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Abstract 

Given a compact and regular Hausdorff measure space ( ),X µ , with µ  a 

Radon measure, it is known that the generalised space ( )X  of all the 
positive Radon measures on X is isomorphic to the space of essentially 

bounded functions ( ),L X µ∞  on X. We confirm that the commutative von 

Neumann algebras ( )B⊂ M , with ( )2 ,L X µ= , are unitary equiva-

riant to the maximal ideals of the commutative algebra ( )C X . Subsequenly, 
we use the measure groupoid to formulate the algebraic and topological struc-
tures of the commutative algebra ( )C X  following its action on ( )X  
and define its representation and ergodic dynamical system on the commuta-
tive von Neumann algebras M  of ( )B  . 
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1. Preliminaries 

Assuming the preliminary materials of [1] which form the background of this 
work, we are motivated to explore an alternative approach to the representation 
of the dynamical system of the commutative algebra ( )C X  on a commutative 
von Neumann algebra using groupoid framework. 

This work uses the more complex and profound analytic method, according 
to [2], for operator algebra. In place of the usual tool of polar decomposition of 
linear forms, we employ the inherent decomposition of measures within the 
measure groupoid. This enables the use of groupoid equivalence to present the 
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relations existing between the von Neumann algebra and its commutants. Hence, 
the groupoid representations relate the predual of the algebra to the Hilbert 
space constituting its domain. 

The starting point for the analytical method is the relationship between the 
closure of a space or subspace with the boundedness of the functions defined on 
it. Because the measurability of functions imposes a very little restriction on the 
space, according to Connes [3], which translates to closure of the space or 
subspace supporting the function; the space must be a closed interval [ ],I a b=  
or a standard Borel space X for measurability to be granted. Hence, measurability 
of X is a structure defined on X by measurable functions. This measure structure 
is invariant under ( )Aut X  the transformations of X. (cf. [3]). The definition 
of a Borel measure as a positive operator valued set map by [4] connects these 
structures to operator algebra. 

The connection is based on the positivity and completeness of the Hilbert 
space of square integrable functions ( )2 ,L X µ , and the fact that the  

Radon-Nikodym Theorem asserts that the derivatives d
d
µ
ν

 are measurable  

functions f on X. It follows that while the Borel structure on X gives rise to the 
Hilbert space ( )2 ,L X µ  and von Neumann algebra, the topological structure 
defined by continuous functions :f X IR→  gives rise to the Banach algebra  
( )C X  with norm ( )sup

x X
f f x

∈
= . This good interaction between the two  

structures is established using the Borel measures on X, whose mutual derivatives  
define measurable functions, and define linear forms ( )fϕ  on ( )C X  and 

bilinear/sesquilinear forms or inner product ( )ffϕ  on ( )2 ,L X µ= , with 
 

( ) 0ffϕ ≥ . 

Spectral consideration is used to identify the algebra of these measures as von 
Neumann algebra of operators on  . For the spectrum of a self-adjoint operator 

( )T ∈   can be analysed using polynomials ( )p x  which which are cons- 
titutive of the maximal ideals { }:x x X∈m  and the geometric structure of the 
algebra ( )C X . Every polynomial ( )p x  on X defines an operator as a mea- 
surable function, and there is always a sequence of polynomials uniformly 
approximating a measurable function by Weierstrass approximation theorem. 
Thus, the continuous extensions of any continuous function vanishing at a point 
x X∈  to a function vanishing in some closed subsets containing x define the 

spectrum of the resulting partially ordered operators. Cf. [4]. 
These continuous extensions are captured by the uniformly convergent  

sequences or nets, such that the sequence nf f→  means ( ) ( )nf x f x→  for 

all x X∈ ; which also gives rise to weak convergence ( ) ( ), ,nf T f Tε η ε η→ , 

,ε η∀ ∈ . A net defines a unique measure class [ ]µ  on X supported on the 

closed (compact) interval ,I T T= −    such that ( ) 0 d 0f T f µ= ⇔ =∫ .  

This interval is related to the spectral radius of the operator T in a von Neumann 
algebra M  which can be defined as follows.  
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Definition 1.1 (Cf. [3]) A commutative von Neumann algebra ( )B⊂ M  
is the algebra of operators on   of the form ( )f T  for some bounded Borel 
function f. This is called the von Neumann algebra generated by the operator T.  

Hence, M  is made up of operators with the same symmetries as T. This 
means that they commute with all unitary operators ( ( )U B∈  , commuting 

with T. Thus, given that S∈M , then ( )* * *UTU T Uf T U USU S= ⇒ = = , 

where ( )S f T=  for some Borel function f. The commutative von Neumann 

algebra M  is naturally isomorphic to ( ),L I µ∞ -the algebra of bounded mea- 

surable functions on ,I T T= −    that is equal µ -a.e. 

Because proper actions relate directly to slice theorem used in the cohomo- 
geneity-one G-space analysis as in [5] [6] [7], some of the main results of the 
paper also relate to slice theorem. 

2. The Algebra and the Generalized Space 

According to [8], the time evolution of dynamical systems modelled by measure- 
preserving actions of integers   or real numbers IR  which represent passage 
of time are generalized by measure-preserving actions of lattices which are 
usually “subgroup” of Lie groups. The two basic constituents of the commutative 
algebra ( )C X : the Borel group of units ( )1G , and the maximal ideals xm , are 
used to model the above in the action of ( )C X . The dynamical system defined 
by the Borel group ( )1G  of units on the geometric point ( )X⊂   is the 
ergodic action of the (lattice) algebra ( )C X  on the generalized space ( )X  
of nonnegative Radon measures on the space X; and the maximal ideals xm  
are the (projective) modules which characterize and encode the symmetries of 
measurable functions vanishing on the neighbourhoods of each point of X. 

These symmetries are represented by z-ultrafilters x  of zero sets (affine 

algebraic varieties of ( )C X ) converging to each x X∈ . The complements of 
these algebraic sets constitute the open neighbourhood base of points of X. The 
ultrafilter x  convergence of closed sets to x has associated nets of polynomials 
or measurable functions converging to a function f defined on x. Given a net fα  
of contractions in the complete metric space X, as in [9], it follows that f fα →  

such that ( )f x x= . All these are represented on the generalized space ( )X  

with ergodic action of ( )C X  in form of ergodic groupoid. 

The idea of a generalized space ( )X  of Radon measures on X which is 
conceived as the state space (cf. [8]) is a direct extension of Mackey’s conception 
of a measure class C as a generalized subset. At the centre of this extension is the 
focus on i) measure preserving transformations of the compact metric space X, 
and ii) the Dirac measures xδ  as generalized or geometric points embedding 
the points of X in the generalized space. The role assigned to the ergodic 
transformations by Mackey, is to translate along time in such a way as to ensure 
the invariance of measure or state. 

Every measure preserving continuous linear transformation : X Xϕ →  de- 
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composes into ergodic components. This is based on the fact that the “noncom- 
mutative spaces” replacing the “phase space” are basically quotient spaces deter- 
mined by ergodic actions of a Borel group. Hence, X is embedded in the generalized 
space as its geometric or generalized points; that is, the ( )1G -space  

{ }:x x Xδ= ∈ . Within this quotient setting, it is clear that non-ergodic trans- 
formations are constituted by ergodic components which are considered limits 
of nets of the former. This makes ergodic sense of what is said above on the 
operator T, and its transforms ( )S f T=  constituting the von Neumann algebra 
M , and the commutants ′M  made up of unitary operators ( )U  leaving 
them invariant. This is given as follows.  

Proposition 2.1 The algebra ( )C X  defines an ergodic and equivariant trans- 
formations ϕ  by its Borel group ( )1G  on X and on the generalized space 

( )X .  

Proof. The homothety ( )1 :G X X→  defined by 
( )

: y xg x
g x
−

 , is a trans- 

formation of balls ( )( ),B x g x  centred at x. It is measure preserving since the 

push forward of a Radon measure µ  under the map is given as  

( ) ( ) ( )( )
*,x g A g x A xϕ µ µ= + , A X⊂ . The measure class is preserved because 

( ) 0g x >  for all ( )1g G∈ , x X∈ . 

According to [8], ergodic theorems express a relationship between averages 
taken along the orbit of a point under the iteration of a measure-preserving map 
or transformation. The iteration of the transformations : X Xϕ →  on X which 
induces * :ϕ →   on the generalized points   represents passage of time,  
and its invariance in both spaces ( ) ( )*: : x xx x ϕϕ ϕ ϕ δ δ 

 constitutes 

limits of nets of transformations involving the maximal filter convergence 

x x→  and the convergence of net of tangent measures of αµ ν→ . These  

represent averages over time. 
The induced iteration on the generalized space ( )X  with respect to some 

invariant measure µ  (or measure class * : f f ϕϕ µ µ   →   

) represents  

invariance over states. The ergodicity represented by average over space or states 
(averages taken over the classes of measures) is given by nets of invariant non- 
ergodic measures converging to an ergodic limit. It is also the convergence of 
operators to an ergodic operator in a von Neumann algebra. Cf. [4]. These two 
averages are given by the invariance or stability of   and the measure  
classes { }:f ffµ  ∈  m  under ( )1G -actions.  

Remark 2.2 From the proposition, we see that the restriction of *ϕ  to the 

generalized points { } ( ):x x X Xδ= ∈ ⊂   gives a transformation of   

defined as ( )* : x xϕϕ δ δ , such that for any A X⊆ , we have  

( ) ( ) ( ) ( ) ( )1
* .x x xA A Aϕϕ δ δ ϕ δ−= =  

This shows that the set { } ( ):x x X Xδ= ∈ ⊂   of the generalized points 
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can be continuously and affinely extended to the generalized space ( )X .  

Subsequently, the generalized points { }: :x x Xδ= ∈  can generate the gene- 

ralized space ( )X  and the generalized subspaces { }:f xC f ∈m  or the 

measure classes. This is stated in the following result.  
Proposition 2.3 The generalized space ( )X  of Radon measures on X is 

an affine and continuous extension of the geometric points { }: :x x Xδ= ∈ .  

Proof. The coincidence of zero sets of ( )C X  with null sets of ( )X  

establishes the existence of nets { }αµ  of non-ergodic Radon measures related 

to { }: ,f xf x Xµ ∈ ∈m  which converge to the Dirac measures { }:x x Xδ ∈  as 

the z-ultrafilter [ ]xZ m  converges x x→ . Since the elements of xm  vanish 

at x, its ( )1G -action is transferred to fibre of measure classes (or tangent measures 
to xδ ) via *ϕ  (see [1]).                                            □ 

From this result, the dynamism defined by the transformations ϕ  is encoded 
in the symmetry of the measures classes contributing to the convergent nets. 
Hence, the connection between ergodic theory and the dynamics defined by 
continuous transformations on compact metric spaces is encoded by the closure 
of the resulting convex set of non-ergodic ϕ -invariant measures with ergodic 
measures as boundary. Cf. [8]. 

3. The Principal Groupoid and its Action 

In what follows, we present the action of the commutative algebra ( )C X  using 
the groupoid equivalence. The ( )C X -action is determined at each point  
x X∈  by the maximal ideal xm  and the Borel group ( )1G . The maximal 

ideal is a module of the (lattice) algebra ( )C X  and a ( )1G -space at every 
point x X∈ . Hence, there is a trivialization of an action groupoid on X which 
we will now explore in order to describe the ( )C X  dynamical system on X and 
on the generalized space ( )X . 

The two algebraic objects xm  and ( )1G  aid in the understanding of the 

dynamics associated to the commutative algebra ( )C X  at each x X∈ . Their 
employment also associates a z-ultrafilter related to a maximal ideal xm  to the 

dynamical system. Thus, given the zero map ( ):Z C X X→ , the family of 

closed sets ( ){ }: xZ f f ∈m  is a closed cover for X. Cf. [10]. An open cover for 

X can be constructed from their complements, a countable number of  
( )fU X Z f= − , such that ( ),f fU φ  is an open covering for X and each inverse 

image ( )1
fUπ −  is fibrewise homeomorphic to xU ×m . These give a system of 

homeomorphisms ( )1:f f x fU Uφ π −× →m  forming the transition functions  

( ) ( )1 : .x xU U U Uαβ β α α β α βφ φ φ−= ∩ × → ∩ × m m  

These transition functions also form unitary group if the Borel measures 
defined on the closed subsets are given the following characterisation.  
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Definition 3.1 [4] A positive operator valued measure is a triple ( ), ,X µ , 
where X is a set,   is a ring (or σ-algebra) of subsets of X, and µ  is an 
operator valued set function on   with the following properties 

1) µ  is positive, i.e. ( ) 0Mµ ≥  for each M ∈ .  

2) µ  is additive, i.e. ( ) ( ) ( )M N M Nµ µ µ∪ = +  whenever M N∩ =∅  
in  . 

3) µ  is continuous in the sense that ( ) ( ){ }nM LUB Mµ µ=  if nM  is an 

increasing sequence of sets in   whose union M is also in  . So µ  is called 
positive operator-valued measure on X or  . It is monotone on   if  

( ) ( )M N M Nµ µ⊂ ⇒ ≤ .  
These conditions are satisfied by the complements of ultra filters of zero sets 
( )xZ m  of the maximal ideals xm  of ( )C X  [10]. Given a maximal filter xm , 

we have fM U=


, where ( ) ,f xU X Z f f= − ∈m ; it follows that ( )fUµ  is 

an increasing sequence of Hermitian operators, with ( ) ( )fU Mµ µ≤   
xf∀ ∈m . 

Proposition 3.2 The group of automorphisms or transformations  
( ) ( )1 ,G Aut X µ⊆  of X constitutes the unitary group ( )U  of the space of 

operators ( )B  .  

Proof. That µ  is positive operator-valued implies the map ( ): Bµ →  . 

Then Borel measures on X define positive operators on   since ( ) 0ffµ ≥  

for any pair ( )2, ,f f L X µ∈ . As already noted, they are also linear forms ϕ  

on ( )C X  by the map ( ) df fϕ µ= ∫ . 

( ),Aut Xφ µ∈  is identified with the unitary operator on ( )2 ,L X µ  given by 

( ) 1U f fφ φ−=   and ( ),Aut X µ  with a closed subgroup of the unitary  

( )( )2 ,L X µ , where the map ( ) ( )( )2, , ,Aut X L X Uφµ µ φ→   is the Koop- 

man representation of ( ),Aut X µ  by [11]. Thus, ( )1G  is a subgroup of the 
unitary group in view of the positive operators defined by the measures associated 
with xm .                                                        □ 

Proposition 3.3 The transformations ( ),Aut Xφ µ∈  define the system of 
homeomorphisms which are the transition functions of the fibre bundle stru- 
cture.  

Proof. Given the definition of operator valued measures and with the preceding 
formulations, the group of automorphisms or transformations  
( ) ( )1 ,G Aut X µ⊆  of X then constitutes the structure group of the fibre bundle 

since it defines an action on the fibres xm  given as  

( ) ( ) ( ) 11 , , .x xG f f fφ φ φ−× → = m m  

The action is fibrewise since ( ) ( )( )Z f Z fφ= , where Z is the zero map.  □ 

We now use symmetry groupoid to capture these bundle symmetries.  
Theorem 3.4 The symmetries of the commutative algebra ( )C X  give rise to 
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a (Lie) symmetry groupoid.  
Proof. We use the trivialized action of the group of units ( )1G  on each 

maximal ideal xm  to formulate the bundle structure. The indexed family  

{ }x x X∈= m  of geometries constitute a bundle   over X, with the projection 

:p X→ , such that ( )1
x p x−=m . The “symmetries” of these geometric 

(closed) points of the commutative algebra ( )C X  is expressed by the groupoid 

( ) X   . Hence, with ( ), ,p X  a vector bundle, and ( )   the set of all 
vector space isomorphims : x yξ →m m  for ,x y X∈ . The Borel group  

( ) ( )1 xG G= m  of automorphisms of xm  expresses the particular “symmetry” 

of xm ; and the groupoid ( )   expresses the smoothly “varying symmetries” 
of the bundle. 

The smooth bundle symmetry ( )   is a Lie groupoid on X with respect to 

the following structure. For ( ) ( ) ( ) ( ): , ,x yG G s x t yξ ξ ξ→ = =m m ; the objec- 

tion map is 1
xxx Id= m , the partial multiplication is the composition of 

maps; the inverse of ( )Gξ ∈   is its inverse as an isomorphism. The isotropy 

groups are the general linear groups ( )xG m  of the fibres which are all isomorphic 
[12].                                                                □ 

Remark 3.5 The general linear groups ( )xG m  coincide with the unitary 
group when the bundle is considered a Hilbert bundle. They define the (partial) 
symmetries of the system, which the Lie groupoid ( ) X    represents.  

Given the Lie groupoid ( ) X   , its symmetries are modelled on the 

generalized space ( )X . This will be achieved through the formulation of the 

action of the Lie groupoid ( ) X    on the space of the generalized points 

{ }:x x Xδ= ∈  homeomorphic to  . This will present the generalized space 

( )X  as a measure groupoid giving a generalized measure-theoretic 

approach to the dynamical system defined by the action of ( )C X  [13]. 

From Mackey’s definition of generalized subset, there is a correspondence  
between closed subsets of X and Radon measures in ( )X ; such that the 

points of X coincide with the Dirac measures ( )x Xδ ∈  which are invariant 
ergodic measures [8]. The Dirac measures define the point functionals (cf. [14]). 
Because ( ) 1x Xδ = , x X∀ ∈ , xδ  a probability measure. Hence,  

( ) ( )x f f xδ =  for any x X∈ , a Borel subset A X⊂ , and ( )f C X∈ . The 

action of the Lie groupoid on the set of generalized points { }:x x Xδ= ∈  is 
now considered.  

Proposition 3.6 Given the Lie groupoid ( ) X   , the set of generalized 
points { }:x x Xδ= ∈  is a ( )  -space.  

Proof. The homeomorphism : Xρ → , which is a continuous open map 
from the space   onto the unit space X, defines a left action of ( )   on  , 

where ( )    is the set of composable pair ( ), xξ δ . This means  

( ), x xξ δ ξ  with ( ) ( )xs ξ ρ δ= . In other words,   is a left ( )  -space if 
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( ): x s Xρ δ ξ ∈ . The action defines a groupoid equivalence on  . Given 

any pair ,x yδ δ ∈ , we say that x yδ δ  if ( ) ( )x yρ δ ρ δ=  which implies  

( ) ( ) ( )x ys ξ ρ δ ρ δ= = . Since ξ  in ( )   are isomorphisms, ( ) ( ), , ,x yξ δ ξ δ  

are composable pairs in ( )    [15]. 

This action of the Lie groupoid ( )   on   is free and proper. Because 

x xξ δ δ⋅ =  implies that ξ  is a unit. It is proper also because the map  

( ) → ×      given by ( ) ( ), ,x x xξ δ ξ δ δ⋅  is a proper map; that is, the 

inverse image of a compact set is compact. The two make   a principal ( ) 

-space. Hence, the natural projection ( ): \π →     onto the locally compact 

and Hausdorff orbit space ( ) \    is an open map, where ( ) \    means 
that the groupoid   has a left action on   [15].                □ 

Given that   is a left principal ( )  -space, then  

( ) ( ) ( ){ }, :x y x yδ δ ρ δ ρ δ= ∈ × = ⊂ ×       is the equivalence relation 

defined by the open map ρ  (or ( )  -action) on  . The equivalence classes 

are defined by having the same image in X. Since ( )   acts by composition 

on  , we have ( ) ( )x xsξ δ ξ ρ δ⋅ ⇒ = ; that is, ξ ρ  is defined on  . Thus 
⊂ ×     is a space of equivalence classes or pairs in   on which a 

diagonal action of ( )   is defined as follows:  

( ) ( ) ( ) ( ), , , .x y x yξ δ δ ξ δ ξ δ→ ⋅ ⋅ ⋅        

Let ( ) \H =      be the orbit space of the diagonal action. Then H has 
a natural groupoid structure with multiplication defined as  

[ ], , ,x y y z x zδ δ δ δ δ δ   ⋅ =     with ( ) \oH =     as the unit space. Thus,  

( ) ( )\ \        is a groupoid which is denoted oH H , where 

( ) [ ],x y xt δ δ δ  =   and ( ),x y ys δ δ δ   =    , for [ ] ( ), \x yδ δ ∈     . 

Proposition 3.7 The groupoid of equivalence oH H  defined by ( ) 
-action on   defines a right action on the space  .  

Proof. Given the derived groupoid oH H , where : oHσ →  is a con- 
tinuous open map from the (locally) compact space   onto the unit space 

( ) \oH G=   , given as [ ] ( ) ( ) ( ) ( )( ), ,x x x x y x yt tδ δ σ δ δ δ ξ δ ξ δ ⇒ = = 
. 

Thus, the quotient groupoid H defines a right action on  . We therefore have:  

( ) ( ) ( ) [ ] [ ] ( ){ }, , , : , .z z x y z z x x yH h H tδ δ δ δ σ δ δ δ δ δ   = = ∈ × = = =       

Thus, the action is given by composition ( ),z x y yδ δ δ ξ δ ⋅ =  , where ξ  is 

unique in ( )G   and satisfies z xδ ξδ= . 

The action is well defined for given , ,x y x yδ δ δ δ′ ′   =    , then there exists a 

unique h H∈  such that x xhδ δ ′=  and y yhδ δ ′= . Hence, by definition  
[ ] [ ] [ ] [ ]x z x zδ δ δ δ′ = ⇒ = , and if the three [ ] [ ] [ ], ,x x zδ δ δ′  are same orbit then 

there must be a unique element of ( )   such that x zδ δ′  . This is given by 
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1h
x x z

ξ
δ δ δ

−

′  . It therefore follows that  

( ) ( )1, , .z x y y y z x yhδ δ δ ξ δ ξ δ δ δ δ−
′ ′ ′   ⋅ = = = ⋅     

□ 
Corollary 3.8 The left ( )  -action ρ  and right H-action σ  commute 

on  .  
Proof. Given the right action σ  of the equivalence groupoid H on  , it 

follows that   is a right principal H-space. The left action ρ  of ( )   
and the right action σ  of H commute σ ρ ρ σ=  . The following diagram 
illustrates this commutativity of left ( )  -action ρ  and right H-action σ  
on  .  

 

 
 

So, the action ρ  induces a homeomorphism of : H Xρ σ →   given as 

( ) ( ) ( ),z x y y sρ σ δ δ δ ρ δ ξ ⋅ = = 
.                                   □ 

Theorem 3.9 The space of generalized or geometric points   is a 
 

( )( ), H  -equivalence.  

Proof. The proof follows from the above. As we have seen, ( )   and H are 
locally compact groupoids, and   is a (locally) compact space that is i) a left 
principal ( )  -space, ii) a right principal H-space; and iii) the two actions 

commute; iv) the map ( ):ρ →     induces a bijection of H  onto 

X, and v) the map : Hσ →    induces a bijection of ( ) \    onto oH . 
From the construction, (iv) and (v) follow from the fact that if we have 

( ), \x yδ δ ∈      , where ( ) ( )x yρ δ ρ δ= , then there exists a unique  

h H∈  such that x yhδ δ= ; the correspondence ,x y hδ δ    is the desired 

isomorphism between ( ) \     and H. Thus, the ( )( ), H  -equivalence 

of   implies H is naturally isomorphic to ( ) \     and ( )   is 
naturally isomorphic to H  .                                □ 

Remark 3.10 In [16] it was shown that every action of a Lie groupoid   on 
the arrows induces an action on the space of objects. So, the partial multiplication 
defined by   defines a self-action of the arrows which is reflected on the space 
of objects X and corresponds to elements in ( )Aut X  of the compact set X by 
homomorphisms. The composition of elements of ( )Aut X  form a unitary group 
which preserves the nets of Radon measures converging to ergodic measures or 
operators. Another formulation of the above as a gauge groupoid of a principal 
G-bundle is given in [12]. We will consider the Haar system of measures for the 
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Lie groupoid next.  

4. The Measure Groupoid and Measure Classes 

Ergodic or measure groupoids act ergodically (or metric transitively) through 
the closed or invariant measure classes. The class [ ]µ  of a measure µ  is the 
set of all equivalent measures to µ  having the same null set. Every measure 
class contains a probability since any measure can be normalized on its support 
(cf. [13]). Deitmar [17] showed the existence of Haar system of measures given 
the groupoid equivalence on X. Seda [18] showed that with a suitable separability 
condition on a groupoid  , each probability measure xµ  uniquely determine 
a class of measure [ ]µ  on X for which it serves as integral of ‘translates’ of 
the Haar measure ν  on the structure or isotropy group x

x . These translates 
constitute a system of Haar measures and a measure class [ ] Cµ =  defined 
on the fibres of  . Theorem 2.1 in [13] and the associated definitions form 
the background for treating the metric transitive nature of the measure classes. 

The principal Lie groupoid ( )   is analytic given that its Borel structure is 

analytic and the space ( ),X   is countably separated. Given a probability measure 

ν  on the t-fibre ( ) ( ) ( )1 , ,t x x x X− = − ∈  , an arrow ( )ξ ∈   with  

( )s xξ = , and ( )B ⊂   , the map  

( ) ( )dBB χ ξη ν η∫  

defines a probability ξ ν⋅  on ( ) ( )( ),t ξ −  . Since the product ξη  is 

defined for ν -almost all η , the support of ν  is ( ) ( )( ),s ξ −  . Thus, 
 

( )( ) ( ) ( )( ) ( ) ( ) ( )( ), ,s xsupp s supp tξν ξ ξ ν ξ= − ⇒ ⋅ = −    , which gives  

( ) ( )s tξ ξξ ν ν⋅ = .  

Theorem 4.1 The principal groupoid oH H  is the groupoid equivalence 
established on the normalized generalized space ( ) ( )1 X X   by the action 
of the Lie groupoid ( )  .  

Proof. Two probabilities ( ) ( ) ( ), X Xµ ν ∈ ×   for which there exists  

( ) ( ) ( ): ,t sξ ξ µ ξ ν∈ = =  , are said to be equivalent. This is the equivalence 

on geometric space   defined by the Lie groupoid ( )   as the image  

( ) ( )( ),t sξ ξ ξ . Therefore, if ( ), /µ ν ∈   , then µ ν  if on the fibre 

( ),f f f fµ ν ξ µ ν⇒  . This agrees with the induced action of the Borel group 

( ) ( )1G C X⊂  on each measure class in ( )X . Thus, isomorphisms on the 
fibres are constituted by invariant measure classes given as follows  

( ) ( ) ( ) ( ), where .s t s t
f fg f fg
ξ ξ ξ ξξ µ ν µ ν⋅ → 

 

Hence, the ( )( ),H   -equivalence of the generalized points   is related to 

the action of the commutative algebra (or lattice) ( )C X  on the generalized 

space ( )X  and represented by the measure groupoid ( )( ),C  .      □ 
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There is always a symmetric quasi-invariant probability in a measure class. 
For according to Hahn in Theorem 2.1 of [13], every probability measure in an 
invariant measure class C is quasi-invariant. Using his conditions, we strengthened 
the quasi-invariant condition for a Haar measure by modifying it to agree with a 
maximal ideal xm  or the corresponding zero-sets [ ]xZ m  decomposition of 
measures on X as follows.  

Lemma 4.2 Let ( )( ),C   be a measure groupoid, Cν ∈  a probability with 

t-decomposition ( )dx xν ν ν= ∫ . There is a µ -conull Borel set fU X⊂  such 
that  

1) ( )( ) 1xν =   if fx U∈ .  

2) ( ) ( )( ) 0
f

x
U

ν − =     if fx U∈ .  

3) ( )( )1 1x
fx U t xν −∈ ⇒ = .  

4) if ( )
fU

ξ ∈  , then ( ) ( )s tξ ξξ ν ν⋅  .  

Given this modification, we now have that for every co-null Borel set  

fU X⊂ , ( )( ),
fU

C   is a measure groupoid called an inessential reduction 

(i.r) of ( )( ),C   in [13], where the inessential reduction for an open conull 

subset fU X⊂  is also denoted as ( )o  . 
From this, we see that each invariant measure class C∈  form a system of 

Haar measures { }x
f x X

µ
∈

 for each xf ∈m  on the inessential reduction (i.r) 

( )( ),
fU

C  . Since each system is defined on the t-fibre ( ) ( ) ( )1 ,t x x− = −  , 

it follows that the system of Haar measures is not unique. Hence, any invariant 
measure class C determines the measure groupoid ( )( ),C  , with a Haar 

measure defined as follows.  
Definition 4.3 Let ( )( ),C   be a measure groupoid. Let Cν ∈  and let 

( ) ( ),C t s Cµ∈ =  be a probability on the base space. The pair ( ),ν µ  is called a 

Haar measure for ( )( ),C   if ν  has a t-decomposition ( )dx xν ν µ= ∫  with 

respect to µ  such that for some inessential reduction ( )o   of ( )  , for all 

( )oξ ∈   and 0F ≥  a Borel function on ( )   we have  

( ) ( ) ( ) ( ) ( ) ( )d d .t sF Fξ ξγ ν γ ξγ ν γ=∫ ∫                (1) 

Thus, for a Borel function F on the groupoid ( )  , given a symmetric 

probability Cν ∈  with t-decomposition ( )dx xν ν ν= ∫ , where fU  is conull 

as in the above; the quasi-invariance of ν  implies  

( ) ( ) ( )( ) ( ) ( ) ( )( )d d .t sF F F Fξ ξγ ν γ ξγ ν γ∫ ∫ 
 

With these constructions, Hahn showed that every measure groupoid has a 
measure ν  satisfying (1) for ξ  in an inessential reduction. 

Furthermore, the symmetricity of the probability ν  implies * *t sν ν= . 
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Hence, the quasi-invariance for right translation uses the s-decomposition 
 

( )dx xν ν ν= ∫ . The result is that the left and right invariance of C are equivalent. 
Using these, a ( ),t s -decomposable measure for the composable space ( )( )2   
is defined as  

( ) ( ) ( )2 2d , with measure class ,x
x xν ν ν ν ν = ×  ∫  

which is usually written ( )2C  and is dependent on C. Since the space of 
composables of any groupoid has a goupoid structure, the conclusion is that  

( )( ) ( )( )2 2,C   is a measure groupoid. The proofs of the following results  

follow from 3.3 and 3.4 of [13].  
Lemma 4.4 If ( )   is an analytic (standard) Borel groupoid,  

( )( ) ( ) ( )2 ⊂ ×       is an analytic (standard) Borel groupoid.  

Proposition 4.5 If ( )( ),C   is an analytic groupoid with invariant measure 

class, so is ( )( ) ( )( )2 2,C  .  

The concept of ergodicity will be delineated next and related to the dynamical 
system of the measure groupoid. 

5. Convolution Algebra and Dynamical System 
According to Hahn [13], the measure groupoid is ergodic if and only if there is a 
single point ox X∈  such that { }\ oX x  is null. In other words, ergodicity 

implies the existence of Dirac probability measures { }:x x Xδ ∈  defined at each 

point of X. Thus, the existence of a ( )  -action on   makes it ergodic 

groupoid. This also implies that every Borel function φ  on the base X can be 

expressed in the form of a positive Borel function F on the arrows ( )   given 

as ( ) ( )( ),t F sφ ξ ξ ξ= , where F satisfies 1 1F t F s− −=  . This means that the 

Borel functions on the arrows preserve the equivalence the groupoid ( )   

defines on the base space X. Alternatively, as stated above, the ( )  -action 

preserves the Borel structure of the generalized space. 
Subsequently, a real-valued Borel function F on the measure groupoid ( )   

satisfying ( ) ( )1F Fξ γ γ− =  for ( )t ξµ -a.e and for µ -almost all ξ , corresponds 

to a Borel function φ  on X such that F sφ=   a.e. Thus, the invariant 

functions on the equivalence space X X  (or on the space X with ( ) 

-action) are of the form tφ   or sφ  . This shows the Borel functions are 

( )  -invariant. 

Therefore, the dynamical system is related to the convergence of the ultra- 
filters x→  associated to each maximal ideal xm . We can therefore define a 

net of such positive Borel function F on the arrows ( )   given as  

( )( ) ( )( ), ,F s F sα ξ ξ ξ ξ→ ; or in the form ( ) ( )t tαφ ξ φ ξ→   which can be 

considered local bisections. Since such a net F Fα →  (or in terms of local 
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bisections αφ φ→ ) corresponds to the ultrafilter, it represents the dynamical 

system of the commutative algebra ( )C X . Following from 2.6 of [13], the 

ergodic measure groupoid is therefore defined as follows.  
Definition 5.1 The measure groupoid ( )( ),C   is called ergodic if the 

only Borel functions : X IRφ →  satisfying d 0t sφ φ µ− =∫    are such that 

constantφ =  µ -a.e. Alternatively, ( )( ),C   is ergodic if and only if for all 

( )A X∈ , ( )d 0 0A AI t I s Aµ µ− = ⇒ =∫    or ( ) 0X Aµ − = .  

If then we denote the space of all the Borel function on the measure groupoid  
( )   with ( )( ) B , the convolution product of two Borel function 

 
( )( ),f g∈  B  on the space is defined as follows.  

( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( ) ( ) ( )1

,
d d .s t

t
f g f g f gξ ξ

ξγ τ ξ
ξ ξ γ µ γ ξ ξ γ µ γ−

= −
∗ = =∫ ∫   

This follows from the involutive map on any Borel ( )( )f ∈  B  which is 

defined as ( ) ( ) ( )* 1f f fξ ξ ξ−= = . Thus, the space ( )( ) B  is made into a 

normed ∗ -algebra, with the norm of f given as the supremum norm  

( )sup sup sup .
x X x X x X

f t s xφ φ φ
∈ ∈ ∈

= = =   

The representation of this convolution algebra ( )( ) B  of the measure 

groupoid makes use of the modular function ∆  which Peter Hahn defined and 

employed in Theorem 3.8 of [13] as ( )2µ -a.e. homomorphism  

( ) ( )1: P Pγ γ γ −∆ =  . 

Notice that µ  is a system of Haar measures supported on the fibres  

{ },x x X∈m ; but given simply as µ  because they are same or (groupoid) 

equivalent measures. Thus, the Hilbert space ( )2 ,L X µ=  can be considered 

a bundle space made up of the fibres ( ) ( ),x −  . But because the Borel functions 
F defined on the arrows are equal to Borel functions tφ   defined on X, having 
the net convergence t tαφ φ→   we described above, we put the Hilbert space 

simply as ( )2 ,L X µ= . 

6. Unitary Representation of ( )( )B    

Given the convolution algebra ( )( ) B  of Borel functions defined on the 

measure groupoid ( )( ),C  , the formulation of the unitary representation of 

the convolution algebra ( )( ) B  on the space ( )B   of bounded operators 

on the Hilbert space ( )2 ,L X µ=  is patterned on [13], which is a simplified 

definition of von Neumann algebra arising from the maximal ideals xm  and 

ergodic action of the Borel group ( )1G  on a compact measure space X. From 
the foregoing, the simplification is achieved by considering the system of Haar 
measures on the principal Lie groupoid ( ) X   , and using them in the 
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definition of the convolution algebras of Borel functions on measure groupoid 

( )( ),C  . 

The definition of the convolution algebra of the principal groupoid  
( )( ) B  gives a ∗ -algebra that coincides with the von Neumann algebra 

( )B  , where ( )2 ,L X µ=  and µ  a probability measure on X. The following 

result on ∗ -representation of the resulting algebra is the focus of the paper.  
Theorem 6.1 The map ( )( ) ( ):T B→  B  is a unitary ∗ -represen- 

tation.  
Proof. As in [13], a representation is defined as follow. Given ( )( )f ∈  B  

and ( )2, ,u v L X µ∈ = ; define a homomorphism  

( )( ) ( ) ( ) ( ) ( ) ( ): , d .t
fT B f T f P γγ γ µ γ→ = ∫  B  

This defines an operator :fT →   by ( )fu T u  such that  

( ) ( ) ( )( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( )

( )( ) ( ) ( )

, d

d d

d

f

x

f

T u v f u s v t P

f u s P v x x

T u x v x x

γ γ γ γ µ γ

γ γ γ µ γ µ

µ

=

=

=

∫
∫ ∫
∫

 

Thus, the map ( ) ( )( ) ( ) ( )( )d x
fT u x f u s Pγ γ γ µ γ= ∫  is also in  , which 

makes ( )fT B∈  . 

Likewise, we have the map ( ) ( ) ( ) ( )* 1 1: d tT f f P γγ γ µ γ− −∫  such that  

( ) ( ) ( )( ) ( )( ) ( ) ( )

( ) ( )( ) ( )( ) ( ) ( )

( ) ( )( ) ( )( ) ( ) ( )

*

*

*

1 1

* *

, d

d

d

, , , . Thus, .

f

f f f ff

T u v f u s v t P

f u s v t P

f v s u t P

T v u u T v T u v T T

γ γ γ γ µ γ

γ γ γ γ µ γ

γ γ γ γ µ γ

− −

=

=

=

= = = =

∫

∫
∫

 

Given the convolution product ( ) ( ) ( ) ( ) ( )d tf g f g ξξ ξ γ µ γ= ∫ ; its image 

under T is given as follows.  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( )

1

1

1

1

d d

d d d ; by t-decomposition of

d d d ; by convolution property

d d

s
f g

s x

t x

x x

T f g P P

f g P P x

f g P P x

f g P P x

ξ

γ

γ

ξγ γ γ µ γ ξ µ ξ

γξ ξ ξ γ µ ξ µ γ µ µ

ξ ξ γ ξ γ µ ξ µ γ µ

ξ ξ γ γ µ γ ξ µ ξ µ

−

−

−

−

=

=

=

=

∫∫
∫∫∫
∫∫∫
∫∫ ∫



 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( )

1 d d d

d d ; by reversal of t-decomposition

.

t x

s

f g

f g P P x

f g P P

T T

ξ

ξ

ξ ξ γ γ µ γ ξ µ ξ µ

ξ γ γ µ γ ξ µ ξ

−=

=

=

∫∫ ∫

∫ ∫


 

Finally, from ( ) ( ) ( )*
* d

f
T f Pγ γ µ γ= ∫  we have  
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( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

* *
* * 1

11 1

11 1

11 1

* *

d d

d d .

d d ; using

d d

.

s
g f

s

t

s

g f

T g f P P

f g P P

f g P P

g f P P

T T

ξ

ξ

ξ

ξ

ξγ γ γ µ γ ξ µ ξ

γ γ ξ γ µ γ ξ ξ µ γ

ξγ γ γ µ γ ξ ξ µ ξ ξ ξ

γ γ ξ ξ ξ µ ξ γ µ γ

−

−− −

−− −

−− −

=

= ∆

= ∆

= ∆

=

∫∫
∫∫
∫∫

∫ ∫







 

□ 
The operator is shown to be an isometry as follows.  

( ) ( )( ) ( )( ) ( )

( )( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( )( )

1 2

1

2 2

2 22 2

2 2

1

, d

d ; since 1

d d

d d

.

f E

E

T u v f u s v t

u s v t f

u s v t

u x x v x v x

u v

γ γ γ µ γ

γ γ µ γ

γ µ γ γ µ γ

µ

=

≤ ≤

≤

=

=

∫
∫

∫∫

∫ ∫

 

Thus, the ∗ -representation is a unitary representation since  
, ,f gT u T v u v≤ . This is in conformity with our understanding of the Borel 

functions on the measure groupoid as probability measures on X or Haar system 
of measures on the groupoid.  

Proposition 6.2 The convolution algebra ( )( ) B  is a commutative von 
Neuman algebra by representation.  

Proof. The Borel functions defined on the arrows of ( )   are defined on 
the fibres xm  which contain the polynomials on X. So they are all defined on 
the operators on   as the representation showed. Hence, they are all of the 
form ( )f T , which makes them von Neumann algebra as defined in the opening 
section. 

Alternatively, using Connes’ characterization of commutative von Neumann 
algebra in 1.3 of [3] as the algebras of operators on Hilbert space that are 
invariant under a group (or subgroup) of unitary operators, it follows that the 
convolution algebra ( )( ) B  of the Lie groupoid ( )   is a commutative 
von Neumann algebra since it is invariant under ( ) ( )1G ⊂    as given by the 
condition of ergodicity 1 1F t F s− −=   on F, which implies invariance under 
transformations of X. 

A third characterization of a commutative von Neumann algebra by Connes 
[3] as an involutive algebra of operators that is closed under weak limits still 
reinforces the result. The presence of an ultra-filter x→  associated to every 
fibre xm  of the principal Lie groupoid ( )   implies the convergence of 
( )1G -invariant nets of Borel functions f fα →  in the normed ∗ -algebra 

( )( ) B  (or equivalently the convergence of nets of local bisections αφ φ→  
of the principal Lie groupoid ( )  .)                                 □ 

We have shown this to be related to the ergodicity of the measure groupoid 
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( )( ),C   and central to the dynamical system of the algebra ( )( ) B  
which is now given as a corollary.  

Corollary 6.3 The dynamical system of the commutative von Neumann algebra 
( )( ) B  is defined by the convergence of nets of operators Tα  defined by 

the nets of Borel functions f fα →  or local bisections αφ φ→ .  
Proof. This follows from the definition of the operators above as  

( ) ( ) ( ) ( )d .t
ff T f P γγ γ µ γ= ∫  

That these nets define the dynamical system of the von Neumann algebra 
follows from their relationship to the convergence of nets of non-ergodic measures 
to ergodic limits which, as given in [8], represents the dynamical system of 
ergodic actions.                                                   □ 

The action of the (lattice) commutative algebra ( )C X  on the generalized 
space ( )X  also involves a decomposition. Thus, the resulting dynamical 
system converges to an ergodic limit given by ( )1G × →   which is repre- 
sented on the generalized space by ( )1G -invariant convergent nets of measures 

xαµ δ→ , generalized by the ( )( ),H   -equivalence of the geometric points 
 . This is given as a corollary.  

Corollary 6.4 By the the polarity of the ( )Aut X -action there exists a canonical 
form Σ , such that ( ) ( ) ( ),X x x× ×Σ    . So, the canonical form  
( ),x x ×Σ→ Σ  converges to ergodic form ( ), x xx x δ δ× →  implies the action 

( ) ( ) ( )X X× →     converges to the ergodic limit  

( )× →    .  

Proof. Given that the above convergent nets of measures can be constituted to 
be transversal to the orbits of ( )1G  or the measure classes, then we have  

{ }: Cα α αµ µΣ = ∈ , where Cα ∈  are the measure classes. Then  
( ) ( ) ( ) ( ),x x X×Σ ×      as stated. Hence, the steady ergodic state follows 

from the convergence of the transversal net(s) Σ , as constructed, to ergodic 
limits.                                                           □ 

The section Σ  of measures is constituted from the measure classes. The 
existence of many measure classes for the ∗ -representation points to the fact 
that the ∗ -representation of the convolution algebra ( )( ) B  of the measure 
groupoid is not uniquely tied to any measure class. In other words, the left Haar 
system of measures is not unique. The homomorphism of the ∗ -representation 
implies that the convergence of a net of Borel function on the convolution 
algebra ( )( ) B  implies a net of bounded unitary operators in the von 
Neumann algebra M . 

7. Conclusions 
We have presented the commutative algebra ( )C X -action on the generalized 

space ( )X  as constituted by the decomposition action of its maximal ideals 

xm  and the action of its group of units ( )1G  on X given as a polar action of 
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( ),Aut X µ  on ( )X , expressed in form of a principal Lie groupoid ( )G   
action on the space   of geometric (or closed) points of the generalized space 

( )X . Ergodic requirements made it into the dynamical system defined by 

Borel functions on the ergodic or measure groupoid ( )( ),C  . 

The convolution algebra ( )( ) B  of these Borel functions has a repre- 

sentation on the commutative von Neumann algebra M  of operators on the 

Hilbert space ( )2 ,L X µ= . Hence, the presentation of the geometric space 

{ }:x x Xδ= ∈  as a ( )( ),G H -equivalence was helpful for the ∗ -represen- 

tation of the convolution algebra ( )( ) B  of the principal Lie groupoid ( )   

or the measure groupoid ( )( ),G    on the von Neumann algebra ( )B   of 

bounded operators on  . 
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