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Abstract 
The article is devoted to proving the inconsistency of set theory arising from 
the existence of strange trees. All steps of the proof rely on common informal 
set-theoretic reasoning, but they take into account the prohibitions that were 
introduced into axiomatic set theories in order to overcome the difficulties 
encountered by the naive Cantor set theory. Therefore, in fact, the article is 
about proving the inconsistency of existing axiomatic set theories, in particu-
lar, the ZFC theory. 
 

Keywords 
Set Theory, Inconsistency, Tree, Strange Tree, Through Way, Almost through 
Way, Isomorphism, Almost Isomorphism, Isomorphism Tree, Place Plane, 
Superposition of Trees on the Place Plane, Disposition of Trees on the Place 
Plane 

 

1. Introduction 

In the twentieth century, there were crises in mathematics, which led first to its 
complete axiomatization (in particular, axiomatic set theories appeared), and 
then to Gödel’s famous theorems about the incompleteness and impossibility of 
proving the consistency of an axiomatic theory by means formalized within the 
theory itself (the preface in [1] reminds the reader about this). 

Now the general opinion of mathematicians is that Peano arithmetic is cer-
tainly consistent (the rarest exception is the paper [2]: it makes an assumption 
about the possible inconsistency of arithmetic), and set theory is almost certain-
ly. This point of view, expressed for example by Kolmogorov and Dragalin in 
their book [3], means the rejection of the principle of scientific knowability, the 
validity of which Hilbert always insisted on. 

This work is devoted to proving that existing axiomatic set theories (in partic-
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ular, the ZFC theory) contain a contradiction. Thus, contrary to the generally 
accepted opinion, the restrictions on the formation of sets made by Zermelo and 
Frenkel do not save set theory from inconsistency. 

The article is a continuation of article [1] and assumes that the reader is fa-
miliar with it. In particular, all notations used in the article are borrowed from 
[1] (and concentrated mainly in Section 2 of [1]), and the numbering of lemmas 
and theorems continues the numbering adopted in [1]. 

2. Proof Strategy 
To make the reader’s work easier, we will describe first in general terms the 
proof strategy used in the article. A class-set of almost through almost homoge-
neous trees of height 1ω∝ =  (notations: w wT T ∝= , t tT T ∝= , etc.) almost iso-
morphic to each other is introduced, including along with trees ,w tT T  their cuts 

at any level m ≤ ∝ : ( ),m
w wT cut T m= , ( ),m

t tT cut T m= , containing both trees 
without through paths and through trees (called the first class). By virtue of the 
results of [1], the first class of trees exists. Trees with double vertices m

wtT  are 

introduced, representing isomorphisms of the trees ,m m
w tT T  (and for simplicity, 

identified with them). The tree tT  is fixed and various overlays (isomorphisms) 
of wtT  (and their cuts) are considered. 

For every two trees ,m m
w tT T  from the first class of the same height m, a tree of 

impositions (isomorphisms) m
wtT  is introduced, the vertices of which at level k 

are all possible isomorphisms k
wtT . Thus, a second class of trees is introduced 

into consideration—the class of trees of isomorphisms of trees of the first class. 
This class also contains both trees without through paths and through trees. The 
first ones are obtained if we take two non-isomorphic trees of the first class of 
height 1ω∝ = , the second ones—in all other cases. For m < ∝  the tree m

wtT  is 
through and homogeneous. 

The tT  tree is fixed as the tree on which the wT  trees of the first class are 

superimposed (when this can be done). The numbering of automorphisms k
ttT  

is fixed in a certain way for each level k in tT  and the notation k
tiP  is intro-

duced for numbered automorphisms. The operation of multiplying the isomor-
phism k

wtT  by the automorphism k
tiP  is introduced, the result of which is a 

new isomorphism. Numbering of isomorphisms is introduced, obeying the rule: 

, ,0
k k k

wt i wt tiT T P= × . Each numbering is determined by the choice of ,0
k

wtT . The in-

troduction of numbering makes it possible to place isomorphism trees m
wtT  on 

the place plane in various ways. We assume that the isomorphism ,
k

wt iT  is supe-

rimposed on place k
in . 

The characteristic property of isomorphism trees is established: 

( ) ( ) ( ), ,, , , , .l l l l
wt i tj wt i tjcut T P k cut T k cut P k k l m× = × ≤ ≤  

A set of automorphisms for isomorphism trees is introduced and the proper-
ties of these automorphisms are established. The following main result holds. Let  
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( ), ,
k

m k
a wt iW T k m= ≤ , ( ), ,

k

m k
b wt jW T k m= ≤  be two through paths in the through 

tree m
wtT . The imposition of m

bW  on m
aW  uniquely determines the automor-

phism m
wtT . 

Each imposition of m
wtT  on the place plane naturally generates a place tree 

m
nT , in which the order relation between places k

in  and l
jn  copies the order 

relation between the vertices ,
k

wt iT  and ,
l

wt jT  in tree m
wtT . The tree m

nT  is tri-

vially isomorphic to m
wtT . We will call the path in the place tree, on which the 

path from the tree m
wtT  is superimposed, the prototype of this path. The proper-

ties of prototypes copy the properties of the paths themselves. The place tree nT  
corresponding to the isomorphism tree wtT  has through paths if and only if the 
tree wtT  has them. And the tree wtT  has through paths if and only if the trees 

,w tT T  are isomorphic. We have now introduced the class of place trees. In this class 
there are nT  trees that do not have through paths, and there are through trees. 

Since for m < ∝  all trees m
wtT  are isomorphic to each other, any m

wtT  can be 

superimposed on any m
nT , and all m

nT  are through trees (for m < ∝ ). The 

concept of the disposition of the tree m
wtT  on the plane of places is introduced 

(reflecting the intuitive meaning of this concept). By disposition of m
wtT  we 

mean the set of all possible impositions of m
wtT  on some tree m

nT  (thus, for 
every two impositions, the second is obtained from the first one using the auto-
morphism operation, leaving in place the prototypes of through paths). If m

wtT  
is a through tree, then its disposition on the place plane is a set of overlaps cor-
responding to the same set of prototypes of through paths. The disposition of 

m
wtT  continues the disposition of l

wtT  if the corresponding m
nT  continues the 

corresponding l
nT . By disposition of 0

wt
∝−T  on the plane of places we mean the 

set of dispositions of m
wtT  ( m < ∝ ) corresponding to some nT . This means that 

for all m < ∝  the disposition of m
wtT  corresponds to the place tree  

( ),m
n nT cut T m= . If wtT  is given, then for all nT  there is a disposition 0

wt
∝−T  

corresponding to this nT . 
Let wtT  be a through tree. Note that further in Section 6, for greater clarity, 

instead of wtT  we take a splitting tree ST  isomorphic to wtT  with the iso-
morphism described in the proof of theorem 3 from [1]. If nT  is a through tree, 

then the disposition of 0
wt
∝−T  on the place plane in accordance with nT  ob-

viously implies the existence of a disposition wt
∝T  that continues the disposition 

of 0
wt
∝−T . But the entire difference between this case and any other comes down 

to a different disposition of the same mathematical object on the plane of plac-
es, and all dispositions of a mathematical object on the plane of places are iso-
morphic to each other due to the homogeneity of the place plane. Therefore, in 
the general case, the disposition of 0

wt
∝−T  on the plane of places entails the ex-

istence of a disposition wt
∝T , which continues the disposition of 0

wt
∝−T . But 

then an arbitrary place tree nT  has through paths, and we get a contradic-
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tion in set theory. 

3. Tree of Isomorphisms 
We will further consider the class-set of almost through almost homogeneous 
trees of height 1ω∝ = , almost isomorphic to each other, containing a strange 
tree strT  (a tree without through paths), see Section 3 in [1]. Note that the tree 

strT  is homogeneous. We will call this class of trees the first class. We will use 
the notations wT , vT , tT , etc., for the trees of the first class (with or without 

additional indices), using notations like , ,k k k
i i iw v t , etc., for the vertices at level k. 

To denote an arbitrary representative of the first class, we will usually use the 
notation wT . By virtue of theorem 1 from [1], we can assume that the first class 
of trees contains trees that have through paths. And by virtue of theorem 2 from 
[1], we can assume that it also contains through trees. Note that for strT  the 4˚ 
condition is satisfied (see Sections 2, 4 in [1]): final vertices cannot appear at tree 
levels with non-limit numbers. Therefore, this is executed for any tree wT  from 

the first class. Along with wT , any tree ( ),m
w wT cut T m=  can participate in the 

considerations. 
Our ultimate goal is to show that such a situation leads to a contradiction. 
For m < ∝  trees ( ),m

w wT cut T m=  (from the first class) are homogeneous and 

through (even strongly homogeneous and strongly through). But the tree w wT T ∝=  
in the general case is only almost homogeneous and almost through and may 
not contain a through path, having an empty level ∝ . For m < ∝  in the tree 

( ),m
w wT cut T m=  at level m, we will also divide (where necessary) the vertices 

into final and non-final, considering non-final those vertices that are non-final 
in the tree wT . 

Let us choose tT  as the tree onto which we will isomorphically superimpose 

the trees wT  in various ways. For m < ∝ , the tree m
wT  can always be supe-

rimposed on the tree m
tT  while preserving the order relation between the ver-

tices, but for m = ∝  the superposition is not always possible since ,w tT T  can 
be non-isomorphic (only almost isomorphic). We consider the result of the 
overlay as a tree m

wtT  or wtT  having double vertices ( ,k k
j iw t ) at level k, which 

represents some isomorphism of the trees ,m m
w tT T  or ,w tT T . Let us define k

jw  

as the first subvertices, and k
it  as the second ones. With this isomorphism, ver-

tices k
jw  go to vertices k

it : k k
j iw t→ . We will also say that k

jw  are superim-

posed on k
it , which makes the isomorphism clearer. The number of possible 

overlaps determines the number of isomorphisms. In the case when m m
w tT T=  

( w tT T= ), we are dealing with automorphisms. 

The double-vertex tree m
wtT  gives a visual representation of how the corres-

ponding isomorphism works. We will call m
wtT  the superposition of m

wT  on 
m

tT  and for simplicity we will identify m
wtT  with the isomorphism itself. 

Let us consider, for example, the trees 2 2,w tT T  of height 2, shown in Figure 1. 
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Figure 1. Example of trees of height 2. 

 
In the tree 2

wT , 0 1
0w w≤ , 0 1

1w w≤ , 1 2
0 0w w≤ , 1 2

0 1w w≤  and 1
1w  at level 1 is 

final. A similar thing occurs for 2
tT  and trees in Figures 2-6. 

We will talk about multiple impositions of m
wT  on m

tT , meaning by this the 

set of all possible impositions of m
wT  on m

tT , and in accordance with this con-

cept we will introduce a tree of isomorphisms m
wtT . When m

wT  and m
tT  are 

isomorphic (this is always the case if m < ∝ ), for each k m≤  in m
wtT  at level k 

the vertices are isomorphism trees k
wtT  (all such trees in a single design). And 

the order relation between vertices is defined as the relation of continuation of 
isomorphisms: , ,

k l
wt a wt bT T≤  means that ( ), , ,k l

wt a wt bT cut T k=  (see Section 2 in 

[1]). If m
wT  and m

tT  are not isomorphic (this can be the case if m = ∝ ), then 

in the definition of m
wtT  we replace k m≤  with k m< . The definition for 

0m
wtT −  is introduced accordingly. As one can easily see, the described structure is 

indeed tree. 
Recall (see Section 2 in [1]) that we call the isomorphism of trees  

( ),m
w wT cut T m= , ( ),m

t tT cut T m=  strong if it transforms non-final vertices of 

the tree m
wT  at the level m to non-final vertices of the tree m

tT . 

Lemma 20. A vertex-isomorphism l
wtT  in a tree m

wtT  for l m<  is non-final 

if and only if the isomorphism l
wtT  is strong. Thus, the set of non-final vertices 

at level l m<  in the tree m
wtT  coincides with the set of strong vertex-isomor- 

phisms at this level. 
The proof is straightforward. 
In what follows, the concepts strong and non-final in relation to vertex-iso- 

morphisms in a tree m
wtT  will be considered synonymous. 

In the example under consideration, the isomorphism 1
,0wtT  is strong and the 

isomorphism 1
,1wtT  is not strong. 

In our example, the isomorphism tree will be looked as shown in Figure 4. 
Lemma 21. The imposition of wT  on tT  (i.e., the isomorphism of trees ,w tT T ) 

exists if and only if the isomorphism tree wtT  has a through path. If we are talk-
ing about an automorphism ( w tT T= ), then the tree ttT  always has a through 
path. 

Indeed, if wT  can be superimposed on tT , then this superposition forms a 
through path in the tree wtT . On the other hand, each through path in wtT  is a 
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continuing sequence of isomorphisms ( m
wtT , m < ∝ ), introducing the isomor-

phism of trees ,w tT T  (see lemma 10 in [1]). The second statement is obvious, 
since the tree tT  can always be superimposed on itself. 

Lemma 22. Let trees ,w tT T  of height ∝  be almost isomorphic and almost 
homogeneous. Then the isomorphism tree wtT  is almost homogeneous and al-

most through, and the tree ( ),m
wt wtcut m=T T  ( m < ∝ ) is homogeneous and 

through. If there is no isomorphism of the trees ,w tT T , the tree wtT  will be 
strange. If point 4˚ of the tree definition is satisfied for the trees ,w tT T  (see Sec-
tion 2 in [1]), then it is also satisfied for the tree wtT . If ,w tT T  are isomorphic, 
then wtT  has a through path and vice versa. If at the same time tT  is homoge-
neous, then wtT  is a through tree. 

The statements of the lemma are straightforward. 
We will further assume that tT  is a homogeneous tree. 
Corollary 1. The first class of almost homogeneous trees that are almost iso-

morphic to each other generates the second class of almost homogeneous almost 
isomorphic trees of isomorphisms. In both classes there are trees without through 
paths, there are through trees and the 4˚ condition is satisfied. In the future, all 
our interest will be focused on the study of trees from the second class (the set of 
trees wtT ). If it is shown that in this class all trees have through paths, then the 
inconsistency of set theory will be shown. 
 

 
Figure 2. Trees representing isomorphisms (overlays) of the trees in Figure 1. 
 

 
Figure 3. Trees representing isomorphisms of the trees in Figure 1 for level 1. 
 

 
Figure 4. The tree of overlays (isomorphisms) 2

wtT  for trees in Figure 1. 
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Let us introduce the numbering of vertex-isomorphisms at all levels of the tree 
m

wtT , satisfying certain rules. Looking ahead, we point out that we will need 

numbering in order to place m
wtT  trees on the plane of places. To do this, we 

first introduce the numbering of vertices in the automorphism tree ttT  for each 
level m ≤ ∝  using ordinals less than some cardinal, which we will call basic. Let 

the automorphisms ( ,
m

tt iT , mi β< ) of the tree ( ),m
t tT cut T m=  be located at level 

m. Let us agree that for m mi β β< ≤  the automorphisms ,
m

tt iT  are strong. Al-

ways 0mβ >  since any ( ),m
t tT cut T m=  has an identity automorphism, which 

is strong. We will assume that the automorphism ,0
m

ttT  is identical. In the case of 

basic numbering, we will also use the notation m
tiP  instead of ,

m
tt iT . Note that 

for non-limit m m mβ β=  (due to condition 4˚ from Section 2 in [1]). 

Lemma 23. Automorphisms ( m
tiP , mi β< ) for fixed m form a group. The set 

of strong (non-final) automorphisms ( m
tiP , mi β< ) forms a subgroup of this 

group. 
We will assume that ( ), ,m

ti mP i mβ< ≤ ∝  is a homogeneous through tree. In 

particular, this will be the case if t strT T= . 

Let us introduce the operation of multiplying the isomorphism m
wvT  by the 

isomorphism m
vtT . The result of the multiplication will be the isomorphism m

wtT , 

obtained as follows. “Glue” the second subvertices of m
wvT  at all levels with the 

corresponding first subvertices of m
vtT  to obtain a tree with triple vertices, and 

then remove the second subvertices from it. In a particular case, the operation of 
multiplying the isomorphism m

wtT  by the automorphism m
tiP  will take place. 

We will consider this operation as an isomorphism transformation operation: 
m

wtT  is transformed into m m
wt tiT P× . It is this subcase that will interest us in the 

future. If m m
wt tjT P= , then we have the operation of multiplying automorphisms: 

m m
tj tiP P× . 

The operation of multiplying m
wtT  by m

tiP  satisfies, as is easy to see, the law 
of associativity: 

( )m m m m m m
wt ti tj wt ti tjT P P T P P× × = × × .                 (1) 

Also 

if , ,
m m m

wt b wt a tT T P= × , then ( ) 1

, ,
m m m

wt a wt b tT T P
−

= ×             (2) 

where the automorphism ( ) 1m
tP

−
, as a tree with double vertices, is obtained 

from m
tP  when we swap the first and second subvertices. 

Next, we will proceed as follows. For each k m≤ , we choose some non-final 
isomorphism k

wtT  as the main isomorphism for a given k, and give number 0 to it. 

After this, we introduce the numbering of vertex-isomorphisms: , ,0
k k k

wt i wt tiT T P= × . 

In this case, the following will occur: ( ), ,0
k k k k k

wt i tj wt ti tjT P T P P× = × ×  and  

( ) 1

,0 ,
k k k

wt wt i tiT T P
−

= ×  (see (1) and (2)). 
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In the case of m
ttT , when choosing identical automorphisms as ,0

k
ttT , we arrive 

at the tree ( ), ,k
ti kP i k mβ< ≤ . 

It is obvious that the numbering of vertices at the levels of the tree m
wtT  is 

completely determined by the choice of the main isomorphisms ,0
k

wtT  for k m≤  
and different numberings will take place for different choices. 

To illustrate what has been said, let us turn again to the trees in Figure 1. In 
Figure 5 and Figure 6 the automorphisms 2

tiP  and 1
tiP  are shown. 

For automorphisms the following equalities hold: 

2 2 2
0 0 0t t tP P P× = , 2 2 2

1 1 0t t tP P P× = , 2 2 2 2 2
0 1 1 0 1t t t t tP P P P P× = × = ; 

1 1 1
0 0 0t t tP P P× = , 1 1 1

1 1 0t t tP P P× = , 1 1 1 1 1
0 1 1 0 1t t t t tP P P P P× = × = . 

Accordingly, multiplying isomorphisms by automorphisms leads to the equal-
ities: 

2 2 2
,0 0 ,0wt t wtT P T× = , 2 2 2

,1 1 0wt t wtT P T× = , 2 2 2 2 2
,0 1 ,1 0 ,1wt t wt t wtT P T P T× = × = ; 

1 1 1
,0 0 ,0wt t wtT P T× = , 1 1 1

,1 1 ,0wt t wtT P T× = , 1 1 1 1 1
,0 1 ,1 0 ,1wt t wt t wtT P T P T× = × = . 

Lemma 24. Let for k m≤ ,
k

wt rT  be an arbitrary non-final vertex-isomorphism: 

kr β< . Non-final vertices at level k are obtained by multiplication ,
k

wt rT  by 

non-final automorphisms k
tjP  from the group of non-final automorphisms at 

level k. Thus, ( ), ,k k
wt r tj kT P j β× <  forms a subset of non-final vertex-isomorphisms. 

Knowledge of one non-final vertex at level k gives knowledge of all. 
Corollary 2. If in the tree m

wtT  at level k the main isomorphism is non-final, 

then the isomorphisms , ,k
wt i kT i β<  will be non-final.  

We will study trees m
wtT  when for all k m≤  the isomorphisms , ,k

wt i kT i β<  

are non-final. Obviously, this limitation is justified. 
 

 
Figure 5. Trees representing automorphisms of the tree 2

tT . 

 

 
Figure 6. Trees representing automorphisms of the tree 1

tT . 
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The fundamental property of an isomorphism tree is the property reflected in 
lemma 25. 

Lemma 25. The decomposition rule is satisfied in the isomorphism tree m
wtT : 

( ) ( ) ( ), ,, , , ,l l l l
wt i tj wt i tjcut T P k cut T k cut P k k l m× = × ≤ ≤ .         (3) 

In particular, ( ) ( ) ( ), , ,l l l l
ti tj ti tjcut P P k cut P k cut P k× = × . 

The statement of the lemma follows from lemma 7 (see Section 2 in [1]) and 
the definition of multiplication of isomorphism by automorphism. 

The essence of the lemma is that if it is known that , ,
k l

wt r wt sT T≤ , then by this  

relation all other relations between the vertices in rows k and l are determined 
purely algebraic. 

Another formulation of the statement of lemma 25 looks like this: if  

2 1, ,
l k

wt i wt iT T≥  and 
2 1

l k
tj tjP P≥ , then 

2 2 1 1, ,
l l k k

wt i tj wt i tjT P T P× ≥ × . 

Corollary 3. If ( ) ( )2 1, ,, ,l l l k
wt i tj wt i tjcut T P k cut T k P× = × , then ( )1 2

,k l
tj tjP cut P k= . 

Indeed, we have  

( ) ( ) ( ) ( )2 2 1, , ,, , , ,l l l l l k
wt i tj wt i tj wt i tjcut T P k cut T k cut P k cut T k P× = × = ×  and, therefore  

( )1 2
,k l

tj tjP cut P k= . 

Lemma 26. Let , k

k
wt iT  be given for all k m≤ . Then m

wtT  is uniquely defined 

by the conditions: ( ) 1

, , k k

k k k k
wt i wt i ti tiT T P P

−
= × × , ki β< , k m≤ . 

The next lemma follows from the above statements. 
Lemma 27. Let ( ),m

kI i k m= ≤  be the sequence of numbers for which  
k ki β< . For isomorphic ,m m

t wT T  there is a through tree m
wtT , for which  

( ), ,
k

k
wt iT k m≤  is a through path. By specifying the pair ( ),m m

wtT I , where  

, m

m m
wt wt iT T=  is a non-final isomorphism, the tree m

wtT  is uniquely determined. 

Lemma 27 is essential for us. If it is shown that wtT  always has a through 
path, then from this the inconsistency of set theory will follow. 

4. Isomorphism of Trees of Isomorphisms (and 
Automorphisms) 

The introduced numbering of vertex-isomorphisms makes it possible to add to the 
trees under consideration such a characteristic as their superposition on the plane 
of places. Let us introduce the plane of places and place trees of isomorphisms  
(and automorphisms) in its part bounded by places ( )( ),0 ,0k

i kn i kβ≤ < ≤ ≤ ∝ . 

Places ( ),0k
i kn i β≤ <  are reserved for non-final isomorphisms (and automor-

phisms). For clarity, we will assume that ,
k

wt iT  is superimposed on k
in , and say 

that the numbering of vertex-isomorphisms in the tree m
wtT  determines the 

placement of the tree on the place plane. With a different numbering, we will 
have a different placement of m

wtT . In what follows, when speaking about the 
placement (or disposition, see Section 6) of a tree on the place plane, we will 
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mean the placement on the part of the place plane limited by places  

( )( ),0 ,0k
i kn i kβ≤ < ≤ ≤ ∝ . 

Let us make some additions and modifications to the terminology used. This 
will make it possible to present previously obtained results in a more complete 
and visual way and obtain a number of new ones. 

Recall that k
tiP  are automorphisms of the tree k

tT , onto which the trees k
wT  

are superimposed in different ways, 0
k

tP  is the identical automorphism and k
tiP  

are non-final automorphisms when ki β< . We consider the automorphism tree 

( ), ,k
ti kP i kβ< ≤ ∝  to be through and homogeneous (see the remark after lemma 

23). For visibility, we assume that k
tiP  are superimposed on k

in . 

Let a sequence of place numbers be given ( ),
k

m k
iI n k m= ≤ . If in the isomor-

phism tree m
wtT  there is a through path ( )( ), , , ,

k m

m k m
wt i wt iW T cut T k k m= = ≤ , then 

we will say that mI  defines this path. For k m< , k ki β< , and m mi β<  holds 

for non-final mI , defining non-final paths ( ), ,
k

k
wt iT k m≤ . Let us introduce the 

operation of multiplying places k
in  by automorphisms k

tjP : 0
k k k

ti in P n× = ,  

( )0
k k k k k
i tj ti tjn P n P P× = × × . The sets ( ),k

i kn i β< , ( ),k
ti kP i β<  and ( ), ,k

wt i kT i β<  

are trivially isomorphic with respect to the operation of multiplying their ele-
ments by k

tjP . 

Lemma 28. For a given k, k k k
i tj ln P n× =  if and only if k k k

ti tj tlP P P× =  and  

, ,
k k k

wt i tj wt lT P T× = . 

Let us denote by mPI  the continuing sequence of automorphisms ( ),
k

k
tjP k m≤  

superimposed on the plane of places. By definition, ( ),
k k

m m k k
i tjI PI n P k m× = × ≤ , 

while ( ), ,
k k

m m k k
wt i tjW PI T P k m× = × ≤ . ( ) ( ), ,

k

l k m
tjPI P k l cut PI l= ≤ =  for l m≤ . 

In the continuing sequence of automorphisms ( ),
k

k
tjP k m≤  all 

k

k
tjP  for k m<  

are non-final. If also 
m

m
tjP  is non-final, then mPI  will be called non-final. Otherwise, 

we will talk about the final mPI . Also by definition, ( ),
k k

m m k k
a b ti tjPI PI P P k m× = × ≤  

where ( ),
k

m k
a tiPI P k m= ≤ , ( ),

k

m k
b tjPI P k m= ≤ . The multiplication operation “×” 

turns the set ( ),m
i mPI i β<  into a group, and the set ( ),m

i mPI i β<  into a sub-

group of this group.  
The sequence ( )0 0 ,m k

tPI P k m= ≤  is a continuing sequence of identical auto-

morphisms. 

Lemma 29. For any non-final sequence ( ),
k

m k
iI n k m= ≤  there is a through 

tree m
wtT  for which mI  defines a strongly through path ( ), ,

k

m k
wt iW T k m= ≤ . If 

mI  defines the path mW  in the tree m
wtT , then m mI PI×  defines the path  

m mW PI× . 
The validity of the first statement follows from lemma 27, and the second— 
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from the trivial isomorphisms introduced above. 
Remark 1. Each through tree m

wtT  is uniquely determined by the set of its 

through paths ( ), 0,1,m
iW i =   where each through path is a continuing se-

quence of tree vertices superimposed on the plane of places. Therefore, it is con-
venient and visual to characterize order relations in a tree with the help of 
through paths, using continuing sequences of automorphisms and keeping in 
mind that each sequence ( ),

k

m k
tiPI P k m= ≤  is completely specified by its upper 

term 
m

m
tiP : ( ),

k m

k m
ti tiP cut P k= . 

Note that the second statement of lemma 29 is a “vector” paraphrase of the 
decomposition rule (3). This becomes quite obvious if the multiplications  

m mI PI×  and m mW PI×  are written as ( )( ), ,
m

m m
tiI cut P k k m× ≤  and  

( )( ), ,
m

m m
tiW cut P k k m× ≤ . 

We formulate the decomposition rule and its corollary in vector notation (see 
lemma 25 and corollary 3) in the form of lemma 30. 

Lemma 30. Let mW  be a path in m
wtT .Then m mW PJ×  is a path in m

wtT  if 

and only if ( ),
k

m k
tiPJ P k m= ≤  is a continuing sequence of automorphisms  

( ( ),
k m

k m
ti tiP cut P k= ) for all k m≤ . 

We will call sequences mI  that define paths in the tree m
wtT  the prototypes 

of these paths. Due to the trivial isomorphisms introduced above (see lemma 
28), this term is justified, and we can treat the prototypes of paths in the same 
way as the paths themselves. In particular, we have: if mI  is the prototype of a 
path, then m mI PI×  is also the prototype of a path. 

Following the order introduced for automorphisms in the rows of each level, 
we introduce the order for continuing sequences of automorphisms:  

( )k

m k
i tjPI P m= ≤ , where mj i= . For non-final sequences of automorphisms we 

have: mi β< . 

Lemma 31. Let ( ),
k

m k
iI n k m= ≤  be the prototype of a non-final path in the 

through tree m
wtT . Then m m

iI PI× , when m
iPI  runs over all sequences (non-final 

sequences) of automorphisms, forms the set of all prototypes of paths (non-final 
paths) in m

wtT . If ( ), ,
k

m k
i k kI n i k mβ= < ≤  and a non-final isomorphism m

wtT  

are given, then their combination uniquely determines the tree m
wtT , for which 

mI  is the prototype of the through non-final path, and the isomorphism m
wtT  is 

placed on 
m

m
in . 

See lemma 27. 
Lemma 32. Let ,m m

a bI I  be the prototypes of through non-final paths in a 

through tree m
wtT .The one-to-one correspondence m m m m

a i b iI PI I PI× → × , when 
m
iPI  runs over all continuing sequences of automorphisms, defines a strong au-

tomorphism of the tree m
wtT  such that m

aI  goes to m
bI . Conversely, each strong 

automorphism of the through tree m
wtT  is determined by a pair of prototypes of 
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non-final paths ,m m
a bI I  in accordance with the formula m m m m

a i b iI PI I PI× → × , 

when m
iPI  runs over all continuing sequences of automorphisms. If we fix m

aI  

and vary m
bI  (or vice versa), we obtain all existing strong automorphisms of 

m
wtT . 

Let m m m
b a rI I PI= × , mr β< . Therefore m m m m m m m

b i a r i a jI PI I PI PI I PI× = × × ×= , 

where m m m
j r iPI PI PI= × . Thus, we have a one-to-one correspondence  

m m m m m m
ai a i aj a jI I PI I I PI= × → = × , where m

jPI  (following m
iPI ) runs over all con-

tinuing sequences of automorphisms: ( )j j i= . Let ( ) ( ), ,m m
i jcut PI l cut PI l= . 

Then ( ) ( ), ,m m
i jcut PI k cut PI k=  for all k l≤  and so ( ) ( ), ,m m

ai ajcut I k cut I k=  

for all k l≤  (see lemma 30). Therefore ( )( ),m m
ai maj iI I i β→ <  defines automor-

phism of m
wtT . 

To prove the second part of the lemma, it is enough to restrict ourselves to the 
case when m is a limit ordinal, assuming that the converse statement holds for 
all ( ),k m

wt wtcut k=T T  for k m< . Let mAut  be the automorphism of m
wtT  de-

scribed in the condition of the lemma, under which the prototype of the through 
path m

aI  goes to the prototype of the through path m
bI , and 1

mAut  is another 

automorphism of m
wtT , also moving m

aI  into m
bI . ( ),k mAut cut Aut k=  converts 

( ),k m
a aI cut I k=  to ( ),k m

b bI cut I k= . And the same is true for 1
kAut . For  

k m< 1
k kAut Aut=  to the assumption made. But then (due to the uniqueness of 

the limit) 1
m mAut Aut= . 

The third statement of the lemma is obvious. 
Remark 2. Careful analysis shows that the statements of lemma 32 are the log-

ical consequence of the fact that specifying one prototype of a through non-final 
path in the tree m

wtT  uniquely determines all through paths (see lemma 27). 
Lemma 32 can easily be carried over to a more general case. 
Lemma 33. Let ,m m

a bI I  be the prototypes of through non-final paths in the 

isomorphic through trees m
wtT  and m

vtT .The one-to-one correspondence  
m m m m
a i b iI PI I PI× → × , when m

iPI  runs over all continuing sequences of au-

tomorphisms, defines an isomorphism m
wtT  on m

vtT , for which m
aI  goes into 

m
bI . The converse statement is also true. 

5. Related Sequences of Places and the Tree of Places 

Let us continue our research. 
We will consider sequences of places ( ),

k

m k
iI n k m= ≤ , for which  

k k ki β β< ≤  for k m< , m mi β< . For non-limit k, k kβ β=  (by virtue of the con-

dition 4˚ in [1]). We will call the sequence mI , m is a limit ordinal, non-final if also 

m m mi β β< ≤ . For each k, the multiplication operation k k
i tjn P×  is introduced: 

0
k k k

ti in P n× = , ( )0
k k k k k
i tj ti tjn P n P P× = × × . As a consequence of this introduction, 
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the multiplication operation ( ),
k k

m m k k
i tjI PI n P k m× = × ≤  turns out to be intro-

duced (where ( ),
k

m k
tjPI P k m= ≤ ), in which 0

m m m
i iI PI I× = , 

 
( )0

m m m m m
i j i jI PI I PI PI× = × × , algebraically similar to the operation of multiplica-

tion when both components are continuing sequences of automorphisms. Note 
that for mPI , the multiplication operation “×” turns the set of all ( ),m

i mPI i β<  

into a group, and the set of non-final ( ),m
i mPI i β< —into a subgroup of this 

group (see Section 3). 
We will call sequences ,m m

a bI I  related if m m m
b aI I PI= ×  with some mPI  (in 

this case also ( ) 1m m m
a bI I PI

−
= × ). We will call them strongly related if  

m m m
b aI I PI= ×  with some non-final mPI . We will talk about classes of related 

(strongly related) mI , meaning by them non-expandable sets of sequences of 
places mI  related (strongly related) to each other. 

In a similar way, we can talk about classes of related and strongly related se-
quences of objects of arbitrary type (for which the operation of multiplication by 

mPI  is introduced). 
We will further denote by mI  и mI  the classes of related and strongly re-

lated sequences of places. By virtue of the choice of the basic numbering of au-
tomorphisms, the set of non-final place sequences is one of the classes of strong-
ly related sequences. Let us introduce a special notation for this class- mJ . For 
non-limit m we will assume that m m=I J . We will also assume that β β∝ ∝= . 

The set mI  defines the following order relation between places: k l
i jn n≤  

( k l≤ ) if and only if there exists m mI ∈ I  such that k
in  and l

jn  belong to 
mI . 
Lemma 34. The order relation between places in mI  induces a through tree 

(we will call it a place tree) m
nT , for which mI  is simultaneously the set of 

through paths and the set of prototypes of through paths. In this tree lemma 30 
holds (with mW  replaced by mI ). As a set of prototypes of through paths, mI  
determines the placement of m

nT  on the place plane. We have ( ),m lcut l =I J  

when l m< . 
In the tree of places m

nT  we consider as non-final those vertices m
in  for 

which mi β< . 

We thus have introduced the class of place trees. 
Each mI  uniquely represents some m

nT . In the following, if we talk about 

the set mI  as a tree, then we mean the tree m
nT , which mI  represents. And 

when we talk about the isomorphism of m
aI  and m

bI , we mean, of course, iso-
morphism with respect to the order relation between places on the plane of 
places, i.e., in fact we are talking about the isomorphism of m

naT  and m
nbT . The 

isomorphism of ,m m
a bI I  means the possibility of superimposing m

aI  on m
bI  

while preserving the order relation between places. We will talk about strong 
isomorphism if non-final sequences overlap non-final ones. 

https://doi.org/10.4236/apm.2024.143007


Y. M. Volin 
 

 

DOI: 10.4236/apm.2024.143007 152 Advances in Pure Mathematics 
 

Lemma 35. Each mI  is uniquely determined by specifying any sequence  
m mI ∈ I : ( )m m mI=I I . And each mI  uniquely determines the class mI  for 

which m mI ∈ I . Therefore, each m
nT  is uniquely determined by specifying the 

sequence m mI ∈ I . 
Indeed, if m mI ∈ I  is given, then the set m mI PI× , when mPI  runs over all 

continuing sequences of automorphisms, contains all different sequences of plac-
es related to mI  (in one version and only such sequences). Therefore, it coin-
cides with mI  and is uniquely determined. 

Obviously, for each mJ  there is a unique mI  that extends it. 
We will call mI , obtained by expanding mJ , accompanying. The correspon-

dence between mJ  and accompanying mI  is one-to-one. Due to this circums-
tance, statements for mI  are easily transferred to mJ  and vice versa, and there 
is no need for modified duplication of statements. 

Lemma 36. Given m  any class of related sequences of places is the union of  
disjoint classes of strongly related sequences: m m

ii
=I I


, m m
i j =∅I I , if  

i j≠ . 
Let us save the definition of related and strongly related sequences given 

above for the case when 0m −  is taken instead of m (m is the limit ordinal). To 
do this, let us introduce the necessary clarification of what we mean by a 

non-final sequence of automorphisms 0mPI − . Let ( )0 ,
k

m k
tiPI P k m− = < . There is 

a unique 
m

m
tiP , which is the limit of ( ),

k

k
tiP k m< . The sequence 0mPI −  will be 

called non-final if 
m

m
tiP  is a non-final automorphism. Lemma 36 remains valid if 

m is replaced by 0m − . 
Let us move on. 
Lemma 37. For any through tree m

wtT , the set of prototypes of through paths is 
the class of related sequences of places. 

In fact, both sets are determined from one of their representatives mI  by a 
formula: m mI PI× , when mPI  runs over all continuing sequences of automor-
phisms. See lemmas 31, 35. 

The same is true for through non-final paths. 
The following statement is also true. 
Lemma 38. For any mI  and isomorphic ,m m

w tT T , there is a through tree m
wtT  

for which mI  is the set of the prototypes of through paths. 
In fact, let ( ),

k

m k m
iI n k m= ≤ ∈ I , 0m

m m
in n= . Let us place the non-final iso-

morphism m
wtT  on 

m

m
in . By this, we define m

wtT , in which  

( )( ), ,
k

m k m
i wtW T cut T k k m= = ≤  is a through path, for which mI  is the proto-

type, see lemma 27. Sequences related to ( ),
k

m k
iI n k m= ≤  are obtained from 

mI  by multiplying mI  by different continuing sequences mPI . They will be 
the prototypes of through paths of m

wtT , which are obtained from mW  by mul-

tiplying mW  by mPI . See lemma 37. 
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Lemma 39. Let ,m m
a bI I  be non-final sequences, m m

a aI ∈ I , m m
b bI ∈ I , m < ∝ . 

The classes ,m m
a bI I  are isomorphic, and the one-to one correspondence  

m m m m
a i b iI PI I PI× → × , when m

iPI  runs over all continuing sequences of auto-

morphisms, determines uniquely a strong isomorphism of ,m m
a bI I , in which 

m
aI  goes into m

bI . The converse is also true: every strong isomorphism is uni-

quely determined by the choice of non-final ,m m
a bI I  (and of course, in the gen-

eral case there can be many such choices). 
See lemmas 32, 33 and 38. 
Let us introduce in a natural way the order relation for ,l m

n nT T : l m
n nT T≤  

means that ( ),l m
n nT cut T l= . The order relation for ,l m

n nT T  induces an order re-

lation for the corresponding ,l mJ J , where l m≤J J  (for l m≤ ) means that all 
sequences of places included in the set lJ , are obtained from sequences in-
cluded in mJ  using the cutting operation at level l: ( ),l mcut l=J J . Of course, 

also we have ( ),l mcut l=J I . In this case lemma 40 is carried out. 

Lemma 40. l m≤J J  if and only if there is a sequence m mI ∈J  for which 

( ),m lcut I l ∈J . If l m<  and m mI ∈ I , then also ( ),m lcut I l ∈J . 

The introduced order relations allow us to talk about continuing sequences of 
sets of non-final sequences of places: ( ),k k m<J  (as well as about continuing 

sequences ( ),k k m<I ). Let us make an addition for the uncovered case, when 

for the limit m mI  does not exist (in this case 0m−I  also does not exist), but 
there is a continuing sequence ( ),k k m<I  that does not have final limits at lev-

el m (this can happen for m = ∝ ). The sequence ( ),k k m<I  introduces in an 

obvious way the order relations between places k
in  and l

jn  and thereby in-

troduces 0m
nT − . If mI  does not exist, then ( ),k k m<I  and the corresponding 

0m
nT −  do not have through paths. 

Lemma 41. Let ( ),k k m<I  be a continuing sequence, m < ∝  a limit ordin-

al, and ( ),k
nT k m<  the corresponding continuing sequence of place trees. The 

limit tree 0m
nT −  has the set 0m−I  as the set of through paths, which is the limit 

of the sequence ( ),k k m<I . 

Lemma 42. Let there be 0m−I  and ( )0 0,
k

m k m
i iI n k m− −= < ∈ I , where  

0 0m m
i
− −⊆I I . Let us expand 0mI −  to ( ),

k

m k
iI n k m= ≤  with m mi β< . mI  de-

fines mI  in which non-final paths are continuations of paths from 0m
i
−I . 

Lemma 43. Let m
wtT  be an isomorphism tree placed on the place plane. The 

tree m
wtT  introduces a continuing sequence ( ),k k m<I , in which each kI  is 

the set of prototypes of the through paths of the tree ( ),k m
wt wtcut k=T T . 

Theorem 4. Among the continuing sequences ( ),m m < ∝I  there are both 

sequences with through paths and sequences without through paths. 
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In fact, the former are obtained if we use lemma 43 with the tree m
wt wt

∝=T T , 
when the trees wT  and tT  are isomorphic, and the latter—when they are not 
isomorphic (only almost isomorphic). 

Theorem 4 is the final result of this section, reflecting the fact that in the first 
class of almost through almost homogeneous trees almost isomorphic to each 
other (with height 1ω∝ = ) there are both trees without through paths and trees 
with through paths. 

If it is shown that all continuing sequences ( ),m m < ∝I  have through paths, 

then the inconsistency of set theory will follow. 

6. Disposition of Isomorphism Trees on the Place Plane 

It is convenient for us to assume that the mathematical objects under study are 
placed on the part of a homogeneous place plane (see the beginning of Section 
4). In this case, we will distinguish between the concept of “imposition (overlay, 
placing) an object on the plane of places” and that of “disposition of an object on 
the plane of places”. This will now be the essential point. 

Let there be a continuing sequence ( ),m
a m ≤ ∝I  ( )( )0 ,m m m m

a ai a i mI I PI i β= = × <I , 

generated by a through tree ,wt aT , and the place tree naT  corresponds to it. naT  

is a through tree isomorphic to ,wt aT . The set m
aI  ( m ≤ ∝ ) is the set of proto-

types of through paths in the tree ( ), , ,m
wt a wt acut m=T T  and ( ),m

na naT cut T m=  

(in the latter case m
aI  is also the set of through paths of the tree). It gives a full 

description of m
naT  and can be identified with it. For greater clarity, using the 

results of Section 8 in [1] (see theorem 3), we introduce a through splitting tree 

ST  with a root set S (realizing successive partitions of S into disjoint subsets), 
isomorphic to the tree ,wt aT , with the isomorphism described in the proof of 
theorem 3 in [1]. Next, we will consider various impositions of ST  on the plane 
of places. 

The tree ( ),m
S ST cut T m=  has the sets k

iS , ki β< , as vertices at level k, and 

for ki β<  we have non-final vertices when k
iS ≠ ∅ . k

iS  is the final vertex 

when k
iS =∅ . As its through paths, the tree m

ST  contains non-increasing se-

quences of sets ( ),
k

m k
iW S k m= ≤ , where 

0

0
iS S= , 

1

1
k k

k k
i iS S
+

+ ⊆ . At the limit m, if 

m k

m k
i ik m

S S
≤

= =∅


, then the path mW  is final and terminates. The tree m
ST  

( m ≤ ∝ ) under the isomorphism of theorem 3 turns out to be superimposed on 
m

naT . The set of sequences ( ),m m
a ai mI i β= <I  is the set of prototypes of the set of 

through paths ( ),m m
i mW i β= <W  of the tree m

ST  ( m
aiI  is the prototype of 

m
iW ). The following multiplication operation is introduced: 0

k k k
ti in P n× = ,  

( )0
k k k k k
i tj ti tjn P n P P× = × × . Also, we have: 0

k k k
ti iS P S× = , ( )0

k k k k k
i tj ti tjS P S P P× = × × . 

Accordingly, for all k we have the operation of multiplying k
iW  on k

jPI :  

0
k k k

i iW PI W× = , ( )0
k k k k k

i j i jW PI W PI PI× = × × . So, k k k
i j lW PI W× =  if and only 
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if k k k
ai j alI PI I× = . 

The set mW  (the set of through paths of m
ST ) adequately represents the tree 

m
ST  and is identified with it. And the set m

aI  (the set of through paths of m
naT ) 

adequately represents the tree m
naT  and is identified with m

naT . 

The sequence ( ),m
a m ≤ ∝I  is a special case of the sequence of sets of related 

sequences ( ),m m ≤ ∝I . In general case, the sequence ( ),m m ≤ ∝I  (and the cor-

responding place tree nT ∝ ) a priory may have no through paths. The set
  

( )0 ,m m m m
i i mI I PI i β= = × <I  (when it exists) is the set of through paths (and at 

the same time the set of prototypes of through paths) for the tree m
nT . 

Under the mWI -overlay of m
ST  ( m ≤ ∝ ) on the plane of places, we mean an 

isomorphic (taking into account, also, the distinguish between non-final and fi-
nal sequences) superposition of ( ),m m

i mW i β= <W  with ( ),m m
j mI j β= <I . 

We will say that m
ST  is superimposed on the plane of places according to mI  

or that there is an mI -overlay of m
ST  on the plane of places. This overlay is the un-

ion of individual overlays ( )
m

i jW  on m
jI  into one set, where the one-to-one function 

( )i j  must ensure the isomorphism of the overlay: ( )( )( ), ,m m m
j mi jW I j β= <WI . 

For ( )i j j=  we have the basic overlay. The superposition mWI  represents 

some isomorphism of m
ST  and m

nT  and can be identified with it. The se-

quences ( )( ),m m
ji jW I  will be called overlay paths. Overlay paths are double paths. 

Each double path consists of two subpaths, of which ( )
m

i jW  is the first subpath 

and m
jI  is the second one. We follow here the formalism introduced in Sections 

3, 4. 
Note that the sets ( ),m

i mW i β<  and ( ),m
j mI j β<  are classes of strongly re-

lated sequences. 
By overlay of m

ST  on the plane of places, we mean any one-to-one corres-

pondence between k
iS  and k

jn , in which the paths of m
ST  turn into paths of 

m
nT . 

Lemma 44. Any overlay is an mWI -overlay where mI  is some set of proto-
types of through paths of m

ST . 

Lemma 45. Let under the mWI -overlay m
iW  be superimposed on m

jI , 

where , mi j β< . Overlays of m m
i rW PI×  on m m

j rI PI× , when m
rPI  runs over 

all continuing sequences of automorphisms, define all individual path overlays 
that form the given mWI -overlay. Varying i and j, we will get all possible mWI
-overlays (isomorphisms of mW  and mI ). 

See lemmas 32, 33 and 37. 
The pair ( ),m m

i jW I  will be called the leading pair. The mWI -overlay is uni-

quely determined by the choice of the leading pair. 
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Lemma 46. Let ( ),m m
i jW I  be the leading pair of the mWI -overlay. Then 

every pair ( ),m m m m
i r j rW PI I PI× × , where mr β< , is a leading pair, and every 

leading pair has such a representation. 
If it is necessary to indicate that in the overlay under consideration m

iW  is 

superimposed on m
jI , we will use the notation m

ijWI .  

( )( ), ,m m m m m
ij i r j r mW PI I PI r β= × × <WI . In the overlay m

ijWI , ( ),m m
i jW I  is the 

leading pair. 
The following lemma is true. 
Lemma 47. Let m

jI  be fixed and m
iW  vary (or vice versa). Each mWI -overlay 

coincides with one of the overlays obtained in this way. 
The assertion of the lemma follows from the fact that each mWI -overlay is 

determined by the choice of a leading pair. 
The set of all possible overlays for a given m can be described, for example, by 

the following formula (which represents the set of 0
m
iWI -overlays): 

( )0, , ,m m m m m
i r r r m mW PI I I PI r iβ β× = × < < . 

In the overlay ( ), ,m m m
i r r mW PI I r β× < , pair ( )0,m m

iW I  is the leading pair. 

The overlay mWI  continues the overlay lWI  if the double paths of mWI  
continue the double paths of lWI . 

The notion of mWW -overlay (when the set mW  is automorphically supe-
rimposed on itself) is introduced in a similar way and has similar properties. The 
notation m

ijWW  means that this overlay is determined by the overlay of m
iW  

on m
jW : ( ),m m

i jW W  is the leading pair. We single out the formula 
 

( )( ), , ,m m m
i r r m mW PI W r iβ β× < < . This formula corresponds to the case when 

( )0,m m
iW W  is the leading pair and covers all possible mWW -overlays. For fixed 

i, this formula describes some particular imposition of mW  on itself,  

( )( ), ,m m m
i r r mW PI W r β× < , and accordingly describes some automorphism of the 

tree m
ST . 

Lemma 48. Let ( ),m m
i jW W  be the leading pair of the mWW -overlay. Then 

every pair ( ),m m m m
i r j rW PI W PI× × , where mr β< , is a leading pair, and every 

leading pair has such a representation. 
Let us introduce the product of impositions. m m

a b×WW WW  means the fol-

lowing overlay m
cWW . Let m m

a ij=WW WW  and m m
b jl=WW WW . Then  

m m
c il=WW WW . 

Lemma 49. The definition is correct since the choice of any other consistent 
leading pairs leads to the same result (by virtue of lemma 48). 

The introduction of the product operation turns the set mWW  into the 
group of automorphisms of mW . 

The product m m×WW WI  is defined in a similar way. This product is a new 
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mWI -overlay (a new isomorphism of mW  and mI ). If in mWW  the pair 
 

( ),m m
i jW W  is the leading one and in ( ),m m m

j lW IWI  is the leading pair, then 

( ),m m
i lW I  will be the leading pair of the new overlay mWI . 

The set of all possible mWI -overlays of the tree m
ST  on the place plane can 

be described by the following formula:  

( ) ( )( ), , , ,m m m m
i m i r r m mi W PI I r iβ β β< = × < <WI . The overlay m

iWI  has ( )0,m m
iW I  

as a leading pair. Note that the above-mentioned set of all possible mWI
-overlays can be obtained as follows. Let us take one overlay. Let it be, for exam-
ple, the basic overlay 00

mWI  (with the leading pair ( )0 0,m mW I ). We have  

0 00 ( )m m m
i i mi β= × <WI WW WI . In essence, this means that we make transforma-

tions mW  inside the overlay 00
mWI  using strong automorphisms with the 

leading pair ( )0,m m
iW W , and as a result the leading pair ( )0 0,m mW I  is replaced 

by the pair ( )0,m m
iW I  ( mi β< ).With different mi β< , we get all overlays m

iWI . 

Let us define the disposition of m
ST  on the place plane (the designation is 

m
SDT ) as the maximum set of overlays when, for every two overlays, the second 

overlay is obtained from the first one using the automorphism transformation of 
m

ST  inside the first overlay. It is clear that m
SDT  exists for every m ≤ ∝ . 

Lemma 50. Every disposition of m
ST  is a mWI -disposition: the set of all 

possible overlays when mI  is the set of prototypes of through paths in m
ST . 

mWI -disposition exists if mI  exists. So, mWI -disposition exists for every  
m < ∝ . 

The disposition of m
ST  continues the disposition of l

ST  if the set of proto-

types of through paths m
ST  continues the set of prototypes of through paths  

l
ST : ( ),l mcut l=I I . We will say in this case: the continuing sequence  

( ),m m < ∝I  determines the continuing sequence of mWI -dispositions of m
ST  

on the place plane. 
Thus, the disposition of m

ST  is defined as a collection of all possible overlays 
of m

ST  on the plane of places with a single set of prototypes of through paths. In 
other words, the disposition of m

ST  is an overlay up to an automorphic trans-
formation that does not change the set of the prototypes of through paths of 

m
ST . The disposition of m

ST  is determined uniquely by the set of the prototypes 
of through paths mI , and any set of related sequences mI  uniquely determines 
the disposition of m

ST  on the plane of places. 
Let us introduce the concept of the disposition of 0

ST ∝−  on the plane of plac-

es. By the disposition of 0
ST ∝−  on the plane of places we mean the sequence of 

dispositions ( ),m
SDT m < ∝ , when for all k l< < ∝  the disposition of l

ST  con-

tinues the disposition of k
ST . In this case, the set of the prototypes of through 

paths of k
ST  is obtained using the k-cutting operation for the prototypes of 

through paths of l
ST . 
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Lemma 51. Every continuing sequence ( ),m m < ∝I  determines the disposi-

tion of 0
ST ∝−  on the place plane and vice versa. And we have the continuing 

sequence of dispositions ( ),m
SDT m < ∝  such that each disposition m

SDT  has 
mI  as the set of prototypes of through paths of m

ST . 

The proof of the inconsistency of set theory will be completed if the following 
fundamental point is justified. 

Fundamental point. The disposition of 0
ST ∝−  on the plane of places entails 

the existence of the disposition of ST ∝  that continues the disposition of 0
ST ∝− . 

The fundamental point obviously holds in the case of the disposition 0
ST ∝−  

induced by the sequence ( ),m
a m < ∝I , which has through paths due to our 

choice. But the entire difference between this case and any other comes down to 
a different disposition of 0

ST ∝−  on the same homogeneous plane of places. 
Therefore, the fundamental point must be satisfied in the general case. 

Let ( ),m m < ∝I  be an arbitrary continuing sequence to which the place tree 
0

nT ∝−  corresponds. It determines for each m < ∝  the disposition of m
ST  on a 

homogeneous plane of places (in which mI  is the set of prototypes of through 
paths) and accordingly defines the disposition of 0

ST ∝−  on the plane of places. 

Therefore, the disposition of ST ∝  on the plane of places, that continues 0
ST ∝− , 

is determined. The latter means that an arbitrary continuing sequence  

( ),m m < ∝I  has through paths, and we arrive at a contradiction in set theory 

(see theorem 4 in the end of Section 5). 

7. Conclusion 

The article presents the chain of statements leading to the conclusion that set 
theory is inconsistent. The critical point in this chain is the last step, which 
affirms the possibility of transition from the disposition of 0

ST ∝−  on a ho-
mogeneous plane of places to the disposition of ST ∝ , which continues the 
disposition of 0

ST ∝− . The feasibility of this step can hardly raise doubts (as we 
are talking about different dispositions of the same mathematical object 0

ST ∝−  
on a homogeneous plane of places and dispositions at which transition is 
possible demonstrably exist). But, of course, more subtle arguments are ne-
cessary here. 
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