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Abstract 

Most countries’ land use and land cover (LULC) are changing dramatically 
today. Most of these changes are related to the way humans and the environ-
ment interact. Various methodologies and data sources have been used in con-
junction with remote sensing (RS) to categorize and map changes in LULC. 
This study used RS and Geographic Information System (GIS) tools to ana-
lyze LULC change and transitions from 1984 to 2022 in a tropical forested 
landscape in southwest Mauritania. Using a suitable and high-quality collec-
tion of Landsat satellite images. For the classification and creation of LULC 
maps for the selected periods, the supervised technique using a maximum like-
lihood classifier was used. The results indicated that there was a remarkable 
change in all classes of LULC, with an increase in all classes, except barren 
land, which had a tremendous decrease of −68.58% for the total study area. 
Therefore, for the total study area, an increase in agricultural land (221%), 
water bodies (118.46%), vegetation (57.50%), and built-up areas (14.65%) was 
observed. We believe that by informing policymakers, environmental manag-
ers, and the general public about the current changes, our study will help the 
region to establish appropriate land use rules that may lead to policy docu-
ment development.  
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1. Introduction 

One of the most important natural resources on the planet is land, which is also 
a basis for sustaining life and supporting development [1]. The concept of “land 
use” describes the economic or social functions related to a particular area of 
land. On the other hand, the types of features existing on the surface of the land 
are related to the land cover [2].  

Major changes in LULC are currently underway in most countries of the world 
[3]. Most of these LULC changes have been linked to how humans and the envi-
ronment interact [3] [4]. Through various methods and datasets, Remote Sensing 
(RS) has been used to classify and LULC changes. Landsat images, in particular, 
have been very useful for classifying different landscape features on a larger scale 
[5].  

Recently, several change detection methods using RS images have been cre-
ated. Different change detection methods and algorithms have been created, and 
their advantages and disadvantages have been discussed. The most commonly 
used classification algorithms are unsupervised, supervised, hybrid, and fuzzy 
[6].  

A variety of supervised classification methods have been widely applied for 
the analysis of land-use change throughout the world. This technique depends 
on a combination of background knowledge and personal experience of the study 
area to a greater extent than in other areas [7]. Thus, the signatures per pixel are 
taken and stored in signature files using this knowledge, and the raw Digital 
Numbers (DN) of each pixel in the scene are thus converted into radiance values 
[8].  

A similar technique was used to detect climate change in a closed area (RS and 
GIS in Support of the characterization of the climate in Mauritania: Case of the 
Diawling National Park (PND) and its peripheral zone) and provides accurate 
information on precipitation, temperature, and vegetation over the study area 
[9]. The study area was selected for change detection because it experiences ur-
banization, agricultural activities, water and soil erosion, overgrazing, and tree 
cutting. 

Due to the accelerated agricultural development and the invasion of the aquatic 
species Typha australis into the study area, one of the main problems facing the 
same area is the rapid discharge of pesticide residues into the water courses.  

The rapid growth of agricultural activities in the study area has led to several 
environmental problems, including various of the invasive aquatic species Typha 
australis, habitat fragmentation, soil erosion, and water pollution due to deforesta-
tion and pesticide wastewater discharge [9] [10] [11].  

Therefore, the main objective of this research was to use GIS and RS applica-
tions to identify the extent of change in southwest Mauritania over 38 years. 
However, specific objectives includes: 1) identifying and delimiting the different 
LULC categories and the pattern of land use change in southwest Mauritania 
from 1984 to 2022; 2) examining the potential of integrating GIS with RS in the 
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study of the spatial distribution of the different LULC changes; 3) determining 
the change in LULC categories by spatial comparison of the LULC maps pro-
duced. 

2. Materials and Methods 
2.1. Description of the Study Area 

The study area is located in Keur Massene, southwestern Mauritania in the 
Senegal River delta (Figure 1) and is an arable area with very rich land, which 
allows for the growing of crops (agricultural projects). Therefore, in this area, ir-
rigated agriculture is the main activity of the population [12]. The Islamic Re-
public of Mauritania is a coastal country located in northwest Africa. It lies be-
tween 15 - 27 degrees north latitude and 5 - 17 degrees west longitude, the terri-
tory covers an area of 1,030,700 square kilometres. It is bounded on the north by 
Western Sahara and Algeria, on the east by Mali, on the south by Mali and 
Senegal and on the west by the Atlantic Ocean on a coast of more than 700 kilo-
metres [13]. The country is divided administratively into 13 regions, In Mauri-
tania, there are generally three types of climate, which are a dry tropical climate 
of the Sahelo-Sudanese (characterized by 8 dry months in the extreme south of 
the country with rainfall greater than 400 mm per year); a sub-desert climate of 
the Sahelo-Saharan type in the centre of the country (characterized by high 
thermal amplitude and rainfall of between 200 and 400 mm per year); and a de-
sert climate of the Saharan type in the north (characterized by rainfall of less 
than 200 mm/year [14]. 
 

 

Figure 1. Map of the study area. Source: Author. 
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It is constituted by a three-quarters desert, which is characterized by a gen-
erally hot and dry climate marked by relatively mild winters. The average 
minimum temperatures are between 19˚C to 23˚C, and the maximum is be-
tween 30˚C to 23˚C. The Senegal River is the only permanent watercourse in 
Mauritania and is used for irrigation, transport, drinking and hydroelectric 
power [15]. Mauritania’s soils are mostly poor in organic matter and have a 
high concentration of salt, with 80% of skeletal soil [12]. The most important 
forest resource in Mauritania in terms of density is found in the Senegal River 
valley and along its tributaries. It is estimated that there are 138,000 ha of pro-
tected forests and 48,000 ha of classified forests. Forests play an important role 
in maintaining soil fertility by shedding their leaves which contain many nu-
trients [16], and also help to bind soil particles with the help of plant roots. 
Forest cutting or deforestation in Mauritania is found in the Senegal River val-
ley and along its tributaries, resulting in severe soil degradation. The project 
area is located in town and urban commune called “Keur Massene” which is in 
a region called “Trarza”, which is a region in southwest Mauritania (Figure 1) 
with a total area of 67,800 square kilometres, surrounded by the north by the 
regions of Inchiri and Adrar, to the east by Brakna and to the south by Senegal 
River. The water resources of the Trarza region are used for a variety of pur-
poses, from urban water supply to agriculture. About 70% of the Trarza terri-
tory has a typical Saharan climate, while the remaining 30% has a Sahara-Sa- 
helian climate, as it is located in the transition zone between the Sahara (desert 
zone) and the Sahel (semi-desert or semi-arid zone). The soils of the Senegal 
River delta in Mauritania are salty due to the installation of the Diama dam 
[17].  

2.2. Data Collection 

Satellite image data for the LULC classification were downloaded from the 
United States Geological Survey (USGS) Earth Explorer website  
(https://earthexplorer.usgs.gov/) and are from the Landsat 8 OLI-Thermal In-
frared Sensor (TIRS) dataset. The quality of the images, particularly those with 
little or no cloud cover, affected the selection of Landsat satellite image dates. 
Each Landsat image was georeferenced to the Universal Transverse Mercator 
Zone 28 North coordinate system and the WGS 84 datum. Landsat data sets are 
freely available through the USGS Earth Explorer online archive (free download 
worldwide). Seven spectral bands (1 - 7) with a spatial resolution of 30m make 
up the Landsat 8 OLI dataset. The LULC map was produced from these datasets. 
The downloaded data were in Geo TIFF file format. Each band of the image dis-
plays the intensity values of the research area for a certain wavelength as a grey-
scale image. Table 1 shows the spectral properties of the Landsat data. Cloudy 
images and unwanted shadows considerably decrease the accuracy of the clas-
sification result. Therefore, high-quality cloud-free scenes were chosen in this 
study.  
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Table 1. Details of satellite data used in the research. 

Year Date of Acquisition Path/Row 
Spatial 

Resolution 
Description 

1984 04th December   
Landsat 5, Thematic 

Mapper (TM) 

2000 08th December 205/49 30 m 
Landsat 7, Enhanced 

Thematic Mapper Plus 
(ETM+) 

2022 04th February   
Landsat 8, Operational 

Land Imager (OLI) 

2.3. Image Pre-Processing and Classification 

The classification scheme was adopted in this study. The study area was classi-
fied into five different classes. A detailed description of these classes is shown in 
Table 2. To create each class, texture, tone and colour were used [18]. In the image 
classification, these classes were assigned to the pixels. 

According to [19], it is “the user develops the spectral signatures of known 
categories, such as urban and forest, and then the software assigns each pixel in 
the image to the cover type to which its signature is most comparable” and “The 
most commonly used method for quantitative analysis of RS image data is su-
pervised classification” [20]. After defining Areas of Interest (AOI) named for-
mation classes, supervised classification was used. To represent a certain class, 
more than one training area was used. The training sites were selected based on 
the combination of three band numbers that can show us the nature of the class. 

2.4. Sample Selection for Training Data 

The datasets were created by combining several bands of satellite images with 
field survey data and Google Earth data. The satellite image of the right bank of 
the Senegal River and the Landsat subset image was linked and synchronized 
using Google Earth Pro. 

This procedure was used to find the distinctive features of the research area. 
The colour of a particular class was determined by various combinations of bands. 
The vegetation, woodland, crop and wetland survey used the band combination 
5-4-3. The band combination 7-6-4 was used for the built-up area survey. Based 
on the colour of the pixels, data sets were created. By drawing polygons and plac-
ing them in an AOI (Area of Interest) layer, training locations were created in 
the imagery. To form each specific class, 60 polygons were brought in and placed 
in the signature editor. These 60 polygons were combined and given a unique 
class name. The signature file was then created using the signature editor file (sig 
format). Three signature files were developed in this study to train the three da-
tasets (1984, 2000, and 2022). Lastly, the trained datasets were utilized in the 
process of supervised image classification. 
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Table 2. Image classification details. 

No Class name Description 

1 Water Bodies 
Areas covered by water, include rivers, oceans, reservoirs, 
Ponds, lakes, and streams. 

2 Vegetation 

The vegetation types that can be found are forest, 
rainforest, damaged forest, marsh forest, woodland, 
mangrove, grassland, savannah, steppe land, agro forest, 
herbaceous and short Sahelian grasses. 

3 Agriculture Land 
Plantation, irrigated agriculture, lowland agriculture, rain 
fed agriculture, declining agriculture. 

4 Build up Area 

Land surfaced with concrete, such as low, medium and 
high-density roads, residential, commercial and industrial 
structures, educational establishments, public transport 
systems, open-roof concrete buildings and other 
man-made buildings. 

5 Barren Land 
All the land that is bare, i.e. without vegetation, 
uncultivated, rocky terrain, deserts, and sandy beaches 
near rivers and streams. 

2.5. Accuracy Assessment 

One of the most important final steps in the classification process is the accuracy 
assessment. The accuracy assessment aims to quantitatively determine how well 
the pixels were sampled in the appropriate land cover categories. In addition, 
locations that could be easily identified on the high-resolution Landsat image, 
Google Earth, and Google Map were the main criteria for selecting pixels for the 
accuracy assessment. In the classified image of the research area, a total of 70 
points (locations) were formed. The reference column of the accuracy assess-
ment cell table was filled in using the best estimate for each reference point after 
generating the classified images, and the accuracy of the classified images was 
determined using QGIS software. The evaluation of the classification accuracy is 
an essential step after the classification of the images.  

The producer’s accuracy describes the number of commission errors. For each 
class, omission errors occur when pixels that belong to one class are included in 
other classes. Another indicator characterising the omission errors is the user’s 
accuracy.  

An accuracy assessment was performed by using QGIS for 1984, 2000, and 
2022 LULC maps. One of the most essential final steps in the classification proc-
ess is the accuracy assessment. Its objective is to quantitatively determine how 
accurately the pixels have been sampled into the correct land cover categories. In 
addition, locations that are easily identifiable both on the high-resolution Land-
sat image and on Google Earth or Google Map were the focus of the selection of 
pixels for the accuracy assessment. A total of 70 points (locations) were created 
in the classified image of the study area. Google Earth, Google Map, and field 
visits were also used as reference sources to classify the selected points. 
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2.6. Land Use/Cover Change Detection 

The change detection methods based on RS and GIS are popular due to their low 
cost and high temporal resolution. The most popular strategy for identifying 
changes in LULC is the post-classification comparison technique, which is based 
on supervised maximum likelihood classification. This approach has shown 
good overall classification accuracy for a range of data [21]. In order to identify 
where a change has occurred, the post-classification comparison approach com-
pares the respective classes after categorising the photos. The post-classification 
comparison approach achieved the highest classification accuracy in a compara-
tive analysis of several techniques. 

The change detection process is the method of identifying changes in an ob-
ject or phenomenon by monitoring it at various intervals [22], In this research, 
the intersection geoprocessing tools of ArcMap 10.8 were used to identify the 
change processes of LULC for the periods 1984-2000, 2000-2022, and the net 
change between 1984 and 2022. This method was chosen because of the ease of 
comparing two images from different sensors and periods [23]. 

This is also the method that has been used most frequently to identify changes 
[24], and it has the major advantage of showing “from-to” changes. However, 
the disadvantage of this method is that it requires two classifications and is de-
pendent on the classification of individual images [25]. In this method, the three 
images of different dates are classified and labelled independently. The area of 
change is then calculated with an intersecting image attribute table using ArcMap 
10.8. The results were presented in a table and map format. 

3. Results and Discussion 
3.1. Results 

1) Land Use and Land Cover 1980: 
The layout of the LULC map generated from the Landsat 8 dataset is shown in 

Figure 3. The land categories for the year 1984 and their statistics are presented 
in Table 3. From the results, the largest category was barren land (68667.49 ha, 
66.43%), followed by vegetation (28187.61 ha, 27.27%). The other land use categories  
 
Table 3. Extent and percentage of LULC categories of images classified. 

LULC categories 
1984 2000 2022 

(ha) (%) (ha) (%) (ha) (%) 

Agriculture Land 317.76 0.31% 27478.6 26.58% 24926.3 24.11% 

Vegetation 28187.61 27.27% 20645.9 19.97% 44394.3 42.95% 

Water Bodies 5170.93 5.00% 10113.8 9.78% 11296.4 10.93% 

Barren Land 68667.49 66.43% 39001.2 37.73% 21577.7 20.88% 

Build up Area 1022.17 0.99% 6126.37 5.93% 1171.9 1.13% 

Total 103,366 100% 103,366 100% 103,366 100% 

https://doi.org/10.4236/ars.2022.114011


A. H. Diallo et al. 
 

 

DOI: 10.4236/ars.2022.114011 189 Advances in Remote Sensing 
 

were water bodies (5170.93 ha, 5% of the total area), built-up areas (1022.17 ha, 
0.99% of the total area) and finally agricultural land (317.76 ha, 0.31% of the to-
tal area). 

2) Land Use and Land Cover 2000: 
The result of the LULCC classification for 2000 is shown in Figure 2 and 

summarized in Table 3. It revealed that the largest land cover class was barren 
land, with a total of 39001.2 ha, which is 37.73% of the entire study area. It was 
followed by agricultural land, which occupied a total of 27478.6 ha, which is 
about 26.58% of the study area. The third in this order was identified as vegeta-
tion, which was about 20645.9 ha, representing 19.97%. The fourth was water 
bodies, with 10113.8 ha accounting for 9.78%, and the built-up area was the least 
covered land class, which occupied 6126.37 ha with 5.93%. 

3) Land Use and Land Cover 2022: 
For 2022, the spatial distribution for LULC Change classes is shown in Table 

2 and Figure 3 Results show that vegetation took the first position, occupying 
44394.3 ha or 42.95% of the area, followed by agricultural land, which occupied a  
 

 

Figure 2. Area under different land use and land cover classes (1984, 2000, and 2015). 
 

 

Figure 3. Maps of LULC for 1984, 2000 and 2022 in the study area. 
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total area of 24926.3 ha, which made up 24.11% of the study area. Barren Land 
occupied the third position with 21577.7 ha making up 20.88% of the entire 
study area. Water Bodies maintained the fourth position with 11296.4 ha repre-
senting 10.93%. Build-up Area occupied the fifth and last position with 1171.9 
ha meaning 1.13%. 

4) Accuracy Assessment 
The 1984 LULC map had an overall kappa statistic of 0.97 and an overall ac-

curacy of 98.60%. Producer accuracy for each class was higher than or equal to 
97.9%. The user’s accuracy for three classes (water bodies, built-up areas, and 
barren land) was 100%. The agricultural land and vegetation categories had user 
accuracy of 90% and 95%, respectively (Table 4). For the LULC 2000, the overall 
kappa statistic and overall accuracy of the LULC 2018 map were 0.82% and 
86.32%, respectively (Table 5). The producer accuracy for each class was greater 
than 71.4%. User accuracy for all classes, except in built-up areas (60%), was 
greater than 80%. The overall accuracy for 2000 was lower than that for 1984, 
which [26] suggested could be attributed to combining images from different 
years due to availability requirements and cloud cover, which must be less than 
10%. For 2022, the overall accuracy was 91.7%, while the producer and user ac-
curacy ranged from 75.1 to 100% and over 80%, respectively. The Kappa coeffi-
cient was 0.88 (Table 6). 
 
Table 4. Error matrix of the classified image 1984. 

Classified Image 
Reference Data Row 

Total 
User’s Accuracy (%) 

W V AL BA BL 

Water Bodies (W) 16 0 0 0 0 16 100 

Vegetation (V) 0 19 0 0 1 20 95 

Agriculture Land (AL) 0 0 9 0 1 10 90 

Build up Area (BA) 0 0 0 10 0 10 100 

Barren Land (BL) 0 0 0 0 14 14 100 

Column Total 16 19 9 10 16 70 Overall Accuracy = 98.60% 

Procedure’s Accuracy 100 100 100 100 97.9 
 

Kappa coefficient = 0.97 

 
Table 5. Error matrix of the classified image 2000. 

Classified Image 
Reference Data Row 

Total 
User’s Accuracy (%) 

W V BL AL BA 

Water Bodies (W) 14 1 1 0 0 16 87.5 

Vegetation (V) 0 18 0 2 0 20 90 

Barren Land (BL) 0 1 13 0 0 14 92.9 

Agriculture Land (AL) 0 1 0 9 0 10 80 

Build up Area (BA) 0 2 2 0 6 10 60 

Column Total 14 23 16 11 6 70 Overall accuracy = 86.35% 

Procedure’s Accuracy (%) 100 71.4 95 91.5 100 
 

Kappa coefficient 0.82 
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Table 6. Error matrix of the classified image 2022. 

Classified Image 
Reference Data Row 

Total 
User’s Accuracy (%) 

W AL V BL BA 

Water Bodies (W) 14 1 1 0 0 16 87.5 

Agriculture Land (AL) 0 9 0 1 0 10 90 

Vegetation (V) 0 0 18 2 0 20 90 

Barren Land (BL) 0 0 0 14 0 14 100 

Build up Area (BA) 0 0 0 2 8 10 80 

Column Total 14 10 19 19 8 70 Overall accuracy = 91.70% 

Procedure’s Accuracy (%) 100 97 98.3 75.1 100 
 

Kappa coefficient 0.88 

 
The Kappa coefficients demonstrate that all the classified images were almost 

perfect as they ranged from 0.82 to 0.97. 

3.2. Discussion 
3.2.1. Change Detection in Land Use/Land Cover 
As Figure 4 shows results for analysis of land use change using the supervised 
classification method from 1984 to 2022 showed that several soil classes (built- 
up area, vegetated area, water bodies, agricultural land, and bare soil) covered 
southwestern Mauritania in the Senegal River delta. 

In general, southwestern Mauritania, along the Senegal River delta, has ex-
perienced considerable changes in land use and land cover over the past three 
decades, throughout its length and width. However, changes have been signifi-
cant in the central part of the study area, which also supports the main cultiva-
tion of rice, and along the Senegal River, where invasive plants can thrive. The 
details of land use and cover change in the study area over the selected period 
(1984-2000-2022) are shown in Figure 4. 

1) LULC Change Detection from 1984 to 2000: 
Agriculture, water bodies, and built-up area all experienced increases in the 

first 16 years of the study period, from 1984 to 2000. For agricultural land, the 
change is primarily due to the period between 1990 and 2000, when the popula-
tion began to shift from rain-fed crops such as maize and wheat, known as walo 
crops, to irrigated rice crops in the study area. In addition, at that time, agricul-
ture, water bodies, and built-up areas occupied a significant portion of the bar-
ren land as shown in Figure 4. 

2) LULC Change Detection from 2000 to 2022: 
Between 2000 and 2022, vegetation increased significantly by 115.03% (2748.38 

ha), followed by water bodies (11.69%, 1182.55 ha), while there was a large de-
crease in the built-up area by 80.87% (4954.47 ha), barren land by 44.67% 
(1723.50 ha), and agricultural land by 9.29% (2552.28 ha) see Figure 4. 

3) Net Change Detection from 1984 to 2022: 

https://doi.org/10.4236/ars.2022.114011


A. H. Diallo et al. 
 

 

DOI: 10.4236/ars.2022.114011 192 Advances in Remote Sensing 
 

 

Figure 4. Area Change 1984 to 2000, 2000 to 2022, and net change from 1984 to 2022. 
 

During the period 1984-2022, there were net increases in the area of the fol-
lowing areas: agricultural land (221%), water bodies (118.46%), vegetation 
(57.50%) and built-up areas (14.65%), while there was only one decrease in the 
area of barren land (−68.58%). 

3.2.2. Discussion of Factors Accounting for Land Cover Change 
In 1984, there was almost no land used for agriculture, and what there was ap-
peared to be irrigated land located near the Senegal River. Over the past 38 years, 
there have been both positive and negative changes in the LULC categories. While 
the area of barren land has decreased, the area of water bodies has increased. As 
shown in Table 3, the agricultural land, vegetation, and barren soil categories 
have seen the greatest changes in the area, followed by water bodies and build up 
areas. 

1) Water bodies: 
The area of water bodies has increased by a net 6125.47 ha, from 5170.93 ha in 

1984 to 11296.4 ha in 2022. The creation of the Diama Dam and the Diawling 
National Park in Mauritania is the reason for the increase in the area occupied 
by water bodies. 

The Diama Dam, built on November 28, 1985, is a floating structure that 
opens during flood periods to maintain the regular flow of the river and closes 
during low-water periods to prevent a rise in salinity. 

The Diawling National Park in Mauritania was created in 1991 and is located 
on the right bank of the lower Senegal River delta. Its primary area is more than 
16,000 ha, while its surrounding area is more than 56,000 ha. 

According to a study published in 2020, Diawling is the only park in the West 
African Marine Protected Areas Network (RAMPAO) to show an overall posi-
tive evolution of all its habitats, even though it is one of the most pressurized 
parks in the network. The ecosystems of this estuarine environment have thus 
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been restored, redrawing a rich and varied landscape: at the junction between 
desert, ocean and river, estuaries, islands, mangrove ecosystems, inland dunes, a 
coastal dune, flood plains and the Senegal River are added. 

2) Agriculture land: 
From 317.76 ha in 1984 to 24926.3 ha in 2022, the increase in agricultural land 

has resulted in a net increase of 24608.54 ha. The Study Area’s usable agricul-
tural land has expanded rapidly in recent years. The expansion of Mauritania’s 
agricultural industry has increased the area of agricultural land. 

According to FAO data [27], Mauritania’s agriculture has grown significantly 
in recent years and 1991 accounted for half of the country’s grain production. 

Another explanation for this increase is that businessmen have invested in the 
agricultural sector after realizing the benefits of agriculture, and the study area is 
one of the best places for agriculture. 

3) Build-up area: 
The area of built-up land increased by a total value of 5104.2 ha, from 1022.17 

ha in 1984 to 6126.37 ha in 2000. However, it decreased to 1171.9 ha, or 3932.3 
ha, in 2022. Population growth, tourism, and housing demand have all contrib-
uted to the increase in built-up land area. The study area is a rural area where 
people cultivated land and grazed their animals, but after the construction of the 
dam and park, they could not find land for their animals because the protected 
area was for marine ecosystems. Therefore, they moved in search of new places 
where their animals could graze and be thriving. That’s why the area decreased. 
There were also problems with businessmen taking most of the land for their 
business, so people had to move to other lands where their animals could graze 
freely. The increase of invasive plants, especially typha, has also significantly 
impacted population movements, as this plant occupies most of the arable land 
and there was no solution to combat it. 

4) Vegetation: 
The change detection results showed a decrease in vegetation land with a net 

change of 7541.71 ha for 1984-2000 but an increase of 23748.4 ha for 2000-2022. 
The study found that built-up areas, water bodies and agricultural land have all 
increased as a result of vegetation loss. The reduction of vegetations is mainly 
caused by the expansion of cultivated land for agriculture, which is the main 
source of livelihood for most rural populations, especially in the study area, 
where the conversion of vegetation to agricultural land has been demonstrated 
by [11] [28]. 

The increase in the area of invasive plants, namely Typha, is the reason for the 
increase in the vegetation found in this class. Much of West Africa is host to the 
invasive species typha. Mauritania, Senegal, Mali and Guinea have all struggled 
to control typha, which causes a variety of problems. For those who depend on 
rivers for drinking water, crop irrigation, or fishing, it makes the banks inacces-
sible. Water bodies will then have developed throughout this period, allowing 
the plant to find a place to spread and thrive. 
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5) Barren land: 
The net change results show a decrease in barren/other land of 47089.79 hec-

tares between 1984 and 2022 for all periods analyzed. The decline in this cate-
gory is brought on by an increase in vegetation, agricultural land, and water 
bodies, in addition to the park as a protected area. 

4. Conclusions 

The objective of this study was to analyze the changes in LULC from 1984 to 
2022 in the study area using USGS remote sensing data and GIS techniques. The 
results indicated that there was a remarkable change in all classes of LULC, with 
an increase in all classes, except barren land, which had a tremendous decrease 
of −68.58% for the total study area. Therefore, for the total study area, an in-
crease in agricultural land (221%), water bodies (118.46%), vegetation (57.50%), 
and built-up areas (14.65%) was observed.  

The construction of the Diama Dam in 1986, which had many negative im-
pacts on the study area, including the development of the Typha Australis plant, 
and the establishment of the Diawling National Park in 1991 to manage these 
impacts, are the main factors driving this change, as the available research in the 
study area shows, and are the causes of the changes in LULC in the study area. 

The government should adopt effective strategies and procedures with the co-
operation of non-governmental organisations to reduce and prevent the negative 
impacts of this invasive plant, Typha Australis. 
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