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Abstract 
Soil texture is an indicator of soil physical structure which delivers many 
ecological functions of soils such as thermal regime, plant growth, and soil 
quality. However, traditional methods for soil texture measurement are 
time-consuming and labor-intensive. This study attempts to explore an indi-
rect method for rapid estimating the texture of three subgroups of purple 
soils (i.e. calcareous, neutral, and acidic). 190 topsoil (0 - 10 cm) samples were 
collected from sloping croplands in Tongnan and Beibei Districts of Chongq-
ing Municipality in China. Vis-NIR spectrum was measured and processed, 
and stepwise multiple linear regression (SMLR), partial least squares regres-
sion (PLSR), and back propagation neural network (BPNN) models were con-
structed to inform the soil texture. The clay fractions ranged from 4.40% to 
27.12% while sand fractions ranged from 0.34% to 36.57%, hereby soil samples 
encompass three textural classes (i.e. silt, silt loam, and silty clay loam). For 
the original spectrum, the texture of calcareous and neutral purple soils 
was not significantly correlated with spectral reflectance and linear models 
(SMLR and PLSR) exhibited low prediction accuracy. The correlation coeffi-
cients and the goodness-of-fits between soil texture and the transformed spec-
tra of all soil groups increased by continuum-removal (CR), first-order diffe-
rential (R'), and second-order differential (R") transformations. Among 
them, the R" had the best performance in terms of improving the correlation 
coefficients and the goodness-of-fits. For the calcareous purple soil, the SMLR 
exceeds PLSR and BPNN with a higher coefficient of determination (R2) and 
the ratio of performance to inter-quartile distance (RPIQ) values and lower 
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root mean square error of validation (RMSEV), but for the neutral and acidic 
purple soils, the PLSR model has a better prediction accuracy. In summary, 
the linear methods (SMLR and PLSR) are more reliable in estimating the tex-
ture of the three purple soil groups when using Vis-NIR spectroscopy inver-
sion. 
 

Keywords 
Soil Texture, Vis-NIR Spectra, Stepwise Multiple Linear Regression, Partial 
Least Squares Regression, Backpropagation Neural Network 

 

1. Introduction 

Soil texture depicts soil particle composition expressed as the mass percentage of 
soil particles at all levels [1]. It is a relatively stable natural attribute of the soil 
and affects the fertilization response, water-holding capacity, aeration, and the 
difficulty of tillage [2]. More specifically, soil texture regulates the growth and 
development of crops by determining runoff infiltration and soil water content, 
air, and heat, as well as the transformation rate and existing state of soil nu-
trients, thus affecting the growth and development of crop roots and the yield 
and quality of crops [3]. Different soil textures always have distinct agricultural 
production traits; therefore, it is necessary to understand the soil texture when 
using, managing, and improving soil [4]. Moreover, soil texture also modulates 
land surface and atmospheric processes, such as soil-plant-atmosphere interac-
tion, soil erosion, and soil solute transport [5]. Therefore, a rapid acquisition of 
soil texture information is of great significance for land management to improve 
agricultural productivity and ecosystem services. 

Soil texture is always determined by laboratory methods and in-situ field mea-
surements. Laboratory measurements generally adopt specific gravity and suc-
tion tube methods, and field measurements employ dry test and wet test me-
thods. These methods largely require large-scale field sampling and pretreatment 
efforts [6]. Thus, it is time-consuming and labor-intensive and causes irrecover-
able damage to samples [7]. The laser diffraction method offers a relatively al-
ternative option [8]. In recent years, soil Vis-NIR reflectance spectroscopy has 
been increasingly used to solve the trade-offs between large-scale soil informa-
tion and high cost [9]. Its attraction lies in that one single measurement can be 
used to assess a wide range of soil properties, thus facilitating the analysis of many 
samples in a short time [10]. It can predict the chemical and physical properties 
of soils such as soil organic matter, texture, and clay minerals [11]. 

It is difficult to directly predict soil texture from the spectrum. Spectral prepro-
cessing is an important initial step and improves the accuracy of the prediction 
results [12]. Approaches used for spectral preprocessing include Savitzky-Golay 
(SG) smoothing [13] and multiplicative scattering correction (MSC) [14]. Given 
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soil components interact with each other in a complex way to produce their spec-
tra; there is a strong correlation between the adjacent bands of the spectral data. 
However, not all bands have an equal impact on the subsequent spectral processing 
[15]. Therefore, the importance of characteristic bands selection in spectral 
data processing and analysis has been widely recognized and has become a key 
step in hyperspectral data modeling and analysis [16]. It is also necessary to se-
lect the appropriate calibration model for quantitative measurement. Using ap-
propriate calibration methods is key in determining the success of simulated 
reflection spectrum calibration. Common calibration methods include linear and 
nonlinear approaches. The linear regression model establishes simple linear and 
multivariate linear regression equations based on the variables and auxiliary in-
formation of known points, to realize the prediction of unknown points [17] [18]. 
The commonly used linear methods include stepwise multiple linear regression 
(SMLR) [19] and partial least squares regression (PLSR) [20]. Machine learning 
in nonlinear methods has good applicability in dealing with multi-dimensional, 
nonlinear massive data and improving the generalization ability of the model [21] 
[22]. Common models include random forest (RF) [23], support vector machine 
(SVM) [24], neural networks (NNs) [25], etc.  

Purple soil, one of the soil types defined within the genetic soil classification 
of China, is the most important and widely distributed type of arid land soil in 
southern China. Purple soil is formed by weathering of the Mesozoic and Ceno-
zoic purple sandstone (including Triassic, Jurassic, Cretaceous, and Tertiary) 
[26]. It is fast weathered and it has high soil mineral content, but also has the 
defects of the shallow soil layer and low aggregate content, coupled with the in-
fluence of human farming activities, thus purple soil is susceptible to environ-
mental disturbances such as reservoir fluctuations and heavy rainfall [27], which 
seriously threatens the safety of village buildings and roads and hinders the de-
velopment of agricultural production [28]. However, there are few studies on the 
estimation of purple soil texture, especially for the three types of purple soil. 
Therefore, it is necessary to study the Vis-NIR reflectance spectra of the calca-
reous (pH > 7.5), neutral (6.5 ≤ pH ≤ 7.5), and acidic (pH < 6.5) purple soil and 
their relationship with the texture of the soil and assess the suitability of Vis-NIR 
spectroscopy coupled with SMLR, PLSR, and BPNN methods for quickly obtain-
ing textural information of soil in Chongqing. 

2. Materials and Methods  
2.1. Site Description 

The sampling site is located in Tongnan and Beibei Districts of Chongqing. 
Tongnan District is characterized by a shallow hill landform of the basin. It lies 
between 105˚31' - 106˚00'E and 29˚47' - 30˚26'N and rises to altitudes of 300 to 
400 m. The purple soil in this area accounts for 46.30% of the total cultivated 
land, and the main soil type is calcareous purple soil. Beibei District belongs to 
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the parallel ridgeline area of Chongqing. It lies between 106˚18' - 106˚40'E and 
29˚27' - 30˚05'N and rises to altitudes of 500 to 900 m with steeper terrain than 
that in Tongnan. Paddy soil and purple soil accounted for 81.7% of the soil area 
in the Beibei District, and the main soil types are neutral and acidic purple soils. 
Both two districts have a humid subtropical monsoon climate, with annual aver-
age temperatures ranging from 16˚C to 18˚C, annual rainfall ranging from 1000 
to 1350 mm, and total annual sunshine of 1000 to 1200 hours.  

2.2. Soil Sampling and Analysis 

Soil sampling was carried out using a five-point mixing method. 62 calcareous 
purple soil samples were collected from Gaohe catchment in Tongnan, 63 neu-
tral purple soil samples and 65 acidic purple soil samples were collected from Ji-
gongshan and Baihelin catchments in Beibei. All samples were air-dried, disag-
gregated, and sieved using a 2-mm mesh after removal of stones, plant roots, and 
litter. Soil texture was determined using laser particle size analysis (Malvern 
MS2000) and grouped into three subcategories in terms of clay (<0.002 mm), silt 
(0.002 - 0.05 mm), and sand (>0.05 - 2 mm). The wide difference in the percen-
tage contents of clay and sand in soil samples leads to varied spectral properties 
[29]; therefore, this paper only studied the contents of clay and sand. Two-thirds 
of the datasets of the clay and sand contents were used for calibration and one-third 
for validation according to a stratified sampling approach. 

2.3. Spectra Measurements 

The spectral reflectance of the soil samples was measured using an ASD FieldSpec 4 
spectroradiometer (Analytical Spectral Devices Inc., USA). We used a wave-
length range of 350 - 2500 nm, with a sampling interval of 1.4 nm between 350 
and 1000 nm, and 2 nm between 1000 and 2500 nm, and measured a total of 
2150 nm. A halogen light source (50 W) that could provide parallel light was 
placed at a distance of 30 cm from the soil (which was held in a black sample 
dish with a diameter of 6.5 cm and a depth of 2 cm) and at a zenith angle of 45˚. 
To reduce the diffuse reflection of light, the surface was scraped flat and cali-
brated before each measurement. The spectral reflectance of each sample was 
measured at four angles (rotating the petri-dish 90˚ clockwise) with five replica-
tions, and the average of these 20 measurements was deemed as the standard 
spectral reflectance of the sample.  

2.4. Spectrum Preprocessing 

The SG convolution smoothing method [30] was used to pretreat spectral ref-
lectance data, and then the smoothed spectral data can be transformed to in-
crease the correlation between spectral reflectance and the soil’s physical and 
chemical properties [31]. Spectral transformation mainly uses three methods in-
cluding continuum-removal (CR), first-order differential reflectivity (R'), and 
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second-order differential reflectivity (R"). The three methods can highlight effec-
tively the reflection and absorption characteristics of the spectral curve. Among 
them, the R' and R" can also be used to quickly determine the inflection point and 
the position of the maximum and minimum reflectance in the wavelength range. 
The calculation method is as follows: 

( ) ( ) ( )i CR R Rλ λ λ′ =                       (1) 

( ) ( ) ( )1i i iR R Rλ λ λ λ′  = + − ∆                    (2) 

( ) ( ) ( )1i i iR R Rλ λ λ λ′′ ′ ′ = + − ∆                   (3) 

Here, iλ  is the wavelength band at i nm, 1iλ +  is the wavelength band at i + 1 
nm, and ( )R λ  is the spectral reflectance of band iλ . ( )iR λ′  and ( )iR λ′′  
are the first- and second-order differential reflectivity of band iλ , where λ∆  = 
λi + 1 − λi = 10 nm. 

2.5. Model Description 
2.5.1. Linear Modeling 
In this study, we used the SMLR and PLSR methods for the modeling. SMLR is 
used to predict the dependent variable according to the best combination of sev-
eral independent variables. The key is that the selection of the dependent varia-
ble is based on the principle of keeping the most significant band of the depen-
dent variable and keeping the number of the dependent variable as small as 
possible. PLSR is a fully independent linear regression model, which combines 
the methods of multivariate regression analysis and principal component analy-
sis. It can solve the problems of independent variable multicollinearity and sam-
ple numbers less than the number of variables [32], and it can also effectively 
identify spectral information and noise, thereby reducing the spectral dimension 
and data redundancy in spectral modeling [33]. 

2.5.2. Non-Linearity Modeling 
A BPNN is an information processing system based on the structure and func-
tion of the brain’s neural network [34]. It can fit complex nonlinear functions by 
learning from a large number of sample data and has a strong nonlinear map-
ping and generalization ability [35]. In this study, the BPNN was operated in 
MATLAB software, and the network consisted of an input layer, a hidden layer, 
and an output layer. The soil samples were divided into a model set, test set, and 
verification set according to the proportion of 4:2:3, and they were normalized in 
the learning process. 

2.5.3. Prediction Accuracy 
The indicators that we used to test the three models were the coefficient of de-
termination (R2), root mean square error (RMSE), and the ratio of performance to 
inter-quartile distance (RPIQ). A larger RPIQ indicates a better-fitting effect of 
the model. The values of R2, RMSE, and RPIQ were calculated as follows: 
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Here, iy  is the measured value and iy  is the predicted textural value, and n 
is the number of samples. IQ is the difference between the third and the first 
quartile of the sample. 

3. Results 
3.1. Descriptive Statistics of the Soil Texture  

The descriptive statistics of clay and sand contents in the three purple soils are 
shown in Figure 1 and Figure 2. The clay content of all soil samples ranged 
from 4.40% to 27.12%, and the sand content ranged from 0.34% to 36.57%. 
Combined with the USDA soil texture classification triangle, it could conclude 
that soil samples had three different textural classes (silt, silt loam, and silty clay 
loam). Among them, the skewness and kurtosis values of the clay content varied 
from −0.17 to 1.88, roughly fitting the usual normal distribution. The mean and 
standard deviation of clay content in neutral purple soil was 19.18% and 2.14%, 
respectively, and the difference in clay content was larger than that of calcareous 
and acidic purple soils. While the mean and standard deviation of sand content 
in acidic purple soil was 18.26% and 8.71%, respectively, and the difference in 
sand content was larger than that of the other two soils. In addition, the clay and 
sand contents of the three purple soils fell within the range of 10% to 100%, in-
dicating moderate variation. 
 

 
Figure 1. Descriptive statistics of soil clay content. SD: standard deviation, CV: variation 
coefficient. 
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Figure 2. Descriptive statistics of soil sand content. SD: standard deviation, CV: variation 
coefficient. 

3.2. Correlation of Transformed Reflectance Spectra and Soil  
Texture  

The correlation between the spectral reflectance of the three purple soils and 
their clay content in different bands is shown in Figure 3. In the original spec-
trum, the clay content of the calcareous and neutral purple soils had a low cor-
relation with spectral reflectance, whereas the clay content of the acidic purple 
soil had a very significant correlation with the spectral reflectance, and all bands 
were belonging to the sensitive bands. After the CR, R', and R" transformation, 
the correlation of the original reflectance increased obviously. The sensitive bands 
corresponding to the highest correlation coefficients after the CR and R' trans-
formation were concentrated at 2417 - 2437 nm and 433 - 566 nm, respectively, 
and the absolute value of the correlation coefficients were 0.72 and 0.83. 

The correlation between the spectral reflectance of the three purple soils and 
their various transformations with the sand content over a wavelength range of 
350 - 2500 nm is shown in Figure 4. The original reflectance of calcareous and 
acidic purple soils with their sand content showed a very significant correlation, 
its sensitive bands were located at 879 - 1364 nm and 350 - 2500 nm, respective-
ly. However, the correlation between the original reflectance of neutral purple 
soil and the sand content was not significant. After the CR transformation, the 
spectral reflectance with the sand content of calcareous purple soil had the high-
est correlation coefficient of 0.79, and the sensitive bands changed to 2417 - 2437 
nm. But the correlation coefficient between the spectral reflectance of the R' 
transformation and sand content was not as good as that of the CR transforma-
tion, and the correlation coefficient was 0.70. Compared with the CR and R' 
transformations, the reflectance after the R" transformation had the highest cor-
relation coefficient with sand content, with a value up to 0.85. Its sensitive bands 
were concentrated between 448 and 467 nm. 
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Figure 3. Correlation between the spectral reflectance and clay content under different 
spectral transformations for calcareous, neutral, and acidic purple soils. 

 

 
Figure 4. Correlation between sand content and the spectral reflectance under different 
spectral transformations for the calcareous, neutral, and acidic purple soils. 

3.3. Model Calibration and Validation 
3.3.1. SMLR and PLSR Modeling 
Table 1 summarizes the SMLR estimation results of the clay and sand contents  
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Table 1. SMLR model results for clay and sand contents in the three purple soils after ap-
plying the four transformations. 

 Soil Type Transformation 
Calibration Validation 
2
cR  RMSEC 2

vR  RMSEV RPIQ 

Clay 

Calcareous 

R 0.123 1.775 0.011 1.707 0.369 

CR 0.519 1.315 0.473 1.156 0.543 

R' 0.417 1.448 0.195 2.114 0.611 

R" 0.528 1.329 0.561 1.099 1.191 

Neutral 

R 0.038 5.307 0.228 5.415 0.121 

CR 0.310 1.609 0.361 1.299 0.611 

R' 0.510 1.305 0.475 1.168 1.360 

R" 0.542 1.311 0.503 1.182 1.600 

Acidic 

R 0.541 1.437 0.515 1.260 1.052 

CR 0.351 1.390 0.228 1.629 0.020 

R' 0.707 1.407 0.710 1.075 1.560 

R" 0.828 0.754 0.822 0.868 2.135 

Sand 

Calcareous 

R 0.194 1.519 0.071 1.515 0.518 

CR 0.605 1.063 0.650 0.939 1.185 

R' 0.314 1.402 0.208 1.356 0.511 

R" 0.660 0.962 0.682 0.932 1.526 

Neutral 

R 0.325 1.403 0.327 1.995 0.397 

CR 0.414 1.340 0.610 1.683 0.842 

R' 0.422 1.331 0.495 1.940 0.694 

R" 0.555 1.167 0.649 1.721 1.113 

Acidic 

R 0.442 6.579 0.207 7.760 1.038 

CR 0.353 7.081 0.283 7.170 1.164 

R' 0.492 6.274 0.330 6.943 1.451 

R" 0.729 4.583 0.675 4.772 1.871 

Notes: R: reflectivity; CR: continuum-removal; R': first-order differential reflectivity; R": 
second-order differential reflectivity; RMSE: root mean square error; RPIQ: the ratio of 
performance to inter-quartile distance. 
 
in the three purple soils under the 10 bands with the highest correlations. Based 
on the four spectral indices, except that the R2 of clay content in acidic purple 
soil after the CR transformation was lower than that of the original reflectance, 
the R2 of clay and sand contents in other soil types after the CR, R' and R" trans-
formation was higher than that of the original reflectance. And the modeling ef-
fect of clay and sand contents in the three purple soils after the R" transforma-
tion was better than that of the other two transformations. Among them, the 
acidic purple soil after the R" transformation had the best prediction effect with 
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the R2 of 0.822, 0.675, the RMSEV of 0.868, 4.772, and the RPIQ of 2.135, 1.871, 
respectively. By contrast, the modeling effect of clay content was better than that 
of sand content. In short, the clay content in acidic purple soil after the R" trans-
formation had the best modeling effect. 

The Calibration and validation sets of the PLSR model were obtained by ex-
tracting the first 10 characteristic bands with the highest correlation coefficient 
for the clay and sand contents for the three purple soils (Table 2). The modeling 
effect of the original reflectance after mathematical transformations was better  
 
Table 2. PLSR model results for clay and sand contents in the three purple soils after four 
transformations. 

 Soil Type Transformation 
Calibration Validation 
2
cR  RMSEC 2

vR  RMSEV RPIQ 

Clay 

Calcareous 

R 0.123 1.775 0.011 1.708 0.366 

CR 0.489 1.270 0.476 1.050 0.763 

R' 0.502 1.287 0.165 2.868 0.707 

R" 0.516 1.235 0.500 1.278 0.959 

Neutral 

R 0.034 1.900 0.014 1.531 0.257 

CR 0.275 1.609 0.356 1.298 0.491 

R' 0.521 1.257 0.414 1.233 1.349 

R" 0.543 1.227 0.510 1.072 1.929 

Acidic 

R 0.530 1.437 0.513 1.262 1.049 

CR 0.445 1.523 0.451 1.415 0.373 

R' 0.719 1.097 0.728 1.036 1.735 

R" 0.829 0.823 0.832 0.851 2.056 

Sand 

Calcareous 

R 0.162 1.511 0.072 1.742 0.415 

CR 0.579 1.029 0.584 0.905 1.666 

R' 0.342 1.322 0.060 1.545 0.394 

R" 0.670 0.911 0.630 0.966 1.714 

Neutral 

R 0.317 1.411 0.328 2.001 0.402 

CR 0.380 1.342 0.609 1.686 0.233 

R' 0.432 1.272 0.439 1.971 0.652 

R" 0.558 1.120 0.658 1.874 1.030 

Acidic 

R 0.424 6.604 0.198 7.823 1.020 

CR 0.338 7.082 0.283 7.170 1.162 

R' 0.514 5.771 0.371 6.701 1.313 

R" 0.736 4.251 0.744 4.290 2.440 

Notes: R: reflectivity; CR: continuum-removal; R': first-order differential reflectivity; R": 
second-order differential reflectivity; RMSE: root mean square error; RPIQ: the ratio of 
performance to inter-quartile distance. 
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than that of the original reflectance, especially the model prediction effect after 
the R" transformation was better than other transformations. The modeling results 
of clay and sand contents in acidic purple soil were better than those of neutral 
and calcareous purple soils, with the modeling set of 2

cR  > 0.736, and the veri-
fication set of 2

vR  > 0.744. Among them, the predicted value of clay content 
was higher than that of sand content (the 2

vR  was 0.832, the RMSEV was 0.851, 
and the RPIQ was 2.056), and the modeling and validation sets of the sand con-
tent had a larger RMSE of 4.772, indicating that there is a large deviation between 
the predicted value and the measured value. In conclusion, the clay content of 
acidic purple soil by the R" transformation has the best model prediction ability.  

3.3.2. BPNN Modeling  
As mentioned above, soil texture and spectral reflectance had the highest corre-
lation coefficient and the best modeling effect after the R" transformation. Thus, 
the spectral data from the 350 - 2500 mm waveband transformed by R" was used 
as the input layer, and tansig and purelin were employed as the transfer function 
of the hidden and output layers, respectively. In addition, the learning rate, the 
maximum training time, and the expected error of the model were set to 0.02, 
1000, and 0.0001, respectively. The results of the modeling and verification sets 
are shown in Table 3, the clay and sand contents of the three purple soils have 
high prediction accuracy (R2 > 0.5), indicating that the model effect after the R" 
transformation has a generalization ability and a high fitting degree. Among them, 
the modeling effect of acidic purple soil was better than that of calcareous and 
neutral purple soils (R2 > 0.7, RPIQ > 1.9), but the sand content of acidic purple 
soil had a larger RMSE of 4.114. In contrast, the BPNN model of clay content in 
acidic purple soil had a better model prediction effect. 

4. Discussion 
4.1. Effect of Mathematical Transformation 

There is a certain correlation between soil texture and spectral reflectance. The  
 
Table 3. BPNN modeling results of clay and sand contents for the three purple soils fol-
lowing the R" transformation. 

 Soil Type 
Calibration Validation 

2
cR  RMSEC 2

vR  RMSEV RPIQ 

Clay 

Calcareous 0.608 1.467 0.554 1.714 1.138 

Neutral 0.547 2.612 0.501 2.801 0.603 

Acidic 0.812 1.045 0.807 1.081 1.976 

Sand 

Calcareous 0.672 1.294 0.661 1.387 1.496 

Neutral 0.583 2.418 0.591 2.405 1.018 

Acidic 0.751 4.150 0.763 4.114 2.509 

Notes: RMSE: root mean square error; RPIQ: the ratio of performance to inter-quartile dis-
tance. 
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bands respond more sensitive to the texture with the increase of correlation, 
which is conducive to the determination of characteristic bands. To improve the 
correlation between soil texture and spectral reflectance, the original spectral 
reflectance of mathematical transformation is necessary. In this study, the corre-
lation was improved after the CR, R' and R" transformation of the original ref-
lectance, especially the correlation coefficient was increased to 0.8 by the R" 
transformation. This is consistent with the highest correlation between soil mois-
ture content and spectral reflectance of the three purple soils after the R" trans-
formation [36]. These results demonstrated that the second derivative extremely 
eliminates the baseline effect and enhances the micro-absorption characteristics 
[37]. Mathematical transformation can also improve the accuracy of the model 
[32]. In this study, the prediction model after the R" transformation had the best 
effect (R2 > 0.5), indicating that the model after the R" transformation has a high 
fitting degree and generalization ability.  

4.2. The Performance of the Three Models 

The linear (SMLR and PLSR) and the nonlinear (BPNN) prediction models of 
the texture (clay and sand contents) in the three purple soils were established 
and the adaptability of the three models was evaluated by calculating R2, RMSE, 
and RPIQ. For the prediction value of calcareous purple soil, the R2 of the SMLR 
model was slightly higher than that of the PLSR and BPNN models (R2 = 0.682), 
and it had the lowest RMSE (RMSE = 0.932). While for the predicted value of 
neutral and acidic purple soils, the prediction effect of the PLSR model was better 
than that of SMLR and BPNN. This may be because the three purple soils have 
different physical and chemical properties, resulting in different spectral charac-
teristics, thus there are different prediction models in the three purple soils [38].  

Moreover, it is found that the linear model has a better fitting degree than the 
nonlinear model in this study. This may be due to the fact that the linear model 
used the characteristic bands for modeling, while the nonlinear model needed the 
training of big data, and the full-band was used for modeling. The full-band (350 
- 2500 nm) exists certain redundant information (including noise and repeated va-
riables), and these variables in the construction of soil physical and chemical proper-
ties’ estimation model may reduce the prediction accuracy and reliability of the 
model [39]. Therefore, compared with the nonlinear model, if the linear model 
can overcome the multicollinearity problem directly by applying statistical rota-
tion to simulate the relationship [40], coupled with its simple operation, and 
good stability. It is recommended to use the linear method to quickly estimate 
the soil texture of the three purple soils. However, compared with the traditional 
measurement methods, the linear model has the advantages of less time-consuming 
and low cost, but it has a low prediction accuracy in estimating soil texture. 

4.3. Limitations of This Study 

Soil spectral reflectance is affected by texture, moisture, and other physical and 
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chemical factors. The different percentage contents of clay, sand, and silt will 
lead to the scattering effect in the process of testing the spectrum, and the corre-
lation information between the soil components to be tested and the spectrum is 
covered [41]. Therefore, in this study, soil samples were ground and screened to 
ensure the uniformity of soil particle size. Moreover, the influence of soil mois-
ture on the soil surface spectral reflectance is complex, which makes it difficult 
to directly interpret the spectral parameters corresponding to soil characteristics 
from the obtained soil current spectral data [42]. Hereby, in this study, the effect 
of soil moisture on spectral reflectance was eliminated by using air-dried soil, 
and the clay content of air-dried soil can be better estimated than wet soil [43].  

The deficiency lies in that the estimation accuracy of soil texture in the fields 
could be affected negatively by several factors such as spectral mixture, atmos-
pheric conditions, and spatial variability of soil moisture content, whereas our 
soil spectrum was collected indoors [44] [45]. In particular, there may be a large 
variation in soil moisture in the field, which will reduce the prediction accuracy 
of soil texture [46]. Therefore, to apply the models of this study to the field, they 
need to be further optimized. In the future research, it is better to focus on inte-
gration between spectra obtained in the field or in the laboratory, and spectra 
from airborne or satellite imagery [47] [48], and evaluate the external parameter 
orthogonalisation (EPO) method that can project all the soil spectra orthogonal 
to the space of unwanted variation (i.e. moisture) to eliminate the effects of mois-
ture on the spectra [49].  

5. Conclusion 

In the study, different pre-processing methods were utilized for the estimation of 
the soil texture of the three purple soils based on Vis-NIR spectroscopy. The soil 
samples had three textural classes (including silt, silt loam, and silty clay loam). 
In addition, the CR, R', and R" pre-processing methods had strong positive 
influence on the improvement of correlation analysis and the performance of the 
three models, among which the R" had the greatest performance. On this basis, 
the SMLR, PLSR, and BPNN models were established, and the accuracy among 
them was compared. The results show that the SMLR model is more suitable for 
estimating the texture of calcareous purple soil, and the PLSR model is the op-
timum approach for neutral and acidic purple soils. The SMLR and PLSR mod-
els also provide better estimations than the BPNN model in the calibration veri-
fication step. But these model theories were studied under well-controlled labor-
atory conditions, future research will consider extending models for field and 
large-scale applications. 
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