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Abstract 
Open-source and free tools are readily available to the public to process data 
and assist producers in making management decisions related to agricultural 
landscapes. On-the-go soil sensors are being used as a proxy to develop digi-
tal soil maps because of the data they can collect and their ability to cover a 
large area quickly. Machine learning, a subcomponent of artificial intelli-
gence, makes predictions from data. Intermixing open-source tools, on-the-go 
sensor technologies, and machine learning may improve Mississippi soil 
mapping and crop production. This study aimed to evaluate machine learn-
ing for mapping apparent soil electrical conductivity (ECa) collected with an 
on-the-go sensor system at two sites (i.e., MF2, MF9) on a research farm in 
Mississippi. Machine learning tools (support vector machine) incorporated in 
Smart-Map, an open-source application, were used to evaluate the sites and 
derive the apparent electrical conductivity maps. Autocorrelation of the shal-
low (ECas) and deep (ECad) readings was statistically significant at both loca-
tions (Moran’s I, p 0.001); however, the spatial correlation was greater at 
MF2. According to the leave-one-out cross-validation results, the best models 
were developed for ECas versus ECad. Spatial patterns were observed for the 
ECas and ECad readings in both fields. The patterns observed for the ECad 
readings were more distinct than the ECas measurements. The research results 
indicated that machine learning was valuable for deriving apparent electrical 
conductivity maps in two Mississippi fields. Location and depth played a role 
in the machine learner’s ability to develop maps. 
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1. Introduction 

In agricultural fields, spatial variability of soil chemical and physical properties 
affects crop growth and productivity [1] [2]. Understanding soil spatial patterns 
enhance the producer’s ability to improve crop production. Various tools have 
been developed for growers to use for sensing the spatial variability of soils, in-
cluding electromagnetic, electrochemical, mechanical, optical and radiometric, 
airflow, and acoustic and pneumatic sensors. On-the-go sensors that measure 
apparent electrical conductivity (electromagnetic) have gained popularity for 
measuring soil spatial patterns because they can cover large areas quickly. Re-
searchers have used information from on-the-go apparent electrical conductivity 
(ECa) sensors as proxies for estimating other soil parameters. Electromagnetic 
induction and electric resistivity are standard approaches for measuring ECa [3].  

Researchers have tested various computer algorithms to map soil spatial pat-
terns [4]. Standard algorithms include random Forest [5] [6], support vector 
machine [5] [7], Cubist [5] [8], kriging [4], k-nearest neighbors [4], and artificial 
neural networks [5]. There has been no one fits all approach for using computer 
algorithms for digital soil mapping. 

Over the years, geostatistical techniques have been popular for developing 
digital soil maps. It provides a statistically sound model for soil spatial variation, 
minimizes sampling bias, measures spatial autocorrelation, and provides an er-
ror layer. Nevertheless, several disadvantages exist in using geostatistical me-
thods for soil mapping [9] [10]: the overall concept can be challenging to under-
stand and implement for users that do not have a background in geostatistics, 
large datasets can be computationally intensive to analyze, the residuals must be 
normally distributed, stationary, and not affected by and change in direction. 
Geostatistical models can be affected by outliers, spatial data clustering, and data 
collection errors.  

Computer algorithms based on the machine learning concept are classified as 
a method of data analysis and artificial intelligence. They are becoming a popu-
lar alternative to geostatistical methods because machine learning techniques 
make no assumptions about the data distribution, can process large datasets 
containing cross-correlated covariates as predictors, and can function with little 
intervention [10] [11]. Machine learning successes for digital soil mapping pur-
poses include soil organic carbon concentration [8] [12] [13] and associated 
stocks [13] [14], soil texture [15] [16], pH [17], cation exchange capacity [18], 
nitrogen [18] [19], phosphorus [19] [20], potassium, calcium, and magnesium 
[20], bulk density [21], and soil pollutants [22]. Finally, machine learning mod-
els also can be challenging to interpret and visualize.  

Commercial and open-source tools allow users to process data collected by 
on-the-go sensor systems. Open-source or freeware technology provides excel-
lent opportunities for users to evaluate data at minimal or no cost for using the 
software. Open-source technology is growing and is supported by numerous 
communities worldwide. More research is needed on using open-source tools 
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and machine learning technologies at the farm level for making management 
decisions. With its vast, diverse agricultural landscapes, growers in Mississippi 
may benefit from these technologies. In Mississippi, Fletcher [23] has demon-
strated, using unsupervised machine learning in cluster analysis, that ECa spatial 
patterns are similar for at least five years. The study focused on keeping the data 
in its native point form and not deriving interpolated maps. The current study 
was conducted to build on the previous research initiative of using open-source 
software and machine-learning tools for digital mapping ECa.  

The objective of this study was to evaluate machine learning as a tool for map-
ping ECa of soils located on a research farm in Mississippi, to determine if mea-
surements collected at different depths affected the accuracy of the algorithm, and 
to determine if measurements collected from a field containing multiple soil types 
impacted the results. The study focused on using open-source software available 
to the public (Smart-Map) and using it to derive interpolated maps. 

2. Materials and Methods 
2.1. Study Site 

The experiments were conducted at the United States Department of Agricul-
ture, Agriculture Research Service Farm (−90.872157 Longitude, 33.446486 La-
titude, elevation—38 m above sea level), near Stoneville, Mississippi, USA. The 
average precipitation and temperature were approximately 133 cm and 17.5˚C, 
respectively [24]. Two study sites were evaluated and were referred to as MF2 
and MF9. MF2 was 4 ha and contained the following soil mapping units: Com-
merce very fine sandy loam, 0% to 2% slopes; Newellton silty clay, 0% to 2% 
slopes, occasionally flooded; Commerce silty clay loam, 0% to 2% slopes; and 
Tunica clay, 0% to 2% slopes [25]. MF9 was 2.0 ha and consisted of the following 
soil types: Sharkey clay, 0% to 2% slopes, and Tunica clay, 0% to 2% slopes [25]. 
Both sites were in a continuous soybean (Glycine max L.) and corn (Zea mays 
L.) rotation. The farm manager used standard agricultural practices of the area 
for irrigation, weed treatment, and fertilization. 

2.2. Data Collection 

ECa readings were collected from MF2 and MF9 with the Veris MSP 3 (Veris 
Technologies, Salina, KS, USA) on-the-go sensor system. The device used six 
coulters to collect shallow (0 - 30 cm) and deep (0 - 90 cm) ECa measurements as 
the tractor pulled it through the fields. Coulters two and five injected an electric-
al current into the soil; coulters three and four obtained the EC shallow readings; 
coulters one and six recorded the deep readings [26]. Data output was in milli-
siemens (mS) per meter. The location of each measurement was recorded in la-
titude and longitude coordinates (WGS84) with a Garmin global positioning 
system. It recorded location information when receiving differential global posi-
tioning data. A laptop (HP Pavillion TouchSmart Notebook, Windows 8.1) in-
side the tractor’s cab was used to log the readings of each measurement. The da-
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ta were collected from MF2 on May 1, 2015, and MF9 on April 28, 2022, before 
the growing season.  

2.3. Data Preprocessing  

Each measurement was assigned an identification number, converted from lon-
gitude and latitude coordinates to the UTM coordinates (UTM 15N, WGS84) 
system, and cleaned (i.e., removal of negative values, duplicated x-y coordinates, 
and outliers). The data cleaning step resulted in 1573 and 741 sampling points 
for further processing at MF2 and MF9, respectively. For comparison purposes, 
the mean, median, standard deviation, and coefficient of variation were calcu-
lated for each variable. The preprocessing and summary statistics were com-
pleted with the QGIS software (3.22.8-Białowieża) [27]. 

2.4. Data Analysis 

The ECas and ECad readings were processed with Smart-Map [7], an open-source 
QGIS plugin created to complete digital soil mapping. Its machine learning tools 
were used to evaluate spatial patterns of the ECas and ECad. The data were 
processed based on the protocol described in [7]: 1) loading the data into the 
plugin, 2) selecting a target variable to interpolate, 3) setting the grid size for the 
map, 4) choosing the machine learning interpolation method, 5) evaluating the 
model using cross-validation, and 6) creating the map based on model develop-
ment. Support vector machine is the machine learning method offered by 
Smart-Map. The software automatically fits the hyperparameters required by 
support vector machines. It uses the radial base function kernel because it is 
non-linear and can be fitted to most data. The grid size used for the map inter-
polation was 8 m × 8 m.  

The software automatically selected the x and y coordinates as covariables. 
The user has the option to add other covariables if needed. The only covariables 
used was the default x and y coordinates. Model accuracy was determined by 
leave-one-out cross-validation with root mean squared error and the coefficient 
of variation (R2) being the accuracy measures. Additionally, Moran’s I [28] sta-
tistic was offered as a means to determine the autocorrelation for a specific vari-
able. The value ranges from −1 to +1. The closer the value is to 1, the more clus-
tered the data values. Values going towards −1 were more dispersed, and values 
close to zero were random. Moran’s I was used to compare the autocorrelation 
of the ECas and ECad deep readings. Maps of the final predicted measurements 
were created to evaluate within-field spatial patterns of ECas and ECad. The maps 
were created with the QGIS software.  

3. Results and Discussion  

Summary statistics of the study sites are summarized in Table 1. For MF2 and 
MF9, the ECas mean, median, minimum, and maximum readings were less than 
ECad, mean, median, minimum, and maximum values, indicating a more con-
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ductive soil component in the lower soil depth. Similar trends in ECas and ECad 
summary statistics have been observed at this farm [23]. The ECas coefficient of 
variation of MF2 was greater than the ECad coefficient of variation. The opposite 
was observed at MF9.  

Moran’s I statistics values for MF2 ECas, and ECad readings were greater than 
0.90 (Table 2), indicating a statistically significant autocorrelation for ECas and 
Ead readings. The ECas readings at MF9 also had statistically significant autocor-
relation but to a lesser extent when compared with MF2 results (Table 2). 

Figure 1 shows ECas and ECad maps of MF2. The spatial patterns were similar 
between the ECas and ECad readings, and the transitioning of the soil to higher 
ECa values horizontally and vertically was evident in the map comparisons. For 
MF2, the lowest ECas values were observed in the southwest section of the field, 
whereas the higher ECas and ECad values occurred in the northern portion of the 
plot. For this dataset, moderate values were observed in the middle of the field. 
The leave-one-out cross-validation accuracy for model selection was higher for 
the ECas readings than for the ECad readings (Table 3).  

 
Table 1. Summary statistics for study sites MF2 and MF9.   

Location n Variable 
Mean 

(mS/m) 
Median 

(mS/m) 

Minimum 

(mS/m) 

Maximum 

(mS/m) 
CV 
(%) 

MF2 
1573 ECas 55.1 57.1 22.5 90.4 27.9 

 ECad 66.9 66.0 29.4 114.6 25.2 

MF9 
741 ECas 91.4 91.8 74.2 107.9 7.0 

 ECad 108.0 108.0 81.5 133.0 8.8 

CV—Coefficient of variation. 
 

Table 2. Moran’s I measurement of autocorrelation.   

Location Variable Moran Value p 

MF2 
ECas 0.970 0.001 
ECad 0.959 0.001 

MF9 
ECas 0.739 0.001 
ECad 0.800 0.001 

ECas—shallow apparent electrical conductivity readings; ECad—deep apparent electrical 
conductivity readings. 

 
Table 3. Leave-one-out cross-validation results of model used to derive maps of the study 
sites.  

Location Variable RMSE R2 

MF2 
ECas 4.86 0.901 
ECad 6.44 0.863 

MF9 
ECas 4.22 0.576 
ECad 6.75 0.505 

RMSE—root mean square error, R2—coefficient of variation. 
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Figure 1. (a) Study site MF2, sampling points, and soil mapping units, (b) apparent elec-
trical conductivity shallow (ECS) readings, and (c) apparent electrical conductivity deep 
(ECD) readings. Ch—Commerce silty clay loam, 0% to 2% slopes; Cn—Commerce very 
fine sandy loam, 0% to 2% slopes; Ng—Newellton silty clay, 0% to 2% slopes, occasionally 
flooded; and Ta—Tunica clay, 0% to 2% slopes. 

 
Figure 2 illustrated the apparent electrical conductivity readings at MF9. The 

ECas readings were more variable and showed weaker patterns than the ECad 
readings. A distinct pattern was observed in the ECad readings with the highest 
readings occurring in the middle and eastern sections of the field. Pereira et al. 
[7] indicated that the plugin was not a one-fits-all soil mapping software. Khale-
dian and Miller’s [5] review of machine learning tools for digital soil mapping 
also stressed that there is no ideal protocol for developing models for digital soil 
mapping. The ECas results at MF9 support that concept; however, future re-
search must be conducted to determine why higher accuracies could not be 
achieved for model development at MF9.  

Furthermore, another type of predictor may have been better for interpolating 
the ECa layers, such as kriging. For example, Veronesi and Schillaci [4] showed 
in a comparison study of kriging to machine learning algorithms to predict top-
soil organic carbon that ordinary and universal kriging were the best predictors, 
followed by random forest. According to a review by [10], random forest is the 
most popular machine learning tool used for regression purposes related to dig-
ital soil mapping. The Smart-Map tool does offer an option to complete kriging; 
thus, it will be explored in future research studies. The software uses support 
vector machine for the machine learning approach, which has been used less 
than other machine learning tools for digital soil mapping studies [10] [29].  

Strong spatial contrasts were evident at MF2 compared to MF9. The results 
also indicated the strength of the patterns was depth dependent on the fields 
studied. Generally, the lower ECa values at MF2 occurred in areas consisting of  
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Figure 2. (a) Study site MF9, sampling points, and soil mapping units, (b) apparent elec-
trical conductivity shallow (ECS) readings, and (c) apparent electrical conductivity deep 
(ECD) readings. Sb—Sharkey clay, 0% to 2% slopes; and Ta—Tunica clay, 0% to 2% 
slopes. 

 
silty clay loam, very fine sandy loam, and silty clays soils based on soil survey 
results (Figure 2). Additionally, this field was irrigated from south to north, 
which could have contributed to the higher ECa values observed in the northern 
section of the field. Fletcher [23] has also observed similar results based on clus-
ter analysis of a field at the same farm.  

This study was conducted on a research farm with 5 - 10 ha plots. MF2 was 
approximately double the size of MF9, which probably led to better spatial pat-
terns observed in the former compared with the latter. To improve the mapping 
of the ECas layer for MF9, the distance between the mapping transects may need 
to be decreased from the 8 m to possibly 4 m. Also, the transects were collected 
along the rows for each field. Collecting the transects along and across rows 
should also be explored. However, that change would result in more time to col-
lect and analyze the data. Finally, it is essential to determine what sampling de-
sign is optimal for machine learning tools used in digital soil mapping [9] [10]. 
Model choice and sample design can influence final outputs.  

4. Conclusion 

The research results indicated that machine learning was valuable for deriving 
ECas maps in two Mississippi fields located on a research farm. Open-source 
software and machine learning based on support vector machine was used to de-
rive the maps. Autocorrelation of ECas and ECad measurements was site-specific. 
Location and depth played a role in the machine learner’s ability to derive the 
maps. Overall spatial patterns in ECa were evident in both fields; these maps can 
aid in developing strategies to collect soil and plant samples. Future research will 
focus on using the other tools provided by the software to establish management 
zones for the fields located at the research facility, evaluate the effect of sample 
design on machine learning tools, and compare different algorithms at the field 
scale.  
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