans region of the United States. 

Location Lat., Lon. Seasons Years 

Lubbock, TX 33.69, −101.82 12 2009 - 2011, 2014 - 2018, 2021 - 2024 

Lamesa, TX 32.74, −101.95 7 2009, 2010, 2014 - 2017, 2019 

Chickasha, OK 35.05, −97.94 6 1999 - 2004 

Fort Cobb, OK 35.10, −98.44 1 2021 

2.3. Estimating Phenological Phase Durations 

The sensitivity of a crop to drought stress varies across phenological phases [15]-
[17]. For phenological phase-specific drought sensitivity analyses, therefore, the 
cotton seasons involved in the trials (Table 1) needed to be split into multiple 
phenological phases. Based on the limited phase duration data available for cotton 
in the Southern Plains region and the phases considered in the literature [24]-[26], 
six phenological phases for cotton were considered in this study: 1) planting-
emergence; 2) emergence-pinhead square; 3) pinhead square-first bloom; 4) first 
bloom-peak bloom; 5) peak bloom-first open boll; and 6) first open boll-harvest. 

To split the cotton-growing seasons associated with the yield data into these 
multiple phenological phases, the planting and harvesting date data correspond-
ing to the yield data were used. For splitting a given season into several phases, 
the total number of days required to complete each phase was estimated. Because 
the temperature is the key factor defining the timespan of a development phase, a 
logical approach to this estimation was to use the thermal time, also known as the 
growing degree-days (GDD). Based on this approach and using the total thermal 
time (TTT; ˚C d) needed for each phase [24]-[26] (Table 2), the number of days 
taken to complete each of the six phenological phases was estimated using Equa-
tion (4). 

 
 d pp1

p
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,when TT TTT
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d
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=

=

=

∑

= ∑                    (4) 

where 
 pD  is the duration (days) of the p-th phenological phase (p = 1, 2, …, 6); 
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pd  is the d-th day of the p-th phase; 1
pd  is the first day of the p-th phage; n

pd  
is the n-th day of the p-th phase; pTTT  is the total thermal time needed to com-
plete the p-th phase (Table 2); and 

pdTT  is the thermal time (˚C d) on the d-th 
day of the p-th phase, which in turn, was calculated as: 

p

b a b
d,p

d a
d,p

T if  T T
TT ,

T else
 <= 


                 (5) 

where bT  is the base temperature at which the plant development stops, as-
sumed to be 15.56˚C for cotton [24]-[26]; and a

d,pT  is the average temperature 
on the d-th day of the p-th phase, which in turn, was calculated using Equation 
(6). 

( )mx mn
d,p d,pa

d,p

T T
T ,

2

+
=                     (6) 

where mx
d,pT  and mn

d,pT  are maximum and minimum temperatures on the d-th 
day of the p-th phase, respectively. Using these phase duration (Dp) values, each 
cotton season at each location was split into the six phenological phases consid-
ered above. 

2.4. Computing Phenological Phasic Values of ARID 

The daily values of ARID for each cotton growing season (year) at each location 
that had both dryland and irrigated yield data (Table 1) were computed from the 
daily weather data, using the ARID equations described by [18] and the compu-
tational procedure (the MATLAB program) provided by [16]. The daily ARID 
values for each year-location then were averaged by the phenological phase. Con-
sequently, there were 72 phasic values of ARID for Lubbock (12 seasons × 6 
phases), 42 for Lamesa (7 × 6), 36 for Chickasha (6 × 6), and 6 for Fort Cobb (1 × 
6). Finally, the phasic values of ARID were converted into the corresponding pha-
sic values of “1 – ARID”, which then were used in the yield model (Equation 2). 

2.5. Developing the Yield Model 

Once the phasic values of “1 – ARID” were calculated as explained above and the 
relative yields of cotton were calculated using Equation (3) for each year at each 
location, a dataset matrix of 12 rows (years) and 7 columns (yield + phases) was 
prepared for Lubbock. Accordingly, the matrices of 7 rows × 7 columns for 
Lamesa, 6 rows × 7 columns for Chickasha, and 1 row × 7 columns for Fort Cobb 
were created. For developing the yield model for the Southern Plains region, these 
four matrices were combined to produce a single matrix of 26 rows and 7 columns. 
The first column in the matrix contained relative yields (output variable), and the 
other columns contained the corresponding phasic values of “1 – ARID” for the 
six phases (input variables).  

For developing the yield model for cotton, estimating the values of various phe-
nological phase-specific drought-sensitivity coefficients (λp) would be necessary. 
This would require regressing the linearized form of Equation (2): Equation (7). 
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Accordingly, all the values in the matrix prepared for the region were converted 
into the natural logarithmic (ln) values. These transformed matrices, in turn, were 
used in the R-project software to estimate the λp values through multiple linear 
regressions. 

 
Table 2. Total thermal time (TTT) needed to complete each phenological phase of cotton 
in the Southern Plains region of the United States. 

Phenological phase (p) p TTT (˚C d) 

Planting to emergence 1 60 

Emergence to pinhead square 2 230 

Pinhead square to first bloom 3 225 

First bloom to peak bloom 4 200 

Peak bloom to first open boll 5 370 

First open boll to harvest 6 200 

 
The linearized form of Equation (2) is as follows (Equation 7). 

( ) ( ){ }
6

, p L,y,p
p 1

ln λ  ln 1 ARID ,L yÝ
=

= × −∑             (7) 

where Ý is the relative yield of cotton; and the subscripts L, y, and p stand for the 
L-th location, the y-th year, and the p-th phenological phase of cotton, respec-
tively. 

2.6. Evaluating the Yield Model 

For evaluating the performance of the cotton yield model, independent datasets 
would be necessary for model development and model evaluation. If the available 
data were split into two different subsets, this process would further reduce the 
size of the model development set. Given the limited number of years available, 
the leave-one-out technique of cross-validation was used to evaluate the yield 
model. Following this technique, the available dataset (the transformed matrix) 
was divided into two parts: one for model development and the other for evalua-
tion. That is, of the total 26 input-output combinations, the first 25 combinations 
(rows) were used as the model development set for estimating the λp values 
through the regression of Equation (7) and the last one combination as the evalu-
ation set for yield estimation through the use of the just estimated λp values in 
Equation (2). Leaving one combination out and adding one combination in, both 
development and evaluation sets were moved forward 25 times. Each movement 
created a new development set and a new evaluation set, which, in turn, produced 
a set of new λp values through regressions and, finally, a yield estimate. This pro-
cess, consequently, provided 26 yield estimates. Finally, using the mean absolute 
error, the root mean square error (RMSE), the Nash-Sutcliffe Index [27], and the 
Willmott Index [28] as the measures of fit, the estimated relative yields using 
Equation (2) for the years for which the observed yields were available were com-

https://doi.org/10.4236/as.2025.167040


P. Woli et al. 
 

 

DOI: 10.4236/as.2025.167040 636 Agricultural Sciences 
 

pared with the corresponding observed relative yields to evaluate the performance 
of the cotton yield model developed for the study region. 

3. Results and Discussion 
3.1. The Cotton Yield Model 

Table 3 shows the phenological phase-specific drought sensitivity coefficients es-
timated for the cotton yield model for the Southern Plains region of the US. The 
use of these coefficients in Equation (2) resulted in the relative yield model for 
cotton for this region (Equation 8). 

( ) ( ) ( )
( ) ( ) ( )

0.01 0.11 0.16
PE ES SF

0.09 0.06 0.08
 FP PO OH

Ý 0.64 1 ARID 1 ARID 1 ARID

1 ARID 1 ARID 1 ARID ,

−= × − × − × −

× − × − × −
      (8) 

where Ý is the relative yield of cotton; and the subscript PE stands for the planting-
emergence phase, ES the emergence-pinhead square phase, SF the pinhead 
square-first bloom phase, FP the first bloom-peak bloom phase, PO the peak 
bloom-first open boll phase, and OH the first open boll-harvest ready phase. It is 
important to note that this yield model is specifically for high-yielding cultivars. 
For other types of cultivars, the drought sensitivity coefficient values, if generated, 
could be entirely different from the ones estimated for high-yielding cultivars be-
cause cultivars vary in drought sensitivity. Thus, the yield model developed for 
the high-yielding cultivars might not be applicable to other varieties.  

The values of all sensitivity coefficients, except λ2, were positive, indicating that 
the drought stress occurred during most of the phenological phases of the cotton 
would have negative impacts on yields. However, the negative value of λ2 showed 
that the water stress during the period of emergence through the pinhead square 
stage would help increase the cotton yields. These results were in agreement with 
those of [22], who carried out a similar study using the necessary data from several 
places in the southeastern US. They also found that the drought sensitivity coeffi-
cients for the second month of the growing season, during which the pre-flower-
ing period of cotton occurs [29], were negative, whereas those for the other growth 
periods were positive. 

Of all the phenological phases of cotton studied, the pinhead square-first bloom 
phase had the largest value for the drought sensitivity coefficient, indicating this 
phase as the most sensitive to water stress. Literature also shows that water stress 
during this phase is the most detrimental of all phases of cotton. Through their 
review studies, [30] [31] demonstrated that the cotton crop was most sensitive to 
drought stress following seed germination and seedling establishment. In a tech-
nical report prepared for cotton producers in the southeastern US to provide them 
with key concepts related to water management for cotton, [13] stated that the 
first square to first bloom is a critical time for avoiding severe water stress because 
cotton vegetative growth and root growth are very rapid and the number of po-
tential fruiting sites is determined during this period. The severe water stress dur-
ing this period is especially damaging to the cotton crop in short-season environ-
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ments [13]. Reference [12] observed that the period from square initiation to first 
flower had the highest correlation with the lint yield. They found that this period 
was strongly correlated with boll number and boll size. Boll size (lint/boll) also 
was strongly correlated with water supply during this period. References [30] and 
[31] also demonstrated that pre-flowering is a critical period for yield determina-
tion as fiber production is based on the number of ovules contained in a boll, 
which is determined around 15 to 25 days before anthesis. In experiments con-
ducted in Lubbock and New Deal in the Texas High Plains region, reference [32] 
also found that the early flowering stage was the most sensitive to drought stress, 
and drought at this stage produced the lowest yields. Accordingly, reference [32] 
suggested that when a drought event occurs, cotton producers make a decision on 
preserving water resources for the crop’s critical growth stage. With an experi-
ment conducted in Halfway, Texas, [33] concluded that flower initiation to early 
bloom and peak bloom stages were the most sensitive stages to water stress. 

 
Table 3. The phenological phase-specific drought sensitivity coefficient (λp) values for the 
cotton relative yield model for the Southern Plains region of the United States. 

Phenological phase (p) λp Value 

 intercept 0.637 

Planting to emergence (p = 1) λ1 0.013 

Emergence to pinhead square (p = 2) λ2 −0.111 

Pinhead square to first bloom (p = 3) λ3 0.162 

First bloom to peak bloom (p = 4) λ4 0.092 

Peak bloom to first open boll (p = 5) λ5 0.057 

First open boll to harvest (p = 6) λ6 0.082 

 
In drought sensitivity, the pinhead square-first bloom phase was followed by 

the first bloom-peak bloom phase. Similar results were observed by previous re-
searchers. Reference [13] showed that water stress during the first flower to peak 
bloom stages would reduce the number of fruiting sites that were initiated. They 
further stated that severe water stress during this phenological phase could also 
reduce the boll number by shedding young bolls, thus resulting in substantial yield 
loss. Reference [31], through a review study, demonstrated that the water deficit 
stress during flowering could reduce cotton yields significantly. In an experiment 
conducted in Apodi, Brazil, reference [34] observed lowest yields when water sup-
ply was suppressed during the first flower to peak bloom stages. 

The sensitivity coefficient values indicated that the planting-emergence, peak 
bloom-first open boll, and first open boll-harvest ready phases were less sensitive 
to water stress. These results were in line with those of previous studies. Reference 
[13] exhibited that the water used by cotton during planting to emergence would 
be low, and that the water stress during the peak bloom-first open boll phase 
would be less critical than that during the squaring and early flowering stages, 
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during which water stress could result in square and young boll shedding. For 
germination, however, water is critical; thus, reference [13] suggested cotton 
growers to irrigate before planting. In an experiment conducted in Apodi, Brazil 
by [34], the cotton yield reduction was not significant when the water stress was 
imposed after the first open boll stage. Reference [33], in a study carried out in 
Halfway, Texas, observed that the cutout, late bloom, and boll opening growth 
stages were less sensitive to water stress. Through a review study, reference [31] 
demonstrated that cotton bolls were less sensitive to water stress than the leaves 
because the bolls are significantly resistant to water loss. 

As the negative value of the drought sensitivity coefficient indicated, cotton 
yields would be positively impacted by the water stress that occurred during the 
emergence-pinhead square phase. This implication was consistent with the find-
ings of various previous studies. Unless the soil water deficit is extremely severe, 
irrigation at this time contributes little to cotton yield, as the water demand during 
this phase is low [34]. Actually, a mild water deficit early in the season can stimu-
late root production in cotton, especially encouraging deeper root systems, by 
slowing vegetative growth [13]. A mild water stress prior to square initiation also 
stimulates flower production later [35]. In a study conducted in Phoenix, Arizona, 
reference [36] observed that a moderate water stress early in the season could be 
beneficial to the cotton plants. Reference [12] also found that the water supply 
during planting to square initiation was negatively correlated with cotton yield. In 
a study conducted in Punjab, India, reference [37] observed that water stress dur-
ing the pre-flowering period of some cotton cultivars increased the number of 
flowers and bolls per plant and boll size, thus increasing yields. To sum up, the 
reasonable values of the drought sensitivity coefficients (Table 3) indicated that 
the cotton yield model (Equation 8) expressed the ARID-cotton yield relationship 
for the Southern Plains region accurately. 

3.2. The Yield Model Performance 

Table 4 shows the values of the various goodness-of-fit measures that were used 
to evaluate the performance of the cotton yield model for the Southern Plains re-
gion of the US. The RMSE value was 0.09 (dryland yield per unit of irrigated yield). 
The overall percentage error of the yield model, computed as the ratio of RMSE 
to the mean observed relative yield, was about 22. The Nash-Sutcliffe Index value 
was 0.45, whereas the Willmott Index value was 0.83. 

The values of these measures as well as Figure 1 indicated that the cotton yield 
model developed for the Southern Plains region performed reasonably well at pre-
dicting the relative yield of cotton and thus the fraction of yield loss caused by 
drought. The overall percentage error and the mean absolute error values of the 
ARID-based yield model were relatively small. The value of the Nash-Sutcliffe In-
dex, which compared the residual variance of the model-predicted values to the 
variance of the measured data, suggested that the agreement between the observed 
data and the model-predicted values was relatively satisfactory for the cotton yield 
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model, and thus the predictive power of the model was relatively good. Moreover, 
the positive values of the Nash-Sutcliffe Index showed that model predictions 
were more accurate than the averages of the observed data. The value of the Will-
mott Index, which measured the degree to which the observed data were ap-
proached by the model-estimated values, indicated that the relative yields of cot-
ton predicted by the yield model agreed fairly closely with the relative yields cal-
culated from the observed data. The average values of both predicted and observed 
relative yields of cotton were about the same (0.41). If the percentage error of the 
model were computed as the absolute difference between the predicted and the 
observed values relative to the observed value, the mean error value would be 
about 20%, an indication of a relatively small error. The range of the predicted 
yields was 0.13 to 0.60 and that of the observed yields was 0.14 to 0.61. That is, the 
width of the range of the predicted yields (0.469) relative to that of the observed 
yields (0.473) was about 0.99, which indicated that the modeling error based on 
this statistic was about 1%. 

 

 
Figure 1. The model-predicted vs. observed values of the relative yield (dryland yield per 
unit of irrigated yield) of cotton in the Southern Plains region of the USA (1999-2024). 

 
A total of 26 location-years were involved in this study. As depicted in Figure 

1, the departure of the predicted relative yield from the observed one ranged from 
0.00 to 0.15, implying that the prediction error was up to 15%. However, there was 
no association between the yield departure (prediction error) and location or year. 

It is important to note that the impacts of drought on cotton yields associated 
with the data were influenced by several factors such as a specific cotton variety, 
management, environmental conditions, the duration and the intensity of the 
drought events, and the growth stages at which the stress was imposed. Despite 
large uncertainties associated with the data on crop management, cultivars, soil, 
and weather, the ARID-based cotton yield model was able to estimate the overall 
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effect of drought on the relative yield of cotton in the Southern Plains region rea-
sonably well by reflecting accurately the phenomenon of water stress decreasing 
the yields of cotton in this region.  

 
Table 4. Values of the various metrics used to evaluate the performance of the cotton yield 
model developed for the Southern Plains region of the United States. 

Metric Value 

Mean observed relative yield 0.411 

Mean predicted relative yield 0.405 

Willmott Index 0.83 

Nash-Sutcliffe Index 0.45 

Mean absolute error 0.08 

Root mean square error 0.09 

Percentage error 22 

4. Conclusions 

This study developed a yield model for predicting the drought-induced yield loss 
of cotton in the Southern Plains region of the United States using an agricultural 
drought index, called the Agricultural Reference Index for Drought (ARID). This 
model accounts for the phenological phase-specific sensitivity of cotton yields to 
drought stress. The modeling results showed that, of all the phenological phases 
of cotton studied, the pinhead square-first bloom phase was the most sensitive to 
drought, whereas cotton yields were positively impacted by the water stress that 
occurred during the emergence-pinhead square phase. The reasonable values of 
the sensitivity parameters of the yield model indicated that the model could ex-
press the relationship between ARID and the yields of cotton accurately. The yield 
model reflected the phenomenon of water stress decreasing the cotton yields in 
this region and estimated the yield losses due to drought reasonably well. The yield 
model can be useful for minimizing the effects of drought on cotton yields through 
the adoption of necessary mitigation measures and scheduling irrigation alloca-
tion tailored to phenological phases that are more sensitive to drought stress.  

In the southern United States, including the Southern Plains region, the inter-
annual variability of climate has been linked to an oceano-atmospheric phenom-
enon, called the El Niño-Southern Oscillation (ENSO) [38] [39]. The ENSO phe-
nomenon has significantly affected crop production in this region [40]-[43]. Be-
cause of the strong connection between ENSO and weather patterns in this region, 
an ENSO phase (El Niño, La Niña, or Neutral) may be successfully forecast up to 
a year in advance [44]. By using the phenological phase-specific ARID values com-
puted from an ENSO phase-specific long-term historical weather data in the yield 
model (Equations 8), various stakeholders in this region, including cotton growers 
and extension agents, can estimate the yield loss of cotton from drought for the 
upcoming, anticipated ENSO phase year (growing season) in advance. 
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