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Abstract

Plant growth-promoting rhizobacteria (PGPR) colonize plant roots and pro-
mote plant growth by producing and secreting various chemical regulators in
the rhizosphere. With the recent interest in sustainable agriculture, an in-
creasing number of researchers are investigating ways to improve the effi-
ciency of PGPR use to reduce chemical fertilizer inputs needed for crop pro-
duction. Accordingly, greenhouse studies were conducted to evaluate the im-
pact of PGPR inoculants on biomass production and nitrogen (N) content of
corn (Zea mays L.) under different N levels. Treatments included three PGPR
inoculants (two mixtures of PGPR strains and one control without PGPR)
and five N application levels (0%, 25%, 50%, 75%, and 100% of the recom-
mended N rate of 135 kg N ha™'). Results showed that inoculation of PGPR
significantly increased plant height, stem diameter, leaf area, and root mor-
phology of corn compared to no PGPR application under the same N levels at
the V6 growth stage, but few differences were observed at the V4 stage. PGPR
with 50% of the full N rate produced corn biomass and N concentrations
equivalent to or greater than that of the full N rate without inoculants at the
VT stage. In conclusion, mixtures of PGPR can potentially reduce inorganic
N fertilization without affecting corn plant growth parameters. Future re-
search is needed under field conditions to determine if these PGPR inoculants
can be integrated as a bio-fertilizer in crop production nutrient management
strategies.
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1. Introduction

Commercial fertilizers, especially N sources, are essential for maintaining global
crop production and fulfilling food requirements for a rapidly growing world
population with limited land resources [1] [2] [3] [4]. In 2014, over 11.7 million
tonnes of N fertilizer were applied to US agricultural crops [5]. This number is
expected to increase in the coming years because inorganic N is an indispensable
input in crop production. For example, Stewart et al [1] evaluated several long-
term studies to determine the effect of eliminating N fertilizer, and predicted
that corn and cotton (Gossypium hirsutum L.) yields would decline by 41% and
37%, respectively, without N fertilizer. Optimal crop yields also depend upon the
nitrogen use efficiency (NUE) of crops. Generally, NUE is very low (~33%; [6])
due to various soil processes and environmental factors [7] [8]. For example,
over half of the N applied can be lost from agricultural systems as gaseous loss
(N,, nitrous oxide, NHj; etc.), runoft (NO,), or leaching (NO,) into groundwater
[9] [10]. Changing this poor NUE requires more effective management prac-
tices.

Microorganisms that promote plant growth may be worth evaluating as a
prospective tool to improve fertilizer use efficiency [11] [12] [13] [14] [15]. Plant
growth-promoting rhizobacteria (PGPR) are free-living microbes that live on or
around the roots [16] and that stimulate plant growth and enhance root devel-
opment and architecture [17] [18] [19] [20]. Kumar ef al [21] reported that ap-
plying Pseudomonas aeruginosa LES4 at half the recommended fertilizer rate
resulted in growth of sesame (Sesamum indicum L.) that was equivalent to
treatments at the full fertilizer rate, and that the oil yield increased 33.3%, and
protein yield increased 47.5% compared to the full fertilizer rate. Adesemoye et
al [19] found that on tomato (Solanum Iycopersicum) supplementing 75% of
the recommended fertilizer with a mixture of Bacillus spp. and arbuscular my-
corrhiza fungus (AMF) resulted in growth, yield, and uptake of N and P equiva-
lent to the full fertilizer rate without inoculants. Similar results also showed that
inoculating P. thivervalensis and Serratia marcesens to soil with 75% of the
recommended chemical fertilizer rate for corn [22] and inoculating RAodop-
seudomonas palustris to soil with 50% of recommended chemical fertilizer rate
for Chinese cabbage (Brassica rapachinesis; [23]) resulted in the same plant bio-
mass and yield as with the full rate.

Among the genera of PGPR, Bacillus is the most widely used to enhance plant
growth and suppress plant diseases [24] due to their capacity to form stable en-
dospores that can be inoculated onto crop seeds. Also, their wide metabolic ca-
pabilities allows them to play important roles in soil ecosystem functions and
processes, such as soil carbon, nitrogen, and sulfur cycling, and transformation
of other soil nutrients [25]. Huang et al. [26] isolated four Bacillus strains from
rainforest soils that increased plant height and shoot biomass of Arabidopsis,
corn, and tomato under greenhouse conditions. In another study, Wani and

Khan [27] reported that Bacillus strains enhanced plant height and plant fresh
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weigh of tomatoes in both nutrient poor soils and soils receiving N fertilization.
However, the range of enhancement was much lower when sufficient N was
supplied. Inoculating plants with Bacillus strain PSB10 also resulted in enhanced
nodulation, chlorophyll, leghemoglobin, seed yield, and grain protein of chick-
pea (Cicer arietinum L.) in chromium-stressed soils [27]. In another study,
Meng et al. [28] inoculated nine types of plants under greenhouse conditions
with the B. velezensis strain and found that some of the plants increased growth at
various levels in different plant parts. Growth promotion by Bacillus has also been
observed with canola (Brassica napus L., [29], corn [30], soybean (Glycine max,
[31], sugar beet (Beta vulgaris, [32]), and wheat (7riticuma estivum L., [33]).

Numerous studies and reviews have reported plant growth promotion, in-
creased yield, phytohormone production, soil P solubilization, and enhanced N
uptake through inoculation with Bacillus spp. However, most of these studies
were conducted using single-strain inoculations and the positive effects were
only shown under specific conditions, and hence, growth promotion was limited
when using single-strain inoculations [34]. For example, B. velezensis inocula-
tion increased dry leaf weight, but not root weight for several vegetative crops
[28]. In a study on canola, de Freitas et al. [29] reported that Bacillus spp. had no
effect on plant growth when rock phosphate was applied; while seed yield was
increased, there was no effect on P uptake with triple superphosphate. Similarly,
de Freitas [33] reported in a pot study that B. polymyxa tended to enhance wheat
grain yield, but no differences in total-N or shoot dry matter yield were observed
as compared to the uninoculated control.

A few studies have reported that mixtures of PGPR strains generally cause
more consistent positive effects on plant growth than do individual strains [35]
[36] [37]. In addition, some studies have suggested that PGPR are more effective
under limited nutrient conditions [26] [38] [39]. For example, a greenhouse
study showed that B. polymyxa had a better stimulatory effect on corn plant
growth and N, P, and K uptake in nutrient-deficient soils than in nutrient-rich
soils [39]. However, limited information exists concerning the effects of Bacillus
spp. mixtures on corn growth with reduced levels of N fertilizers. Therefore, the
objectives of this study were to: 1) evaluate the impact of PGPR mixtures on
corn root growth and biomass production under different N levels; 2) investigate
the potential of PGPR mixtures to allow a reduction in the amount of inorganic
N fertilizer needed by resulting in corn plant growth and nutrient uptake levels
equivalent to those at the recommended N fertilizer rate; and 3) determine the

optimal N rate for stimulating PGPR growth-promoting effects on corn.

2. Materials and Methods

2.1. Greenhouse Experiment

A greenhouse container study was conducted at Auburn University’s Horticul-
ture Paterson Greenhouse (HP) in Auburn, AL, USA. This study consisted of

two separate experiments conducted with the same treatments. The first experi-
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ment was conducted from March to May and second experiment from April to
June of 2017 in the same greenhouse. The soil used for this study was a Kalmia
sandy loam (fine-loamy over sandy, siliceous, semiactive, thermic TypicHaplu-
dults) collected from the E.V. Smith Research Center-Plant Breeding Unit in
Elmore County, near Tallassee, AL. Surface soil (0 - 15 cm depth) was collected
in early-spring from an area that had been previously under row crop produc-
tion. The soil was sieved through a 5-mm sieve and was analyzed for nutrient
concentrations according to procedures described by Hue and Evans [40]. Brief-
ly, the soil had a pH of 5.5, total N concentration of 0.5 g-kg™', total C concentra-
tion of 4.8 g-kg™', P concentration of 22.7 mgkg™, K concentration of 58.1
mg-kg™', Ca concentration of 199 mgkg', and Mg concentration of 51.5
mg-kg™'. Based on initial soil pH and nutrient levels, the Alabama Agricultural
Extension System recommended applying 45 kg P ha™', 45 kg K ha™', and 4.5
tons ha™' limestone for corn production.

The experiment was conducted as a completely randomized design with five
replications. Treatments consisted of three PGPR inoculants combined with five
N rates. The PGPR treatments consisted of two PGPR strain mixtures (Table 1)
and one control without PGPR. The strains were obtained from pure culture
collections at Auburn University’s Department of Entomology and Plant Pa-
thology. These strains have positive effects on plant growth and were selected
from previous screening experiments. The bacterial mixtures were prepared by
mixing each strain’s spore, which was previously quantified by plating the sus-
pension on tryptic soy agar (TSA) plates and incubating for 48 h at 25°C, in
equal concentrations. A bacterial mixture of 1 x 10° spore ml™ was used for this
study. The N rate treatments consisted of applying 0%, 25%, 50%, 75%, and
100% of the 135 kg N ha™" rate recommended by Alabama Cooperative Exten-
sion System for corn on a Coastal Plain soil [41]. One day prior to sowing, urea
(46% N), triple superphosphate, and potassium chloride dissolved in water were
added to the soil.

The experimental units consisted of plastic containers (8 L Gro Pro square
pots, Sunlight Supply, Inc., Vancouver, WA, USA) that were 24 cm tall, meas-
ured 23 x 23 cm at the top, and tapered to 18 x 18 cm at the base. The containers

Table 1. Bacteria species and strains present in the PGPR mixtures used in this study.

PGPR Mix # Original Strain # Identification

1 2RA-17 Bacillus cereus
99-101 B. amyloliquefaciens
33B-9 B. mojavensis

IN-937a B. subtilis subsp. subtilis

2 SE-52 B. safensis
INR-7 B. altitudinis
SE-56 Lysinibacillus xylanilyticus
E-681 Paenibacillus peoriae

DOI: 10.4236/as.2019.1012114

1545 Agricultural Sciences


https://doi.org/10.4236/as.2019.1012114

Y.R. Linetal.

were filled with 12.5 kg of soil and adjusted to saturation with water. Five extra
containers were designated for determining saturation. Saturation was estimated
by determining the average amount of water needed to fill containers until they
reached a drip point (Ze, when water begins to drip from basal drain holes).
Two corn seeds (P1319HR; DuPont Pioneer, Johnston, IA, USA) per container
were sown in moist soil to a depth of 5 cm. A 1 ml suspension of the respective
bacterial mixture (Bacillus spp.) was applied on top of each seed at sowing. After
germination, plants were thinned to one plant per container and watered every
three days to saturation. Temperature within the greenhouse was maintained at
26°C £ 2°C during the day and 20°C * 3°C at night. To minimize micro-envi-
ronmental variation among treatments, containers were rotated weekly at ran-

dom by treatment.

2.2. Data Collection

Corn plants were harvested at the V4, V6, and VT vegetative growth stages.
Plant height, stem diameter, leaf area, leaf chlorophyll content, root morpholog-
ical features, and dry shoot and root weights were measured at each harvest
time. Plant height was determined by measuring from the base to the top of the
newest fully developed leaf. Stem diameter was determined at the base of plant
using high-precision digital calipers (MitutoyoDigimatic Caliper, Mitutoyo Corp.,
Kawasaki, Japan). Leaf greenness (chlorophyll content) was determined by mea-
suring from the newest fully expanded functional corn leaf with a Minolta SPAD
502 plus (Minolta Camera Co., Ltd., Osaka, Japan). Afterwards, plants were cut
at the soil surface with handheld pruning shears. Leaf area was determined from
the harvested plants using an area meter (LI-3100C Area Meter, LI-COR Bios-
ciences, Lincoln, NE, USA). All leaves from one plant were cut and placed on an
area meter one by one (avoiding overlap) to determine leaf area. Root biomass
was determined by carefully rinsing roots on a 0.5 mm mesh screen sieve. The
above- or below-ground plant biomass was then placed into paper bags and
dried (55°C) until the weight became constant in a forced-air drying oven to de-
termine dry weight. Before drying, roots were scanned and analyzed for root
morphology using the WinRHIZO Arabidopsis software (v2009¢ 32 bit system,
Regent Instruments, Quebec, QC, Canada) connected to an Epson XL 10,000
professional scanner (Seike Epson Corp., Shinjuku, Tokyo, Japan). Each indi-
vidual root system was evenly spread apart, placed in a water bath on a transpa-
rent tray (30 x 40 cm width), and imaged at a resolution of 157.5 dots per cm as
described by Bauhus and Messier [42] and Costa et al [43]. The following root
characteristics were determined: total root length (cm), root surface area (cm?),
root volume (cm?), and average root diameter (mm). Plant total N was deter-
mined on the dried shoot and root tissues. Ground plant tissues (0.2 mm mesh)
of leaves, stems, and roots harvested at the VT stage were analyzed for N using
the dry combustion method (LECO FP-528 Nitrogen/Protein Analyzer, LECO
Corp., Saint Joseph, MI, USA).
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2.3. Data Analysis

An analysis of variance (ANOVA), using a general linear model (GLM) of SAS
9.4 [44], was used to analyze each response variable in this experiment. The least
significant difference test (LSD) at a 0.05 probability level was used to identify
significant differences among treatments. Significant interactions (2 < 0.05)
were observed between the two experiments and the N rates. Thus, treatment
means for each N rate were analyzed separately by experiment. Significant inte-
ractions between N rate and PGPR treatments (P < 0.05) were observed for some
response variables, thus, the LSD test was conducted to identify significant dif-
ference among PGPR treatments at each N level for these response variables.
Also, comparisons were made to determine the effects of each PGPR inoculant
at each N level to the non-inoculated full N rate treatment (standard application
rate) using the LSD test.

3. Results and Discussion

3.1. Plant Growth Parameters

Plant height is often correlated with the number of leaves per plant and can po-
tentially affect corn yield [45]. Nitrogen levels significantly affected the corn ve-
getative growth parameters evaluated (plant height, stem diameter, and leaf area)
in this study from the V4 to VT stages (Table 2 and Table 3). There were no
significant differences in either experiment or clear tendencies observed among
the N levels evaluated for plant height at the V4 and VT stages in either experi-
ment. Plants receiving 75% (2 = 0.0052) and 100% (P = 0.0327) of the recom-
mended N rate were significantly taller than those with no N application at the
V6 stage in the first experiment (HP1). Our results were consistent with previous
studies, which showed that the tallest plants were observed with the application
of approximately 70% of recommended N rate [46] [47]. Arnon [48] indicated
that shorter plants resulting from low N availability may be associated with de-
layed cell division at the growing points. In addition to nutrient content of soil,
plant height is also influenced by soil moisture, temperature, sunlight duration,
and other environmental factors. Soil moisture and temperature were suitable
for plant growth under the greenhouse conditions of this study, and thus, all
plants had normal plant height irregardless of N levels. Significant effects of mi-
crobial inoculations (averaged across N rates) on plant height were only ob-
served at the V6 stage in HP1 (Table 2), in which, PGPR strain mixture 1 in-
creased plant height on average by 6.8% and 11.0% compared to the no-PGPR (P
= 0.0534) and PGPR strain mixture 2 (P = 0.0073), respectively. Although there
were no statistical differences between PGPR inoculants and non-inoculated
treatments at the V4 and VT stages for either experiments (Table 2 and Table
3), PGPR inoculations tended to increase plant height during these growth
stages. For example, the tallest plant was observed for PGPR mixture 1 when
combined with 25% of recommended N rate (N25P1) at the V4 stage, 50% of
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recommended N rate (N50P1) at the VT stage, and 100% of recommended N
rate (N100P1) at the V4 stage in HP2, when compared to the other PGPR treat-
ments evaluated using the same N rate (Table 3). Moreover, inoculation of the
PGPR mixture 2 significantly increased plant height compared to the N100P0
treatment (P = 0.0260) at the V4 stage in HP1 (Table 2).

Stem diameter was significantly affected by N levels, especially during the lat-
ter vegetative growth stages (Table 2 and Table 3). Plants grown with 50% (P =
0.0042), 75% (P = 0.0050), and 100% (P = 0.0002) of the recommended N rate
had significantly greater stem diameter than the no N control at the VT stage
during HP1, with an increase of 15.2%, 14.9%, and 18.4%, respectively. Nitrogen
rate also significantly affected corn stem diameter at the VT stage in HP2, and
plants with 100% of the recommended N rate had the largest stems. Although,
there were no significant differences among N treatments for stem diameter at
the V4 and V6 stages in HP2, there was a tendency for greater stem diameter
with increasing N rates. Fancelli and DouradoNeto [49] reported that stronger
stems were directly related to increased productivity since it is involved in the
storage of soluble solids, which may subsequently be used in the formation of
seeds. PGPR inoculations (averaged across N rates) had minimal impact on stem
diameter of corn, no significant difference was observed at the V4 and VT stages
and a significant decrease in stem diameter was observed at the V6 stage in HP1
(Table 2 and Table 3). However, when conducting direct comparisons between
each PGPR mixture at each N level, PGPR mixture 1 at the V4 stage in HP1
tended to increased stem diameter for the no N fertilizer (NOP1) treatment, and
was even significantly greater than that of the N100P0 (recommended N rate
without PGPR) treatment (P = 0.0467).

There were no significant differences among N levels on leaf area at the V4
and VT stages for both experimental times (Table 2 and Table 3). However, av-
erage leaf area at the recommended N rate was significantly larger than that of
the no N fertilizer (P = 0.0013) or 25% of recommended N rate treatment (P =
0.0005) at the V6 stage in HP1. The leaf area was not influenced by PGPR appli-
cations for both experiments (Table 2 and Table 3), while PGPR inoculations
showed an increasing tendency at some N levels.

Leaf greenness (SPAD readings) was significantly affected by N levels at V6 in
HP1 and at the VT stage during both experiments (Table 2 and Table 3). SPAD
readings increased with increasing N rates throughout the plant growth stages;
therefore, higher chlorophyll content was observed when relatively high N ferti-
lizer rates were applied. The effects of microbial inoculations on leaf greenness
varied depending on growth stage and N level for both experiments (Table 2
and Table 3).

Significant differences were observed between PGPR inoculants at the V6 and
VT stages in HP1. An interaction of N level and PGPR inoculation was observed
for SPAD readings at the V6 stage in HP1. A significant increase in chlorophyll
content was observed after inoculation of PGPR mixtures 1 & 2 when 50% of the
recommended N rate (P = 0.0322) was compared to the no-PGPR control at the
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same N rate. When conducting direct comparisons between each PGPR mixture
at each N level, PGPR mixture 1 at the V6 stage (P = 0.0398) and PGPR mixture
2 at the VT stage (P < 0.0001) had significantly greater SPAD readings than the
non-inoculated control, with an increase of 4.5% and 12.3%, respectively.
Moreover, PGPR mixture 1 with no N application (NOP1; direct comparison
between each PGPR at each N level) had the greatest leaf area compared to other
treatments, and was significantly greater than that of the N100PO treatment (P =
0.0183) at the V6 stage in HP2.

The uptake of N by corn is low during early development and increases as it
nears tasseling [50], which means that N generally has minimal effects on plant
growth during the seedling stages. This likely is why minimal differences were
observed for the plant growth parameters at the V4 stage. Moreover, another
important factor that may affect seedling growth is the emergence day. Earlier
emergence can lead to taller plants, greater stem diameter, and leaf area. Since
temperature and sunlight duration increased from March to June; therefore,
greater plant growth parameters (plant height, stem diameter, and leaf area)
were found in HP2, rather than in HP1.

Overall, applying PGPR had positive effects on plant growth during the veget-
ative stages, especially at the V6 stage when corn plants’ need for N from soil be-
gins to escalate. In this study, PGPR mixture 1 showed positive effects on plant
height, stem diameter, and leaf greenness of corn, while PGPR mixture 2 tended
to only increase leaf area and leaf greenness of corn. The difference between
these two microbial inoculated mixtures may be due to the capacity of the dif-
ferent Bacillus spp. responses to the soil N conditions. Our results are consistent
with previous studies which indicated that PGPR can increase plant height [37]
[51] [52], increase plant stem diameter [53] [54], and enhance the number of
leaves and leaf area of corn [55] [56]. Most of these improvements in plant
growth were observed prior to the corn reaching the tasseling stage. In this
study, PGPR showed more positive effects under low N soils than the soil with
high rates of N fertilization. Consistently, several studies have demonstrated that
when nutrient levels are high in soil, PGPR’s efficacy to improve plant growth is
low [12] [57] [58]. One possible reason is that the production of ethylene under
low levels of nutrients could be catabolized by 1-aminocyclopropane-1-carbox-
ylate (ACC) deaminase, produced by PGPR, to NH; and a-ketobutyrate [59]. In
addition, in nutrient rich soil, plants could obtain enough N from soil by their
own root absorption, thus, plants will not need rhizobacteria-enhanced N up-
take.

3.2. Root Morphology

The influence of PGPR inoculants on root morphological parameters varied with
N level and growth stage (Table 4 and Table 5). A significant N and PGPR inte-
raction was observed for total root length at the V6 and VT stages in HP2 (Table
5), showing that PGPR inoculates had a positive effect on total root length at

DOI: 10.4236/as.2019.1012114

1551 Agricultural Sciences


https://doi.org/10.4236/as.2019.1012114

Y.R. Linetal.

*3JBI N SWIES Y} ISpun sjuaweas} Y4od Suowre 0 0 >4 18 JUIYIPp APueoyrudis j0u 18 UWN[Od B UIYIIM JUSWUSISSE 13)33] OU YIIM JO I2)33] dwres Y3 Aq PIMO[[0] SIOLID
pIepuels pue sued]f “A[2A0adsa1 D3Rl N PIPUSIUIOdAI Y3 JO %001 PUB ‘%SL ‘%0S %ST ‘%0—00IN PUB ‘SLN OSN ‘STN ON ‘T Inixiwt YdOd—2cd {1 2ImXIu YdOd—1d “ddDd 0u—0d 19z1[1319§ usdonu—N+

8€6L°0 $87€0 70L€°0 129%°0 S6€S°0 7STS0 6808°0 G981°0 LLEE0 1¥85°0 €9S4°0 69590 AdOd«N

€799°0 €1LT°0 91€6°0 65€8°0 ITI€0 79TL0 75890 9zIT'0 6£¥0°0 979L°0 S186°0 91¥°0 dddd

1000°0> SESTO £961°0 1000°0> $991°0 20T1°0 1000°0> CTIET0 I%0°0 $090°0 $987°0 97S0°0 N

(50°0)d<d
YITF 69 YSTFOVC TTOF8Y'T SOV FLETE  SOLFEO0ST  TTTFI9IT  TO0F080 €0°0F€9°0 100 ¥ 9%'0  TZ£F¥0S6CT  9SE + 1SSL 6L1 F €0ST ¢d00TN
89°¢ ¥ G99 €TTFTIT 0€'0F66'1 €99 FGPTE  G8I9FL6ET  8OTF60LI €00 T80 €0°0 ¥ 09°0 TO0OF V0 LIV FFOLLT  OLI F ¥EVL C€IT F ILIT T1dO0OIN
08¢ ¥ 58S SO'T F6'€C 09'0 ¥ 65°C LLTFP60€  0GEFE0ST  6'ISF68ICT  T10°0F9L0 200 F¥9°0 100 ¥ 870 189 F980¢T  €¥T +¥¥SL 09€ F 7LV 1 0d400TIN
6V EFTLY QSSTFOLL  0€0FLTT 8PV F99I€  LETF69ZT  9¥TF6681  SO0FS80 €0°0 FSS°0 100 ¥ 8%°0  TOLF6L6IT  ¥IS F9T€EL €91 F 89¢1 TdSLN
8LEF6'E9 qRSOTFS6LT TE0F96CT  LISFLSIE  TI9OF96CT  THCF8LVT  €00F 180 €0°0 ¥ 09°0 100 ¥ 870  TIEF€T9CT ST FTI69 8¥1 + 6991 IdSLN
TETFIT9 FRERFTFEVT TSO0F66C  SPPFOLIE  TOLFL6FVT  9€PF€8ST  TO0F6L0 100 ¥ S9°0 000 F9F'0  9FF ¥ 096C1  88% F LSEL 88T F LLLT 0dSZN
TTEF 969 6€TFLET 610 FLV'C  ¥LSF8LTE  6F6F6£ST  OFPIFT80C  €0°0FS80 €0'0 F 190 100 ¥ LF0  OPC +TOPCT  SE€ +9708 1°G6 + C0¥1 ¢dOSN
00l FT'¥%9 L90F LET LOOFLIT S6T F196C 661 FFIST  LTIFTO06I  80°0FS80 700 F€9°0 TO0F9F0  8IF FLECTT  LTE F60LL PET F €€€1 IdOSN
0TS F L%9 6€TF8TC 6T'0F 19T  LPLFFIOE 68SFG8YI  6TTFI'6CC %00 FSS0 20'0 F 19°0 T00F 970  S8E FTBSIT  TETF€ELL LTT F 8091 0d0SN
00°€ ¥ 6'6% €1 F80C 9T0F61'C 8CI ¥6SLT  STPF¥6ET  €0TF8LLT  T00FTLO €0°0 F09°0 00 F 670 TP F86ICT  89% F €0SL €71 F 8STI TdSTN
187 ¥ €'8¥ 79T F9¥C YTOF T 0T F €4LLT LOTF6EST  TITFTLIT  SO0OF690 €0°0 F€9°0 100 FS¥'0  SPSFT06CT1  TSE F8€LL LST F ¥SST IdSTN
6ETFOLY LS'T F69C ¥I'0+68°1 L'T6 ¥ 0TLT €'6T F 8%S1 L'ST+FT'1LT €00 ¥ 69°0 €00 F 020 00 F¥¥°0 999 F €04C1 1CC+ ST1L €1 + 8¢€TI 0dSTN
9SG T+ I'¥¢E €6'T +¥'CC ST0FS6'C T +90¢€T T F Tyl T'TT +8'7ST 200 ¥ 65°0 €00 F €90 200 F9%°0 899 F GL¥CI 06C + T9TL 669 F VLI <dON
1% F89¢ ITCFTHT 6£°0 F85°C IST #89%C  ¥'86+F€CST  86£FE0FC €00 F650 200 F€9°0 TO0F PO ITTFT9eCl  9TF F 699L €T¢ ¥ 88L1 1dON
9y F 80F 181 F€TT yooF T SPT F€C5T T69F0871  L9TF98ET  $0°0+¥9°0 €0°0 ¥ 09°0 100 F TF°0 9T F LL8TT  LLT F€98L I%T + 6481 040N
IA 9A YA LA 9A PA IA 9A YA LA 9A YA
dyuounear,
(¢ud) aWN[OA [e30], (o) eaxe adeyING (wrar) 1939ureIp AFeIoAY (u) Suay 30T,
(1dH)

KAl 0} Yo SULIND 9SNOYUIIIL) UOSIdEJ INNONIOL Y} UT safe)s Imoid LA pue ‘9A FA oyl Suumnp sajex N £q paouanjjur se A3ojoydIiowr J001 U100 UO §30372 YIOd ¥ 2[qeL

Agricultural Sciences

1552

DOI: 10.4236/as.2019.1012114


https://doi.org/10.4236/as.2019.1012114

Y.R.Linetal.

*31el N SWES 3Y) Iopun sjuaunean} YJnd Suowre 0°0 >4 18 Jua1ayIp A ueoyruSis Jou a1 UWN|0d B UIYIIM JUSWUSISSE 19)19] OU YIIM IO I9)19] JWES 3} Aq PSMO[[O] SIOLId

pIepuess pue suBSINE "A[2A1129dsa1 9e1 N PIPUSIIODDT 3Y3 JO %00T PUB “%SL “%0S ‘%ST ‘%0—00TN PUB ‘6N 0SN ‘SZN ‘ON 7 I YdDd—ed €T 2IMXIW YdDd—Id UdDd 0U—0d HOZI1Id) uafonu—N+

¥6L8°0 ¥161°0 68780 L68€°0 €e81°0 86LL°0 6180 1560°0 7STL0 8910°0 S10°0 1¥8%°0 YdOdxN

€15€°0 §95€°0 90590 7€80°0 LSST0 €95¥°0 €1LL0 S€08°0 8€19°0 L80T°0 90£0°0 €88¢°0 ddod

€189°0 L¥65°0 9796°0 ¥r6v°0 (4381 6780 LEET'O L18T0 8.99°0 1620°0 S¥L0°0 6£€T°0 N

(so0)d<d
60SFOLL STIFIEST 090F069 TL6F6I9E  698F0LIT  60¢FCT06F  ¥0°0FS80 1000 ¥ €90  TO0F9S0 605 F96L€1 BLLV FFE6S  6€1 F88LT CdOOTN
69°LFOLL 8ITFLSOT 6S0F6T8  €CIFPC9E €T9F990T  8LEFSBIS GO0FH80  €00F290  100+F850 TEF F€98CT  qeLLT ¥ 667S 661 F SOT€E T1dO0IN
SELFO069 S6TFO6'ST  €LTFSEL 9LT+09¢e  €TI+60V6  LF8F909%F ¥00FI80  SO0FS90  SO0F090  6ITF66IET  qSTEF6ISh  SE€C F €9€T 0d00IN
0S'SFVL9 BITFET6L FTTFOS9  6STFEISE 0€IFPEIT  €89F08FF 800FI60  TO0OFLO0  POOFLSO0 ©BBELFOLIVI  BBET F69€S  LLTF LSVC TdSLN
8GCFVEL 69TFLYOT LIY0OF689 689 FCIVE IIT+FVI0OT  00EF¥¥9y €00+980  ¥O0OFS90 CO0+6S0 QqQ69y F9ILCT QB E9T +C06¥  €'S8 F ¥0ST TdSLN
COFFL6Y OT'TFO06FLI TO0FSLL 69LFTLIE 6'SVF86L6 €CTFETS  F00FS80 T00F €90  €O0FI90 QqQ¥8F F6FETT  #q6TTF8ELY 668 F ¥09C 0dSLN
UV FELI PETFSEBL  680F68L  €IIF08EE  6LSFL80T  9LTF06LF  €0°0F6L0 100 F 490 ¥#00FS9°0 ®BEST FIW9€l 61 F SET1S 196 F €¥€C TdOSN
VOTFTEL TOTFLELL  ITIFI6L  6'€TFS9SC  TIVFPLOT  68EFTc6V  €00FT80  ¥OOF¥90  SO0F€90 ®BVOSFSO06ET P81 F 1T€S L'T8 F L8YT 1d0SN
SI'FF989 LOTF800C 190FLS9 TTT ¥ 20T¢ T'9Y F6011  €STFS9EF €00 FS80 C00FTLO0  TO0OF090 QqOSCFI86IT 061 F¥88% 0°¢6 + TTET 0d0SN
GEEFETL B8ITFO0LT S80FE®L 9L8F66FE  99LFO0EO0T  6LEFLF6Y  €00FT80  CO0F990 CO0F€90  TTF +¥9sEl L6T F 0967 811 F L6VCT TdSTN
9S'EFT69 ILTFO0EST  9€0FSL9 TI0T FLPPE  TELFP696 TTIF09SF POOF080 €00FT90 TOOF6S0  SSE€F8TLEL 79T + 86V 9Y9 F 19%C 1dSTN
SEFFIPY 08T FELLL 860FE€S9  BETFGLEE  L'ELFOUIL €LV FOLSY  €00FSL0  TO0FE90  €00F950  LLEF 0LTYI 91T ¥ €799 20T F 185C 0dSTN
SOTFSP9 T8OFIECST 8S0F8L8  §LSFIEEE 095 F8EIT  TIEF8TPS €00 F8L0 100 F¥%9°0  T00+FS90 879 F9T8¢€I 9TE F LE9S €LT F LLIT CdON
LTSFVEL €®TFSOTC I9TF8TL  PSIF9GSE  LTPOFOSTI  T98F9I8F 900F 180  CTOOFO0L0  ¥O0OF8S0 8IS F080%IL 9TT ¥ 8045 ¥S€ F 895C TdON
LUSFVIL TLTF9SHL  00CTF659 TIT F9LSE  8'CLFGTI66 699FT'Ick  €00F 640  €00F850 600F95°0 09T F8SHP1 61 F STS PET ¥ 8€¥C 0dON
LA 9A YA LA 9A YA LA 9A YA LA 9A YA
Jjuauneary,
(surd) swmjoA [e3o, (;ur) eare doeLING (wrur) 1930urerp aSeraAy (ur) y8uay [e30,
(¢dH)

aun( 0 [rdy 3uLmp 9snoyuaaIn) UosIajed dININONIOH Y} Ul sade)s YImoId LA pue ‘9A ‘FA oY) Sunmp sajer N £4q pasuanpur se £3ojoydiour 1001 U105 UO $199P9 YJOJ 'S 2IqBL

Agricultural Sciences

1553

DOI: 10.4236/as.2019.1012114


https://doi.org/10.4236/as.2019.1012114

Y.R. Linetal.

relative high N levels. At the V4 stage, PGPR mixture 2 (direct comparison be-
tween each PGPR at each N level) significantly increased average root diameter
by 5.6% compared to the no-PGPR control in HP1 (Table 4). The PGPR mix-
ture 2 significantly increased total root length by 13.3% (2 = 0.0494) and 31.3%
(P =0.0160) with 75% and 100% of the recommended N application rate at the
V6 stage and up to 13.9% (P = 0.0024) and 15.6% (P = 0.0418) with 50% and
75% of recommended N rate at the VT stage, respectively. An increase in total
root length of 16.1% (P = 0.0013) was observed with the inoculation of PGPR
mixture 1 at the VT stage for half the recommended N rate in HP2 (Table 5).
These results indicated that the selected PGPR strains in this experiment could
potentially promote root growth even under N-limited conditions. Our results
are consistent with those observed in several studies which have indicated that
PGPR inoculations effectively increased the root length and surface area [18]
[60], suggesting this resulted from PGPR synthesis of phytohormones and other
secondary metabolites [61]. It is also worth mentioning that the corn hybrid
used in this experiment has a high root strength (8/10) which means it has an
innate capacity to grow a strong root system, which may have masked some of
the potential positive effects of PGPR on root growth.

Root morphological parameters, especially total root length and root surface
area, play an important role in the capture of belowground nutrient resources
for plant development [62] [63] and root morphological parameters may exhibit
higher water retention [64]. Several studies have reported that root structure and
morphology are influenced by soil microorganisms such as rhizobacteria [52]
[64] [65] [66]. El Zemrany et al. [64] investigated the root characteristics of corn
where seeds were inoculated with PGPR Azospirillumlipoferum CRT1 during
the early growth stages (for 35 days after planting, DAP) and demonstrated that
plants inoculated with PGPR significantly increased root biomass, total root
length, and root surface area at 26, 30, and 35 DAP. Calvo et al [52] reported
that Bacillus spp. mixtures could increase total root length, root surface area,
root volume, and total length of fine roots of corn compared to the non-inoculated
control when urea ammonium nitrate (UAN) was present at the V2 stage, while
positive effects resulted when calcium ammonium nitrate (CAN) was applied at
the V4 stage.

3.3. Biomass Accumulation and N Uptake

Significant differences were observed among N levels for biomass of roots,
stems, and leaves. Plant aboveground biomass tended to increase with increasing
N rate at the V6 and VT stages, no significant differences were observed at the
V4 stage in both experiments (Table 6, Figure 1 and Figure 2). At the V4 stage,
the no N treatment had the greatest plant biomass when compared with other N
rates with the same PGPR treatment, especially in HP1. The no N control had
the greatest root biomass on average (Figure 1(a)). At the V6 and VT stages, the
relative high N rates (N75 and N100) had the greatest plant biomass regardless
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Figure 1. Corn biomass (dry matter basis) for N rates as influenced by PGPR inoculation
during (a) V4; (b) V6; and (c) VT growth stages in the Horticulture Paterson Greenhouse
from March to May (HP1). Data represent means and standard errors of replicates.
Within each experimental time, bar segments denoted by the same letter or with no letter
assignment are not significantly different at P < 0.05 among PGPR treatments under the
same N rate.

of PGPR application. The full N rate treatment increased stem and leaf biomass
by 32.4% (P = 0.0124) and 39.9% (P = 0.0002) at the V6 stage and increased root,
stem, and leaf biomass by 57.4% (P < 0.0001), 42.8% (P < 0.0001), and 37.9% (P
< 0.0001), respectively, at the VT stage when compared to unfertilized control in
HPI1. An increased stem biomass of 24.8% (P = 0.02) was observed with the full
N application rate at the VT stage in HP2 (Figure 2(c)). Plants with 50% and
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Figure 2. Corn biomass (dry matter basis) for N rates as influenced by PGPR inoculation
during (a) V4; (b) V6; and (c) VT growth stages in the Horticulture Paterson Greenhouse
from April to June (HP2). Data represent means and standard errors of replicates. Within
each experimental time, bar segments denoted by the same letter or with no letter as-
signment are not significantly different at P < 0.05 among PGPR treatments under the
same N rate.

75% of the recommended N rate also showed significant increases in root, stem,
and leaf (P < 0.0001) biomass compared to unfertilized control at the VT stage,
which was similar to plant biomass of the full rate treatment. Although there
were no significant responses to application of the PGPR mixtures on biomass
accumulation at some growth stages, corn seeds inoculated with PGPR mixtures
had similar or greater plant biomass when compared to non-inoculated seeds

under the different N levels during the growing period (Table 6, Figure 1 and
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Table 6. Analysis of variance results for biomass of root, stem, and leaf at the V4, V6, and
VT stages and N concentration of root, stem, and leaf at the VT stage in the Horticulture
Paterson Greenhouse during March to May (HP1) and April to June (HP2).

P > F (0.05)

Source HP1 HP2

Root Stem Leaf Root Stem Leaf

Biomass at the V4 stage

N 0.0215 0.5443 0.3490 0.9068 0.6927 0.1424
PGPR 0.9223 0.6643 0.8420 0.7681 0.8807 0.8916
N*PGPR 0.4215 0.3304 0.6177 0.7303 0.5150 0.5974

Biomass at the V6 stage

N 0.1483 0.0132 0.0001 0.3483 0.9717 0.0972
PGPR 0.3891 0.4976 0.3520 0.0713 0.0075 0.0903
N*PGPR 0.0113 0.0164 0.0486 0.6981 0.3664 0.2314

Biomass at the VT stage

N <0.0001 <0.0001 <0.0001 0.591 0.0050 0.0795
PGPR 0.3464 0.1729 0.5295 0.479 0.3985 0.6479
N*PGPR 0.3480 0.4435 0.7611 0.4965 0.9811 0.5311

N concentration at the VT stage

N <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
PGPR 0.7112 0.6267 0.2639 0.7130 0.9031 0.8717
N*PGPR 0.1660 0.3340 0.6033 0.0547 0.6315 0.6244

Figure 2). Both treatments inoculated with PGPR mixtures had greater stem
biomass than the non-inoculated control, increasing 21.8% and 22.9% with
PGPR mixtures 1 (P =0.0264) and 2 (P = 0.0151), respectively, at the V6 stage in
HP2. The improvement of plant biomass by PGPR was only observed at the V6
stage, but not at the V4 and VT stages (Table 6, Figure 1 and Figure 2). The
lack of PGPR effects on plants evaluated at the V4 stage may be due to the low
rate of biomass accumulation and nutrient uptake during the early corn growth.
In contrast, no significant difference between non-PGPR and PGPR treatments
on biomass accumulation evaluated at the VT stage may be due to the small
amount of nutrients provided by PGPR could not satisfy the high nutrient re-
quirements during the late vegetative growth stage. Nitrogen and PGPR interac-
tions were observed for plant biomass accumulation at the V6 stage in HP1
(Table 6). PGPR mixture 1 with no N fertilizer (NOP1) had the greatest root,
stem, and leaf biomass at the V6 stage, although there were no significant dif-
ferences observed compared to the non-inoculation control, an increase of
34.8% (P = 0.0339), 63.0% (P = 0.0202), and 41.3% (P = 0.0283) occurred when
compared to PGPR mixture 2, respectively. PGPR mixture 2 with 50% of rec-
ommended N (N50P2) had the greatest stem and leaf biomass with an increase
of 34.4% (P = 0.0461) and 25.6% (P = 0.0495) compared to the N50P0 treatment
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at the V6 stage, respectively. However, at 75% of recommended N rate, inocula-
tion of PGPR strains had no benefit on aboveground biomass accumulation, even
showed lower stem and leaf biomass than the no-PGPR control at the V6 stage.
These results indicated that PGPR inoculation induced an increase of plant bio-
mass that was slightly greater than the non-PGPR treatment at the different N
levels, especially with low or half-rate N application.

Plant tissue N concentrations were significantly different among N treat-
ments, with N concentrations tending to increase with increasing N rate regard-
less of whether the PGPR inoculants were added or not at the VT stage for both
experimental times (Table 6 and Figure 3). Plants receiving 75% and the full N
rate had significantly greater root, stem, and leaf N concentration compared to
25% of recommended N rate and unfertilized control, while the half N rate
treatments also significantly increased plant tissue N concentrations compared

to the unfertilized control (Figure 3).
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Figure 3. Nitrogen concentration (%) in root, stem, and leaf at different N rates as influ-
enced by PGPR inoculation at the VT stage in the Horticulture Paterson Greenhouse
from March to May (left) and from April to June (right). Fertilizer rates are percentages
of the 100% rate (135 kg N ha™') recommended by Alabama Cooperative Extension Sys-
tem for corn on a Coastal Plain soil. Data represent means and standard errors of repli-
cates.
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Plant tissue N concentrations compared to the unfertilized control are shown
in Figure 3. These results indicated that under a properly managed greenhouse
condition that prevented nutrient loss through leaching, 50% or 75% of the
recommended N rate could satisfy plant N requirements during the vegetative
growth stages, which may mask the positive effects of inoculated PGPR strains
[67]. No significant differences were observed for the response of corn N con-
centrations to PGPR inoculation (Figure 3). Also, there was no N and PGPR in-
teraction observed for plant tissue N concentrations (Table 6). However, PGPR
applications resulted in equivalent or greater plant tissue N concentrations com-
pared to non-PGPR treatments under low N level conditions, while a slightly
lower plant tissue N concentration was observed when PGPR inoculations were
combined with relative high N rates. This may be due to the dilution effect from
greater plant tissue biomass. The results of leaf N concentration were consistent
with the results of SPAD readings (Table 2 and Table 3) due to the high positive
correlation between these two parameters [52] [68] [69]. These results indicated
the capacity of PGPR to improve NUE of corn under N limited conditions and a
potential for increased corn yield. Generally, the Bacillus spp. strains could in-
crease N uptake by various mechanisms, such as producing phytohormones, so-
lubilizing soil nutrients, enhancing root growth (root length and surface area)
for nutrient absorption [70] [71] [72].

In our experiment, PGPR mixture 1 had a greater effect on increasing plant
biomass accumulation under conditions where no N was added, while PGPR
mixture 2 had a greater benefit in increasing plant biomass accumulation with
half the recommended N rate. Both microbial inoculants had a tendency to im-
prove plant tissue N concentrations. Our results for plant biomass and N con-
centration were consistent with previous studies that have shown the positive
effects of PGPR inoculation on plant dryweight and N uptake of corn [26] [30]
[47] [72] [73]. Biari et al [73] indicated that inoculation of PGPR strains can in-
crease corn growth parameters, such as plant height and shoot dry weight and
also enhance grain dry weight and seed quality (100-seed weight and nutrients
content). Therefore, PGPR treatments in our experiment that enhanced plant
growth parameters and biomass accumulation could lead to a potential increase
in corn yield. In addition, these positive effects of PGPR are mainly attributed to
its capacity to promote better absorption of essential nutrients that are responsi-
ble for the high rate of photosynthesis [52] [73]. Consistently, a stronger root
system, greater SPAD reading and dry weight biomass were observed with PGPR

application in our experiment.

4. Conclusion

Overall the selected PGPR mixtures applied with half the recommended N rate
promoted corn growth and produced corn biomass and tissue N concentrations
equal to or greater than that of the full N fertilization rate under greenhouse

conditions. The high amounts of N fertilization may have masked the potential
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effect of PGPR inoculations, especially in the late growing stages of corn. There-
fore, PGPR inoculants should be considered as tools that will complement nu-
trient efficiency practices by increasing the plant’s nutrient uptake efficiency,
thereby reducing N losses and reducing the amount of applied N. Further stu-
dies are needed in order to determine the threshold of N fertilization reduction
that could be achieve when PGPR inoculants are applied to different crops and
with different types of nitrogen fertilizers, as well as investigate the optimal field
management practices for simulating the efficacy of PGPR under field condi-

tions.
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