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Abstract 
In this paper, we present some properties of m-convex stochastic processes. 
The most important results are: a generalization of the sandwich theorem and 
a result on Hyers-Ulam stability, given for m-convex functions. The first result 
allows us to bound an m-convex stochastic process by two convex stochastic 
processes, and the second allows us to approximate controlled perturbations 
of an m-convex stochastic process by an m-convex function. As a consequence 
of these two results, we obtain a Hermite-Hadamard type inequality for m-
convex stochastic processes. 
 

Keywords 
m-Convex Stochastic Processes, Hermite-Hadamard Inequality, Sandwich 
Theorem, Hyer-Ulam’s Stability 

 

1. Introduction 

In 1974, B. Nagy in [1] developed a stochastic processes characterization to solv-
ing a generalization of the Cauchy functional equation. Then, in 1980, K. Ni-
kodem in [2] obtained some properties of convex stochastic processes and gave 
generalizations of several results proved in [1]. Both research works began a line 
of research on convex stochastic processes; as a result of this line of research, the 
following papers have been obtained [3]-[9]. 

The concept of m-convex function was introduced by G. H. Toader in [10]. We 
can find this type of functions in the articles [11]-[29], in which some algebraic 
properties for this type of functions were demonstrated, classical integral inequal-
ities of the Hermite-Hadamard type and some stability results and sandwich the-
orems. 

Interesting and important inequalities for m-convex functions were developed 
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by M. K. Bakula in [11] and M. E. Özdemir in [30]. On the other hand, some 
Venezuelan researchers have developed numerous works on this topic; some ex-
amples can be found in the papers [3] [4] [16]-[24]. Additionally, in 1994, K. 
Baron, J. Matkowski and K. Nikodem in [12] developed a characterization of real 
functions that can be separated by a convex function and in 1995, K. Nikodem 
and S. Wasowicz proved a sandwich theorem for affine functions in [28]. 

For their part, in 2007, K. Nikodem and Z. Páles in [29] studied the classic 
Kakutani theorem and extended it to the convexity in the sense of Beckenbach, 
getting as consequences stability results of the Hyers-Ulam type. Subsequently, in 
2016, N. Merentes and K. Nikodem in [27] proved that a pair of functions can be 
separated by functions strongly convex, approximately concave, or c-quadratic-
affine functions, obtaining as a consequence, stability results of the Hyers-Ulam 
type. In [27] it has been shown an analogue result of the sandwich theorem for con-
vex functions that is not true in the class of m-convex functions with ( )0,1m∈ . 
However, T. Lara in 2017 proved a useful sandwich result for the function m-
convex in [20]. 

The main objective of this paper is to perform a sandwich-type theorem and a 
Hyer-Ulam’s stability theorem for m-convex stochastic processes as a counterpart 
to those performed for m-convex functions. 

2 Preliminaries 

Definition 2.1. A function :f I → , where I ⊆   is an interval, is convex 
if 

( )( ) ( ) ( ) ( )1 1 ,f tx t y tf x t f y+ − ≤ + −  

para todo ,x y I∈  y ( )0,1t∈ . 
If the inequality is strict (<) for ,x y I∈ , ( )0,1t∈ , then we say that the func-

tion f  is strictly convex. If the inequality holds in the opposite direction (≥) we 
say that f  is concave and if it is verified in the strict sense (>) we say that f is 
strictly concave. 

Definition 2.2. Let ( ), ,Ω    be a probability space. A function :X Ω→  
is a random variable if it is  -measurable. A function :X I ×Ω→ , where 
I ⊆   is an interval, is a stochastic process if for each t I∈  the function 
( ),X t ⋅ , is a random variable. 
A stochastic process :X I ×Ω→  is: 
Definition 2.3. Jensen-Convex if, for each ,a b I∈ , the following inequality is 

satisfied:  

( ) ( ) ( ), ,
, . . .

2 2
X a X ba bX a e

⋅ + ⋅+ ⋅ ≤ 
 

 

Definition 2.4. Convex if, for each ,a b I∈ , ( )0,1t∈  the following inequality 
is satisfied: 

( )( ) ( ) ( ) ( ) ( )1 , , 1 , . . .X ta t b tX a t X b a e+ − ⋅ ≤ ⋅ + − ⋅  
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Definition 2.5. Quasi-Convex if, for each ,a b I∈ , ( )0,1t∈  the following in-
equality is satisfied: 

( )( ) ( ) ( ) ( )1 , max , , , . . .X ta t b X a X b a e+ − ⋅ ≤ ⋅ ⋅    

Also, we say that a stochastic process :X I ×Ω→  is: 
Definition 2.6. Continuous in probability in the interval I , if for all 0t I∈  

we have 

( ) ( ) ( )
0

0lim , , . .
t t

P X t X t a e
→

− ⋅ = ⋅  

where limP −  denotes the limit in probability.  
Definition 2.7. Mean-Square contiuous in I , if for all 0t I∈  we have 

( ) ( )( ) ( )
0

2
0lim , , 0. . .

t t
X t X t a e

→
 
 

=


⋅ − ⋅  

where ( ),X t ⋅    denotes the expectation value of the random variable ( ),X t ⋅ .  
Definition 2.8. Differentiable at a point t I∈ , if there is a random variable 
( ), :X t I′ ⋅ ×Ω→  defined as follows: 

( ) ( ) ( ) ( )
0

0

0

, ,
, lim . . .

t t

X t X t
X t P a e

t t→

⋅ − ⋅
′ ⋅ = −

−
 

Remark 2.9. Every mean-square continuous stochastic process is a continuous 
in probability stochastic process; however, the converse is not true.  

Definition 2.10. Let :X I ×Ω→  be a stochastic process such that 

( )( )2
,X t ⋅ < +∞  

  for all .t I∈  The random variable :Y Ω→  is called the 

mean-square integral of the stochastic process X  en [ ],a b I⊆ , if for any parti-
tion 0 1 na t t t b= < < < =  of the interval [ ],a b  y [ ]1,k k kt t−Θ ∈  ( 1, ,k n=  ), 
we have 

( )( ) ( ) ( )
2

1
1

lim Θ , 0. . .k k kn k
X t t Y a e

+∞

−→+∞ =

  
⋅ − − ⋅ =  

   
∑  

In this case, the following notation is used:  

( ) ( ) ( ), d . . .
b

a
Y X s s a e⋅ = ⋅∫  

Remark 2.11. For the existence of the mean-square integral of the stochastic 
process X , it is sufficient that X  be mean-square continuous. Basic properties 
of the mean-square integral can be read in [31]. 

Definition 2.12. Let [ ]0,1m∈  and [ ]0,I c= . A mean-square continuous sto-
chastic process :X I ×Ω→ , is m-convex, if for all ,a b I∈  y [ ]0,1t∈ , the 
following inequality is satisfied: 

( )( ) ( ) ( ) ( ) ( )1 , , 1 , . . .X ta m t b tX a m t X b a e+ − ⋅ ≤ ⋅ + − ⋅  

We denote by ( ),mS c ⋅ , the class of stochastic processes m-convex in I , such 
that ( )0, 0X ⋅ ≤ . 

Remark 2.13. If in the previous definition, we take 0t = , then 
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( ) ( ) ( ), , , . .X mb mX b a e⋅ ≤ ⋅  

for all b I∈ . 

3. Main Results 

First, let’s establish some algebraic properties for m-convex stochastic processes. 
Lemma 3.1. Let [ ]: ,Y a b ×Ω→  be a mean-square stochastic process, 

[ ]1 2, 0,1m m ∈ , such that 1 2m m≤  and 2 0.m ≠  If Y  is 2m -convex almost 
everywhere, then Y  is 1m -convex almost everywhere. 

Proof. Since Y  is 2m -convexo and 1 2m m≤ , we have  

( )( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

1
1 2

2

1
2

2

1
2

2

1

1 , 1 ,

, 1 ,

, 1 ,

, 1 , . . .

mY ta m t b Y ta m t b
m

mtY a m t Y b
m

mtY a m t Y b
m

tY a m t Y b a e

  
+ − ⋅ = + − ⋅     

 
≤ ⋅ + − ⋅ 

 
 

≤ ⋅ + − ⋅ 
 

= ⋅ + − ⋅

 

Therefore, Y  is 1m -convex almost everywhere.                      □ 
Proposition 3.2. Let 0a ≥  and [ ], : ,X Y a b ×Ω→  be mean-square sto-

chastic processes, If X  is 1m -convex and Y  is 2m -convex almost every-
where, with 1 2m m≤  and 2 0m ≠ , then X Y+  y Xα , 0α ≥  are 1m -con-
vex almost everywhere. 

Proof. By the previous lemma, we have that Y  es 1m -convex almost every-
where. 

For [ ]1 2, ,a bλ λ ∈  and [ ]0,1t∈ , we obtain 

( ) ( )( )
( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )( )( ) ( )

1 1 2

1 1 2 1 1 2

1 1 2 1 1 2

1 1 1 2 1 2

1 1 2

1 ,

1 , 1 ,

, 1 , , 1 ,

, , 1 , 1 ,

, 1 , . . .

X Y t m t

X t m t Y t m t

tX m t X tY m t Y

tX tY m t X m t Y

t X Y m t X Y a e

λ λ

λ λ λ λ

λ λ λ λ

λ λ λ λ

λ λ

+ + − ⋅

= + − ⋅ + + − ⋅

≤ ⋅ + − ⋅ + ⋅ + − ⋅

= ⋅ + ⋅ + − ⋅ + − ⋅

= + ⋅ + − + ⋅

 

From where, X Y+  is 1m -convex almost everywhere. 
Besides, 

( ) ( )( ) ( )( )( )
( ) ( ) ( )( )
( ) ( ) ( )

( )( ) ( )( )( ) ( )

1 1 2 1 1 2

1 1 2

1 1 2

1 1 2

1 , 1 ,

, 1 ,

, 1 ,

, 1 , . . .

X t m t X t m t

tX m t X

tX m t X

t X m t X a e

α λ λ α λ λ

α λ λ

α λ α λ

α λ α λ

+ − ⋅ = + − ⋅

≤ ⋅ + − ⋅

= ⋅ + − ⋅

= ⋅ + − ⋅

 

From where, Xα  is 1m -convex almost everywhere.                  □ 
Proposition 3.3. Let [ ], : 0,X Y b ×Ω→  be nonnegative stochastic processes 

such that 

( ) ( )( ) ( ) ( )( ) ( )1 2 1 2, , , , 0 . .X X Y Y a eλ λ λ λ⋅ − ⋅ ⋅ − ⋅ ≥  
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for all [ ]1 2, 0,bλ λ ∈ . If ,X Y  are m-convex stochastic processes, then XY  is 
m-convex almost everywhere. 

Proof. Let [ ]1 2, 0,bλ λ ∈  and ( )0,1t∈ . 
Since X  and Y  are m-convex stochastic processes, we have 

( )( )
( )( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 2

1 2 1 2

1 2 1 2

2
1 1 1 2

22
2 1 2 2

2
1 1 1 2 2 1

22
2 2

1 ,

1 , 1 ,

, 1 , , 1 ,

, , , 1 ,

1 , , 1 , ,

, , 1 , , , ,

1 , , .

XY t m t

X t m t Y t m t

tX m t X tY m t Y

t X Y tX m t Y

m t X tY m t X Y

t X Y mt t X Y X Y

m t X Y

λ λ

λ λ λ λ

λ λ λ λ

λ λ λ λ

λ λ λ λ

λ λ λ λ λ λ

λ λ

+ − ⋅

= + − ⋅ + − ⋅

≤ ⋅ + − ⋅ ⋅ + − ⋅

= ⋅ ⋅ + ⋅ − ⋅

+ − ⋅ ⋅ + − ⋅ ⋅

= ⋅ ⋅ + − ⋅ ⋅ + ⋅ ⋅  

+ − ⋅ ⋅

 

Furthermore, the inequality: 

( ) ( )( ) ( ) ( )( )1 2 1 2, , , , 0.X X Y Yλ λ λ λ⋅ − ⋅ ⋅ − ⋅ ≥  

Which implies 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 1 2 2 1, , , , , , , , .X Y X Y X Y X Yλ λ λ λ λ λ λ λ⋅ ⋅ + ⋅ ⋅ ≥ ⋅ ⋅ + ⋅ ⋅  

Hence, 

( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

1 2

2
1 1 1 2 2 1

22
2 2

2
1 1 1 1 2 2

22
2 2

22 2
1 1 2 2

1 ,

, , 1 , , , ,

1 , ,

, , 1 , , , ,

1 , ,

1 , , 1 1 , ,

1

XY t m t

t X Y mt t X Y X Y

m t X Y

t X Y mt t X Y X Y

m t X Y

t mt t X Y mt t m t X Y

t t m t X

λ λ

λ λ λ λ λ λ

λ λ

λ λ λ λ λ λ

λ λ

λ λ λ λ

λ

+ − ⋅

≤ ⋅ ⋅ + − ⋅ ⋅ + ⋅ ⋅  

+ − ⋅ ⋅

≤ ⋅ ⋅ + − ⋅ ⋅ + ⋅ ⋅  

+ − ⋅ ⋅

  = + − ⋅ ⋅ + − + − ⋅ ⋅   
= + −   ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
1 1 2 2

1 1 2 2

, , 1 1 , ,

1 , , 1 , , .

Y m t t m t X Y

t m t tX Y m t X Y

λ λ λ

λ λ λ λ

⋅ ⋅ + − + − ⋅ ⋅  
= + − ⋅ ⋅ + − ⋅ ⋅      

 

On the other hand, 

( ) ( )1 1 1,t m t t t+ − ≤ + − =  

since, 0 1m≤ ≤  and ( )0,1t∈ . 
Therefore 

( )( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 2

1 1 2 2

1 1 2 2

1 2

1 ,

1 , , 1 , ,

, , 1 , ,

, 1 , . . .

XY t m t

t m t tX Y m t X Y

tX Y m t X Y

tXY m t XY a e

λ λ

λ λ λ λ

λ λ λ λ

λ λ

+ − ⋅

≤ + − ⋅ ⋅ + − ⋅ ⋅      
≤ ⋅ ⋅ + − ⋅ ⋅

= ⋅ + − ⋅

 

From this last inequality, we conclude that XY  is m-convex almost every-
where.                                                          □ 

Proposition 3.4. Let [ ]: 0,X b ×Ω→  and [ ]: 0,Y r ×Ω→  be m-convex 
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stochastic processes such that ( ) [ ], 0,rang X rλ ⋅ ⊂    for all [ ]0,bλ∈ . If Y  is 
increasing, then the composition function Y X  is m-convex in [ ]0,b  almost 
everywhere. 

Proof. Let [ ]1 2, 0,bλ λ ∈  y [ ]0,1t∈ , then we have 

( ) ( )( ) ( )( )( )
( ) ( ) ( )( )
( )( ) ( ) ( )( )

( )( ) ( )( )( ) ( )

1 2 1 2

1 2

1 2

1 2

1 , 1 , ,

, 1 , ,

, , 1 , ,

, 1 , . . .

Y X t m t Y X t m t

Y tX m t X

tY X m t Y X

t Y X m t Y X a e

λ λ λ λ

λ λ

λ λ

λ λ

+ − ⋅ = + − ⋅ ⋅

≤ ⋅ + − ⋅ ⋅

≤ ⋅ ⋅ + − ⋅ ⋅

= ⋅ + − ⋅



 

 

Therefore, the function Y X  is m-convex in [ ]0,b  almost everywhere.  □ 
The following result gives necessary conditions under which a pair of stochastic 

processes may be separated by a stochastic process m-convex. We shall prove a 
sandwich type theorem inspired in [20]. 

Note that: 
Remark 3.5. If ( )0,I = +∞  or [ )0,I = +∞  and :X I ×Ω→  is a m-con-

vex stochastic process, then 

 ( ) ( ) ( ), , , . . .X ma mX a a I a e⋅ ≤ ⋅ ∈  (1) 

Theorem 3.6. Let ( )0,I = +∞  or [ )0,I = +∞  and :X I ×Ω→  be a 
mean-square integrable stochastic process, no negative and m-convex, then there 
exist a convex stochastic process :Z I ×Ω→  such that 

( ) ( ) ( ), , , , . . .aX a Z a mX for all a I a e
m

 ⋅ ≤ ⋅ ≤ ⋅ ∈ 
 

 

or equivalent 

( ) ( ) ( ) ( )1 , , , , . . .Z ma X a Z a for all a I a e
m

⋅ ≤ ⋅ ≤ ⋅ ∈  

Proof. Let ,a b I∈ . Since :X I ×Ω→  is a m-convex stochastic process, we 
have 

( )( ) ( ) ( ) ( )1 , , 1 , ,X ta m t b tX a m t X b+ − ⋅ ≤ ⋅ + − ⋅  

for all [ ]0,1t∈ . 

Replacing b  with b
m

 in the previous inequality, we obtain:  

( ) ( ) ( )1 , , 1 , .b bX ta m t tX a m t X
m m

   + − ⋅ ≤ ⋅ + − ⋅   
   

 

where from, 

( )( ) ( ) ( )1 , , 1 , .bX ta t b tX a m t X
m

 + − ⋅ ≤ ⋅ + − ⋅ 
 

 

On the other hand, from inequality (1), it follows that: 

( )( ) ( ) ( )

( )

1 , , 1 ,

, 1 , .

bX ta t b tX a m t X
m

a btmX t mX
m m

 + − ⋅ ≤ ⋅ + − ⋅ 
 

   ≤ ⋅ + − ⋅   
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Let :Y I ×Ω→  be the convex stochastic process, defined as follows:  

( ), : , ,aY a mX
m

 ⋅ = ⋅ 
 

 

we get 

( )( ) ( ) ( ) ( )1 , , 1 , .X ta t b tY a m t Y b+ − ⋅ ≤ ⋅ + − ⋅  

Applying the sandwich theorem for convex functions, we conclude that there 
exists a convex stochastic process :Z I ×Ω→ , such that  

( ) ( ) ( ), , , , .X a Z a Y a a I⋅ ≤ ⋅ ≤ ⋅ ∈  

Hence, 

( ) ( ) ( ), , , , , . .aX a Z a mX a I a e
m

 ⋅ ≤ ⋅ ≤ ⋅ ∈ 
 

 

or equivalent 

( ) ( ) ( ) ( )1 , , , , . . .Z ma X a Z a a I a e
m

⋅ ≤ ⋅ ≤ ⋅ ∈  

□ 

Theorem 3.7. Let 0b > , [ ]0,1m∈  and [ ], : 0,X Y b ×Ω→  be stochastic 
processes, where Y  is non-negative. There exists a m-convex stochastic process 

[ ]: 0,Z b ×Ω→ , such that X Z≤  in [ ]0, mb  and Z Y≤  in [ ]0,b , if and 
only if, for any [ ]1 2, 0,bλ λ ∈  and [ ]0,1t∈ , the following inequality holds almost 
everywhere 

( )( ) ( ) ( ) ( )1 2 1 21 , , 1 , .X t m t tY m t Yλ λ λ λ+ − ⋅ ≤ ⋅ + − ⋅  

Proof. (⇒ ) Suppose there exists a m-convex stochastic process  
[ ]: 0, ΩZ b × → , such that X Z≤  in [ ]0, mb  and Z Y≤  in [ ]0,b . 

If [ ]1 2, 0,bλ λ ∈  and [ ]0,1t∈ , then 

( )( ) ( )( )
( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 1 2

1 2

1 2

1 , 1 ,

, 1 ,

, 1 , . . .

X t m t Z t m t

tZ m t Z

tY m t Y a e

λ λ λ λ

λ λ

λ λ

+ − ⋅ ≤ + − ⋅

≤ ⋅ + − ⋅

≤ ⋅ + − ⋅

 

(⇐ ) Suppose for all [ ]1 2, 0,bλ λ ∈  y [ ]0,1t∈ , the following inequality holds  

( )( ) ( ) ( ) ( )1 2 1 21 , , 1 , .X t m t tY m t Yλ λ λ λ+ − ⋅ ≤ ⋅ + − ⋅  

Let us consider the following set  

( ) [ ] ( ){ }, 0, : , .YEnvConv p q b Y p q= ∈ × ⋅ ≤   

That is,   is the set of the convex hull of the epigraphs of Y . 
If ( ),p q ∈ , then by Caratheodory’s theorem, ( ),p q  belongs to the interior 

of S ⊂  , where S  is the affine convex set of the form  
( ) ( )( )1 1 2 2, 1 ,t p q t p q+ −  for [ ]0,1t∈  and ( ) ( )1 1 2 2, , ,p q p q  vertices of S . 

Let ( ){ }0 : ,q inf r p r S= ∈ ∈ . 
Since Y  is non-negative, we have S  is bounded set. Therefore, 0q q≥  and 
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( )0,p q  is a limit point of S , where from  

( ) ( ) ( )( )0 1 1 2 2, , 1 , ,p q t p q t p q= + −  

for some, [ ]0,1t∈  and ( ) ( )1 1 2 2, , ,p q p q  vertices of S . 
Hence 

( ) ( ) ( )
( ) ( ) ( )

( )( )
( )

0 1 2

1 2

1 2

, 1 ,

, 1 ,

1 ,

, .

q tY p t Y p

tY p t mY p

X tp m t p

X p

≥ ⋅ + − ⋅

≥ ⋅ + − ⋅

≥ + − ⋅

= ⋅

 

Let’s define  

( ) ( ){ }, : : , ,Z p inf q p q⋅ = ∈ ∈   

this infimum exists because Y  is non-negative. 
It is clear that, X Z≤  in [ ]0, mb , given that [ ]1 2,p p mp∈ . 

Besides, ( )( ), ,p Y p ⋅ ∈  for any [ ]0,p b∈  and Z Y≤  by the definition of 

infimum. 
It remains to be shown that, Z  es m-convex. 
Let [ ]1 2, 0,p p b∈  and [ ]0,1t∈ . If 1 2,q q  are such that  

( ) ( )1 1 2 2, , , ,p q mp mq ∈  

then 

( ) ( )( )1 2 1 21 , 1 .tp t mp tq t mq+ − + − ∈  

Consequently, 

( )( ) ( )1 2 1 21 , 1 ,Z tp t mp tq t mq+ − ⋅ ≤ + −  

for any 1 2,q q , in particular for the infimum. 
Therefore 

( )( ) ( ) ( ) ( ) ( )1 2 1 21 , , 1 , . . .Z tp t mp tZ p t mZ p a e+ − ⋅ ≤ ⋅ + − ⋅  

□ 

Corollary 3.8. Let 0b > , [ )0,1m∈  and [ ], : 0,X Y b ×Ω→  be stochastic 
processes, with Y  non-negative, such that  

( )( ) ( ) ( ) ( ) ( )1 2 1 21 , , 1 , , . .X t t m tY t mY a eλ λ λ λ+ − ⋅ ≤ ⋅ + − ⋅  

for all [ )0,1t∈ , then ( )0, 0X ⋅ ≤ .  
Proof. By the previous theorem, there exists a m-convex stochastic process, 
[ ]: 0,Z b ×Ω→ , such that X Z≤  in [ ]0, mb  y Z Y≤  in [ ]0,b . 

Therefore 

( )( ) ( )( ) ( ) ( ) ( )1 2 1 2 1 21 , 1 , , 1 , .X t t m Z t t m tZ t mZλ λ λ λ λ λ+ − ⋅ ≤ + − ⋅ ≤ ⋅ + − ⋅  

If 1 2 0λ λ= = , then 
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( ) ( )( )
( )( )

( )
( ) ( ) ( )

( )( ) ( )
( )

0, 0 1 0,

0 1 0,

0,

0, 1 0,

1 0,

0, . .

X X t t m

Z t t m

Z

tZ t mZ

t m t Z

a e

⋅ = + − ⋅

≤ + − ⋅

= ⋅

≤ ⋅ + − ⋅

≤ + − ⋅

≤

 

given that, ( )1 1t m t+ − < .                                          □ 
Next definition is the counterpart to the given for m-convex functions in [19]. 
Definition 3.9. Let 0ε ≥  and [ ]0,1m∈ . A stochastic process :X I ×Ω→  

is ε -m-convex, if for any [ ]1 2, 0,bλ λ ∈  and [ ]0,1t∈ , we have  

( )( ) ( ) ( ) ( ) ( )1 2 1 21 , , 1 , . . .X t m t tX m t X a eλ λ λ λ ε+ − ⋅ ≤ ⋅ + − ⋅ +  

An important consequence of the previous theorem, is the following Hyers-
Ulam-type stability result for m-convex stochastic processes. More in detail. 

Corollary 3.10. Let 0ε >  and [ ]0,1m∈ . If [ ]: 0, ,X b
m
ε ×Ω→ − +∞ 

 is a 

ε -m-convexo stochastic process, ther exixts a function [ ]: 0,Z b ×Ω→  m-
convex , such almost everywhere that 

( ) ( ) [ ], , , 0, .
2

X Z mb
m
ελ λ λ⋅ − ⋅ ≤ ∈  

Proof. Let :Y X
m
ε

= + . 

We have, Y  is a non-negative stochastic process. 
On the other hand, 

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2 1 2

1 2

1 2

1 2

1 2

1 , , 1 ,

, 1 , 1

1

, 1 ,

1, 1 , 1

1, 1 , , since 1 0.

X t t m tX t mX

tX t t mX t
m

t t
m

t X t m X t t
m m m

tY t mY t
m

tY t mY t
m

λ λ λ λ ε

ελ λ ε ε

ε ε

ε ε ελ λ ε

λ λ ε

λ λ ε

+ − ⋅ ≤ ⋅ + − ⋅ +

= ⋅ + + − ⋅ + − +

− − −

   = ⋅ + + − ⋅ + + −   
   

 = ⋅ + − ⋅ + − 
 

 ≤ ⋅ + − ⋅ − ≤ 
 

 

By the previous theorem, there exists a m-convex stochastic process  
[ ]: 0,H b ×Ω→ , such that X H≤  in [ ]0,mb  and H Y≤  in [ ]0,b . 

where from, 

[ ]in 0,X H Y X mb
m
ε

≤ ≤ = +  

Defining, :
2

Z H
m
ε

= − , we have to Z  is m-convex. 
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Besides, 

( ) ( ) [ ] ( ), , , 0, . . .
2

X Z mb a e
m
ελ λ λ⋅ − ⋅ ≤ ∈  

□ 
Theorem 3.11. Let [ ]: 0,X b ×Ω→  be a twice differentiable mean square 

stochastic process and 1 2,k k ∈ , such that 

1 2.k X k′′≤ ≤  

Then, for [ ]0,1m∈  fixed, [ ]0,a b∈  and [ ]0,1t∈  arbitrary, we have almost 
everywhere 

( ) ( ) ( ) ( ) ( ) ( )( )
( )

2

1

2

2

1
, 1 , 1 ,

2
( ) 1

.
2

mb a t t
k tX a t X mb X ta m t b

mb a t t
k

− −
≤ ⋅ + − ⋅ − + − ⋅

− −
≤

 

Proof. We define, 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )2

1
1

, : , 1 , 1 , ,
2

mb a t t
Y t tX a t X mb X ta m t b k

− −
⋅ = ⋅ + − ⋅ − + − ⋅ −  

with [ ]0,1t∈ . 
Then, 

( ) ( ) ( )( ) ( )
( ) ( )( )

2 2
1

2
1

, 1 ,

1 ,

0.

Y t a mb X ta m t b k mb a

mb a k X ta m t b

′′ ′′⋅ = − − + − ⋅ + −

 ′′= − − + − ⋅ 
≤

 

where from, Y  ia a concave stochastic process on [ ]0,1 ×Ω , moreover 
( ) ( )0, 1, 0Y Y⋅ = ⋅ = , therefore, ( ), 0Y t ⋅ ≥ , for all [ ]0,1t∈ , so left hand side of in-

equality holds. 
On the other hand, we define 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

2

2

0, : , 1 , 1 ,

1
, . .

2

Z tX a t X mb X ta m t b

mb a t t
k a e

⋅ = ⋅ + − ⋅ − + − ⋅

− −
−

 

with [ ]0,1t∈ . 
Using a procedure analogous to the previous one, it is shown that ( )0,Z ⋅  is a 

convex stochastic process on [ ]0,1 ×Ω , moreover ( ) ( )0, 1, 0Z Z⋅ = ⋅ = . 
Therefore, ( ), 0Y t ⋅ ≤ , for all [ ]0,1t∈ , so right hand side of inequality holds. □ 
As a consequence of the previous theorem, we obtain an integral inequality of 

Hermite-Hadamard type for m-convex stochastic processes. 
In more detail, the following result is obtained. 
Corollary 3.12. Let [ ]: 0,X b ×Ω→  be a twice differentiable mean square 

stochastic process and 1 2,k k ∈ , such that  

1 2.k X k′′≤ ≤  

Then, for [ ]0,1m∈  fixed, [ ]0,a b∈  and [ ]0,1t∈  arbitrary, we have almost 
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everywhere 

( ) ( ) ( ) ( )

( )

2

1

2

2

, , 1 , d
12 2

.
12

mb

a

mb a X a X mb
k X x x

mb a
mb a

k

− ⋅ + ⋅
≤ − ⋅

−

−
≤

∫
 

Moreover, if X  is a m-convexo stochastic process, then the following inequal-
ities of Hermite-Hadamard type take place: 

( ) ( ) ( ) ( )

( ) ( ) ( )

2

2

2

1

, , 1 , d
2 12

, ,
.

2 12

mb

a

X a X mb mb a
k X x x

mb a
X a mX b mb a

k

⋅ + ⋅ −
− ≤ ⋅

−

⋅ + ⋅ −
≤ −

∫
 

Proof. By the previous Theorem, for [ ]0,1m∈  fixed, [ ]0,a b∈  and [ ]0,1t∈  
arbitrary, we have 

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )

2

1

2

2

1
, 1 , 1 ,

2
1

. . .
2

mb a t t
k tX a t X mb X ta m t b

mb a t t
k a e

− −
≤ ⋅ + − ⋅ − + − ⋅

− −
≤

 

Integrating each term of the previous inequalities, with respect to [ ]0,1t∈ , and 
by the change of variable ( )1ta m t bα = + − , we get the first inequalities. 

With a similar procedure, the inequalities of Hermite-Hadamard type are ob-
tained, but considering now that ( ) ( ), ,X mb mX b⋅ ≤ ⋅ , since X  is a m-convexo 
stochastic process. 

□ 

4. Conclusions 

This paper establishes fundamental advances in the theory of m-convex stochastic 
processes. The central results of this research: The generalization of the sandwich 
theorem and Hyers-Ulam stability for m-convex functions, provide new theoret-
ical tools for bounding such m-convex stochastic processes by classical convex 
processes and approximating perturbations by m-convex functions. 

As a significant corollary, a Hermite-Hadamard-type inequality is obtained, 
which deepens the analytical structure of these processes and extends their ap-
plicability to statistics and applied mathematics. 

These contributions not only consolidate a solid theoretical framework for sto-
chastic convexity but also open new avenues of research in the study of approxi-
mations in the theory of convex analysis, in stochastic optimization, and in stabil-
ity analysis in nonlinear contexts. 
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