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Abstract 
This article gives a general model using specific periodic special functions, 
which is degenerate elliptic Weierstrass P functions whose presence in the 
governing equations through the forcing terms simplify the periodic Navier 
Stokes equations (PNS) at the centers of cells of the 3-Torus. Satisfying a di-
vergence-free vector field and periodic boundary conditions respectively with 
a general spatio-temporal forcing term which is smooth and spatially period-
ic, the existence of solutions which have finite time singularities can occur 
starting with the first derivative and higher with respect to time. The exis-
tence of a subspace of the solution space where 3v  is continuous and 

{ }2
1 1, ,C y y , is linearly independent in the additive argument of the solution in 

terms of the Lambert W function, ( 2
1 2y y= , C∈ ) together with the condi-

tion 2 1 12v y v= − . On this subspace, the Biot Savart Law holds exactly [see 
Section 2 (Equation (13))]. Also on this subspace, an expression X (part of 
PNS equations) vanishes which contains all the expressions in derivatives of 

1v  and 2v  and the forcing terms in the plane which are related as 

2 112T TF y F= −  with the cancellation of all such terms in governing PDE. The 

3y  component forcing term is arbitrarily small in ε  ball where Weierstrass 
P functions touch the center of the ball both for inviscid and viscous cases. As 
a result, a significant simplification occurs with a 3v  only governing PDE 
resulting. With viscosity present as ν  changes from zero to the fully viscous 
case at 1ν =  the solution for 3v  reaches a peak in the third component 

3y . Consequently, there exists a dipole which is not centered at the center of 
the cell of the Lattice. Hence since the dipole by definition has an equal in 
magnitude positive and negative peak in 3y , then the dipole Riemann cut-off 

surface is covered by a closed surface which is the sphere 1=r  and where a 
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given cell of dimensions [ ]31,1−  is circumscribed on a sphere of radius 1. For 
such a closed surface containing a dipole it necessarily follows that the flux at 
the surface of the sphere of 3v  wrt to surface normal n  is zero including at 
the points where the surface of sphere touches the cube walls. At the finite time 
singularity on the sphere a rotation boundary condition is deduced. It is shown 
that 3v  is spatially finite on the Riemann Sphere and the forcing is oscillatory 

in 3y  component if the velocity 3v  is. It is true that 3
3

v v∂
= ⋅∇

∂
n

n
. A boun-

dary condition on the sphere shows the rotation of a sphere of viscous fluid. Fi-
nally on the sphere a solution for 3v  is obtained which is proven to be Hölder 
continuous and it is shown that it is possible to extend Hölder continuity on 
the sphere uniquely to all of the interior of the ball.  
 

Keywords 
Navier-Stokes, PNS, 3-Torus, Periodic, Ball, Sphere, Hölder, Continuous, 
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1. Introduction 

Turbulent flows are characterized by the non-linear cascades of energy and other 
inviscid invariants across a huge range of scales, from where they are injected to 
where they are dissipated. In the 3D viscous incompressible flow, the kinetic 
energy is transferred from large scale eddies to small scale eddies, in particular, if 
you inject energy at a wavenumber Fk  kinetic energy will be transferred to the 
wavenumbers k s.t. Fk k> . In 2D viscous incompressible flow the kinetic energy 
is transferred from small to large eddies, in particular if you inject energy at wa-
venumber Fk , then your energy will be transferred both to the larger and 
smaller wavenumbers, this fact can be flagged as an inverse cascade. This double 
cascade is due to the presence of two inviscid quadratic invariants: energy and 
enstrophy. Experimental, numerical and theoretical works have shown that 
many turbulent configurations deviate from the ideal three and two dimensional 
homogeneous and isotropic cases characterized by the presence of a strictly di-
rect and inverse energy cascade [1]. It can be assumed that the flow is confined 
in a periodic box of size L and that the external forcing is acting on a band li-
mited range of scales centered around in . It is important to discuss the case 
when the horizontal size, L of the domain is finite and no drag force is present so 
that a condensate forms in a split cascade regime. With layers of fluid of finite 
height, there is a path to saturate the inverse cascade. In square boxes the con-
densate takes the form of a vortex dipole. As the condensate increases in ampli-
tude and is constrained not to exceed the size of the box, its eddy-turn-over-time 
also increases. Thus, at sufficiently large amplitudes, the rotation rate of the 
counter-rotating vortex will locally cancel the effects of Ω in the rotating Navier 
Stokes equations, and the flow will no longer be restricted to 2D dynamics and it 
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will be able to develop a forward energy cascade. This occurs when the ampli-
tude of the condensate velocity U is such that U L= Ω . The system thus reaches 
a zero flux state that has a finite inverse flux in the slow manifold dynamics and 
a forward flux in the 3D fast manifold dynamics [1]. Experimental techniques in 
interface dynamics of two turbulent fluids are carried out in [2]. Cutting-edge 
analytical and numerical approaches to the Gilson-Pickering (GP) problem have 
been carried out in order to get precise solutions. The model explains wave 
propagation in plasma physics and crystal lattice theory [3]. In physics the di-
mensions of a massive object can be ignored and can be treated as a pointlike 
object, i.e. a point particle. In electrostatic theory, point particles with electric 
charge are referred to as point charges. Two point charges, one with charge +q 
and the other one with charge -q separated by a distance d, constitute an electric 
dipole. An object with an electric dipole moment p is subject to a torque τ  
when placed in an external electric field E. In the context of viscous fluid dy-
namics and at the very heart of turbulent fluid flows are many interacting vor-
tices that produce a chaotic and seemingly unpredictable velocity field. Gaining 
new insight into the complex motion of vortices and how they can lead to topo-
logical changes in flows is of fundamental importance in our strive to under-
stand turbulence. One aim is to form an understanding of vortex interactions by 
investigating the dynamics of point vortex dipoles [4]. The existence of dipoles 
describes vortex motion and can possibly lead to a better understanding of the 
turbulence problem. Dipolar vortices are also self-propagating, which implies 
some consequences on the transport of mass and heat. For instance, a dipole can 
trap passive scalars such as phytoplankton [5] within its core, and thereafter 
transport it. Contrary to the single monopole which is known mathematically to 
converge towards a Lamb-Oseen vortex by viscous diffusion, this problem seems 
not to be settled in the case of the dipole. Now on the topic of the well-posedness 
of solutions to Navier Stokes equations, Wang et al. [6] have examined globally 
dynamical stabilizing effects of the geometry of the domain at which the flow 
locates and of the geometry structure of the solutions with the finite energy to 
the three-dimensional 3D incompressible Navier Stokes and Euler systems. The 
global well-posedness for large amplitude smooth solutions to the Cauchy prob-
lem for 3D incompressible NS and Euler equations based on a class of variant 
spherical coordinates has been obtained, where smooth initial data is not 
axi-symmetric with respect to any coordinate axis in Cartesian coordinate sys-
tem. In their work [6] they have considered such variant spherical coordinates 
with Dirichlet type boundary conditions and have proven the existence, unique-
ness and exponential decay rate in time of the global strong solution to the initial 
boundary value problem for 3D incompressible NS equations for a class of the 
smooth large initial data. In the present work, it has been determined that as the 
kinematic viscosity changes from the corresponding value at 0ν =  to the fully 
viscous case for the Periodic Navier Stokes equations (PNS) at the value 1ν =   

the solution reaches a peak ( 3

3

0v
y
∂

=
∂

) in 3y  (the third component of  
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( )1 2 3, ,y y y=r  in Cartesian co-ordinates). Here in the viscous case there exists a 
dipole which is not centered at the center of the cell of the Lattice. This implies 
that since the dipole by definition has an equal in magnitude positive and nega-
tive peak in the third component of velocity, then the dipole Riemann cut-off 
surface is covered by a closed surface which is the sphere 1=r  and where a 
given cell of dimensions [ ]31,1−  is circumscribed on a sphere of radius 1. For 
such a closed surface containing a dipole it necessarily follows that the flux at the 
surface of the sphere of 3v  wrt to surface normal n  is zero. In terms of ma-
thematical analysis of the NS equations in a thin spherical shell, the convergence 
of the longitudinal velocity averaged in the radial direction across the shell to the 
strong solution to the two-dimensional NS equations on a sphere as the thick-
ness of the shell converges to zero has been rigorously proved in [7]. However a 
Dirichlet type impenetrability condition is used there with all three components 
of velocity (no gradients at the wall). In the present work a Neumann impene-
trability condition is used with the gradient of the third component of velocity. 
Here at the six points where the sphere touches the cube walls, it has been de-
termined that the velocities satisfy PNS and the function 3v  is Hölder conti-
nuous there. By using the spherical coordinate system in terms of Cartesian 
co-ordinates and using the chain rule the solution can be extended to all of the  

sphere. This is the first extension. In terms of pure rotation ( ) 1 2

1 2

1,1 , 0v v
y y

 ∂ ∂
⋅ = ∂ ∂ 

 

which signifies rotation of the spheres. Finally as a result of the present work, on 

the sphere with a Neumann boundary condition, (Here 3
3

v v∂
= ⋅∇

∂
n

n
) a non  

smooth solution [8] for 3v  exists which is Hölder continuous and it is proven 
that it is possible to extend Hölder continuity on the sphere uniquely to all of the 
interior of the Ball of radius one. Although non-uniqueness is proposed to occur 
for solutions in the interior of the ball for PNS equations there exists at least one 
solution there that is Hölder continuous.  

2. Materials and Methods 

Consider the incompressible 3D Navier-Stokes equations defined on the 3-Torus 
3 3 3=   . The PNS system is,  

 

0 0

div 0

t

u u u u p f
t

u
u u=

∂
− ∆ + ⋅∇ = −∇ +

∂
=
=

 (1) 

where ( ), , ,u u x y z t=  is velocity, ( ), , ,p p x y z t=  is pressure and  
( ), , ,f f x y z t=  is the forcing function. Here ( ), ,x y zu u u u= , where xu , yu , 

and zu  denote respectively the x, y and z components of velocity. Introducing 
Poisson’s equation (see [9] [10] [11]), the second derivative zzP  is set equal to 
the second derivative obtained in the 

1δ
  expression further below, as part of 

 , and  
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2 2
2

222

12

2

z z z z
zz z z x

y yx xz
y

u u u uP u u u x
z z x y z

u uu uuu
z y x y x y

δ
η

δ

 ∂ ∂ ∂ ∂∂ = − ∇ − + + − ∂  ∂ ∂ ∂ ∂ ∂   

∂ ∂ ∂ ∂∂  − + + +   ∂ ∂ ∂ ∂ ∂ ∂   

 (2) 

where the last three terms on rhs of Equation (2) can be shown to be equal to 
( )xx yyP P− + . Along with equations below, the continuity equation in Cartesian 

co-ordinates is 0i
iu∇ = . The one parameter group of transformations on a 

critical space of PNS is,  

 

** * *

2

* * * * 2

1 1 1 2
* * * *

; ; ;

; ; ; ,

; ; ;

yx z
x y z

uu u Pu u u P

x x y y z z t t

x y z tx y z t

δ δ δ δ
δ δ δ δ

δ δ δ δ− − − −

= = = =

= = = =
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= = = =

∂ ∂ ∂ ∂∂ ∂ ∂ ∂

 (3) 

Next the right hand side of the group of transformations Equation (3) is 
mapped to η  variable terms. Here η  and δ  are in the interval  

[ ), 1,δ η∈ ∞ ,  

 * * * * 2
2

1 1; ; ; , 1,2,3.i i i iu v P Q x y t s iη η
η η

= = = = =  (4) 

The double transformation here is used for notational clarity. Note that the 
original Navier-Stokes equations are preserved and rearranged in the following 
form,  
 ( ) ( ) ( ) ( ) ( )

1 2 3 4
0δ δ δ δη η η η η= + + + =      (5) 

where ( ) , 1,2,3,4
i

iδη =  are given in [12] and [13] and it has been shown there 
that this decomposition is valid and that on a volume of an arbitrarily small 
sphere embedded in each cell of the lattice centered at the central point of each 
cell of the 3-torus, ( )

3δ
η  is negligible for the case of no viscosity (Euler equa-

tion) and for viscosity 1ν =  the existence of a dipole occurs with the centre of 
the dipole occurring shifted away from the centre of the given cell. From  

this equation we can solve for 
3

Q
y
∂
∂

 algebraically and differentiating wrt to 3y   

and using Poisson’s equation by setting the representation of each of the two 
partial derivatives wrt to 3y  equal to each other we can obtain,  
 0L =  (6) 
 1 2 3L L L L= + +  (7) 

where each , 1,2,3iL i =  is given as, 

( ) ( )

( ) ( )

( )

2 23 3
3 3 3 3

1 2 2
3 1 3 2

2 3 3
23 3 3 3

33 2
3 3

2 22
2 3 3 3 3

3 3
3 3

1 1

1

2
2

1
2

v v v v
L

s sy y y y

v v v v
v

s sy y s

v v v v
v v

y s s s y

µ δ µ δ

µ δ δρ

δδρ ρ δ

∂ ∂ ∂ ∂   = − + −   ∂ ∂∂ ∂ ∂ ∂   

 ∂ ∂ ∂ ∂   + − +     ∂ ∂∂ ∂ ∂     

   ∂ ∂ ∂ ∂    − − − −       ∂ ∂ ∂ ∂ ∂      




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( ) ( )

( ) ( )

1 2
3 31 2

3 1 2 3 3 1 2 3
1 2

2
3

1 2 3
3

, , , ,

1 1

, ,

, , ,
2 2

T T
v vv vv F y y y s v F y y y s

s y s y

v
y y y s s

y s
δ

 ∂ ∂∂ ∂   + + + +    ∂ ∂ ∂ ∂   
∂+ Λ + Φ  ∂ ∂ 

 

( ) ( )( )

( )

( ) ( )( )

( )

1

2

3
2 1 1 2 3

2
31

3 1 2 3
3 1

3
2 1 2 3

2
32

3 1 2 3
3 2

2
3 3

3 2
3

1 , , , 1

2 , , ,

1 , , , 1

2 , , ,

2 23
3 3

T

T

v
L v y y y s

s

vvv F y y y s
s y y

v
v y y y s

s

vvv F y y y s
s y y

v v
v

s y

δ δ

ρδ

δ δ

ρδ

ρ δ

∂= − − ∂

∂∂  + + × ∂ ∂ ∂ 

∂+ − − ∂

∂∂  + + × ∂ ∂ ∂ 

∂ ∂   + − + + +    ∂ ∂    


 

( ) ( )

( )( ) ( )

2 2 2
3 3 3 3 31

3 3 3 32 2
3 11 2

22
3 32

3
3 2 3

2 2
1 1 2 2

1 2 1 2

2 1 2 1 2

2 1 3 1 1

2

v v v v vvL v v v
s s y s yy y

v vv v
y s y y

v v v v
y y y y

δ δ ρδ

ρδ ρ δ δ

   ∂ ∂ ∂ ∂ ∂∂   = − + − +       ∂ ∂ ∂ ∂ ∂∂ ∂      

    ∂ ∂∂ + + − + + + −     ∂ ∂ ∂ ∂     

     ∂ ∂ ∂ ∂
× + +     ∂ ∂ ∂ ∂     

( ) ( )

( )

1 2

1 2

3

3 3 31 2
1 2 3 1 2 3

1 2 3

1 2 33 3 3
3 3

1 3 2 3 3

2 , , , , , ,

, , ,1
2

T T

T T

v
s

v v vv vF y y y s F y y y s
s y y s y

F F y y y sv v v
v v

y y y y y s

ρ

δ

 ∂ 
  ∂

   ∂ ∂ ∂∂ ∂   + + + +       ∂ ∂ ∂ ∂ ∂      

∂ ∂ ∂Λ   ∂ ∂ ∂
+ + +     ∂ ∂ ∂ ∂ ∂ ∂     

 

 

( )
( ) ( ) ( )

( ) ( ) ( )

( )

( )

3
0 1 2 3 3 1 2 3

1
1 2 3

3
0 1 2 3 3 1 2 3

2

3 3
3 1 2 3

3

2 3
1 2 3 3

3 3

, , , , ,
, , , 2

, , , , ,
2

, , ,

, , ,

sz

sz
sz

vf s F y y y v y y y s
yy y y s

vf s G y y y v y y y s
y

v
v F y y y s

y

v F
F y y y s v

y y

δ

δ

δ

δ

∂
∂

Λ =

∂
∂

+

 ∂
−  ∂ 

  ∂ ∂
+ +   ∂ ∂  

 (8) 

where ( )1 2
, ,T T szF F F=f  is the external forcing vector and ( )1 2 3, ,v v v=v  is the 

velocity in each cell of the 3-Torus.  
For the three forcing terms, set them equal to products of reciprocals of dege-

nerate Weierstrass P functions shifted in spatial co-ordinates from the center 
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( ), , , 1, ,i i ia b c i N=  .  
The ( ), ,i i ia b c  is the center of each cell of the lattice in 3 . Upon substitut-

ing the Weierstrass P functions and their reciprocals into Equations (6) and (7) 
together with the forcing terms given by Λ (in Equation (8)), it has been deter-
mined that in the equation terms in it are multiplied by reciprocal P functions 
that touch the centers of the cells of the lattice thus simplifying Equations (6) 
and (7). The initial condition in 3v  at 0s =  is instead of a product of reci-
procal degenerate P function for forcing, is a sum of these functions. The para-
meter m in the P function if chosen to be small gives a ball,  

 ( )
1

22 23 2
1 2 32

:rB y y y y y r
  = ∈ = + + ≤ 
  

  (9) 

In the case when fluid region Ω has a connected boundary and certain 
smoothness conditions are fulfilled, Leray proved the solvability of the Navier 
Stokes equations in his famous paper [14]. The same result holds when the flux 

iFl  of the velocity vector (all 3 components of velocity) across each connected 
component iΓ  of the boundary vanishes. This condition means that the flow 
region contains neither sources nor sinks.  

Now continuing the analysis, the function Φ associated with ( )
3δ

η  in [12] 
and [13] can be calculated as follows,  

( )( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( )( )

2
4

4 4 4

2 EllipticE JacobiSN 1 , ,
3

2 EllipticE JacobiSN 1 , , 6 2
3

a

a

F t C t C i i R

RF t C t F t C i i C F t

Φ = +

+ − − + + −
 (10) 

where ( )aC t  are pressure gradient derivative terms wrt to x, y and z as func-
tions of t.  

Solutions of Equations (6) and (7) exist in the form ( ) ( )3 4 5v F t F= x  where 
the function Φ can be explicitly written as  

 
( ) ( ) ( ) ( )

( )

2 2

4 4 4 4

2
4

d d
d d
d
d

F t F t F t F t
t t

F t
t

µ

λ ρ

    −         Φ = −
 
 
 

 (11) 

where λ  is the corresponding eigenvalue associated with the solution of Equa-
tions (6) and (7). Setting the two functional forms for Φ equal to each other and 
solving the ordinary differential equation for ( )4F t  (see [12] and [13]), a 
LambertW function solution exists for ( )4F t  and the form of solution is a W 
function multiplied by a JacobiSN complex valued function in x  (see 
[13]-chapter 8). 

It has recently been shown in [12] that the following PDE results on a suitable 
subspace of the solution space for 3v  which holds on an epsilon ball about the 
center of each cell of the lattice and existing (to be shown) dipole center of a 
given cell of 3 ,  
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( )

( )

2 3 3 3
3 3 3 3

3 2 2
3 3 2 3 1

2 2 2 2
3 3 3 3

3 2 2 2
3 2 1

2 22 2 2
3 3 3 3 3 3

3 2
3 3 3 1 3 23

1

1 2 2
3

1 3 3 0
6

v v v v
s y y y y y

v v v vv
s y y y

v v v v v vv
y y y y y y sy

µ δ

δ

ρ ρ

 ∂ ∂ ∂ ∂  + + −  ∂ ∂ ∂ ∂ ∂ ∂   

 ∂ ∂ ∂ ∂ + − + +  ∂ ∂ ∂ ∂   
    ∂ ∂ ∂ ∂ ∂ ∂ + + − + + =    ∂ ∂ ∂ ∂ ∂ ∂ ∂∂     

 (12) 

Using the definition of vorticity in the 3y  direction it follows that in the 
subspace where 0X =  in [12] that the following PDE occurs,  

 ( )( ) ( )( )1 1
1 1 2 3 1 2 3 3

1 2

2 , , , 1 2 ln , ,v vv y y y s F y y y s
y y

ω
∂ ∂

− − − − = − − + =
∂ ∂

 (13) 

with solution  

 
( )( )

( )

1

1

1 1 2 3

1 1 2 3

1 1 ln 2 2 , , e d
2

2 2 , , e

y a

y

v F a y y y s a

F y y y s −

  = − + − − + 

+ − + 

∫
 (14) 

It is evident that at 1y a= , and 1
3

1 2
1

1 2

21 ln d
2 2

y y y
F a

y y

 − +
 = −
 − + 

∫  and using  

division property of logarithm function and the fact that locally near 1,  
( )ln 1Z Z= −  that,  

( ) ( )( )( )1 2 1 2
1 3 2

2

1 ln ln 2
1 d

2 e
y

a

F y y e a y
v a

a y −

 − + − + − +   = −
 − 

∫  

and  

( )( )( )1 2 1 2
1 3 2

2

ln 2
1 d

2 e
y

a

F y y a y
v a

a y −

 − − +   = −
 − 

∫  

Here it is seen that the Biot-Savart Law is established on 
3 ,y s  space in [12]. 

It is assumed that the velocity 1v  is shifted by negative 1. Transforming back to 
∗  variables the 2e a−  term will be equal to one when δ  is large. Also it has 
been computed that the cross-product,  

( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( )

1 2 3 1 2 3

2 1 2 3 3 2

1 1 2 3 3 1

1 2 2 1

2, 2, 2 , ,

2 , , 2
2 , , 2

2 2

y a y a y a

y a F y y y s y a
y a F y y y s y a

y a y a

ω ω ω

ω
ω

ω ω

− − − ×

 − − + − −
 = − − − + + − 
 − − − 

 

Considering the first row of this matrix establishes the result given by 1v  
formula. Note that the integral of 1 is a which approaches zero in ∗  variables 
since a division by δ  results and for large δ .  

3. Results 

The solution in [12] occurs for large ζ  and time t. The solution was rescaled 
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in ζ . (In the form ζ ζ α= − + , where α  is a large complex valued shift.) In 
[12] this was valid for 0ν =  that is the Euler equations. In this paper the same 
shift occurs but as ν  approaches unity and given the reduced PNS equations 
the relationship in terms of the definition of the LambertW function as shown in 
Equation (16) exists. The variable ζ  is complexified. As a result the first deriv-
ative wrt to *z  can be written using the chain rule as,  

 
( )*

3 3
* *

zv v
z z

ζ

ζ

∂∂ ∂
=
∂∂ ∂

 (15) 

Here it is assumed that ( )*zζ ζ= , where ζ  is arbitrary large complex va-
lued data in the complex norm in the complex space  . (The test value of the  

form of this function turns out to be ( )*
*

i

Bz
z c

ζ ζ= =
−

, where B is precisely  

determined to produce the Riemann surface further obtained and ic , 1,2i =  
where central point occurs for 1 0c =  and 2c  is the dipole off center point for 
high viscosity. There are two ε  balls, one about the origin with associated low 
viscosity and one about the shifted away from origin dipole center associated 
with high viscosity). Also the variable *z  is the complexification of the *z
-component of velocity given by PNS equations on 3 . (recall one can use ei-
ther *z  or 3y  or *

zu  or 3v  with a factor of δ  introduced. It can be shown  

that as ζ  gets large 3 0v
ζ
∂

→
∂

. Also note 1δ ≠  for the viscous case).  

The argument of the shifted Riemann surface obtained is derived from the de-
finition of the LambertW function. The argument of the W function which is a 
function of ζ , say ( )Q ζ  is set equal to eww . It is precisely as follows,  

 
( )

( )
1.0ln 0.000843648 8.280128000 9.292505600

0.0008436480000 ln e 1ww

ζ

ζ

− +

− = +
 (16) 

When the logarithm terms are subtracted the other terms are put to the right 
hand side of the equation. Taking the exponential of both sides cancels the loga-
rithm and leaves us with an exponential of a binomial in ( )*zζ ζ= . Linearizing 
the exponential gives the dipoles in Figure 1 and Figure 2. The “plot3d” com-
mand is used where four functions are plotted together, that is, ( )Rex ζ= , 

( )Imy ζ= , u and v, where w u iv= + . Here w is the complex LambertW func-
tion associated with the viscous solution. One solves for ζ  in terms of ,u v .  

The command lines in Maple are:  

1.000000000 ln(0.843648 3 8.280128000) 9.292505600e ζ − +∗−∗ −  

0.8436480000 3 ln( exp( )) 1;e w wζ ∗= +∗−  

: (0.1517220452 1 (647852. exp( ) 646885.)) / ( exp( ) 1.);e w w w wζ ∗ ∗ ∗ ∗= − − −  

: ;w u I v= + ∗  

: ( ( ));x evalc Re ζ=  

: ( ( ));y evalc Im ζ=  
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Figure 1. Positive peak in the dipole for Maple plot of Riemann surface of velocity 3v . 
 

 

Figure 2. Negative peak in the dipole for Maple plot of Riemann surface of velocity 3v . 
 

3 ([ , , , ], 1.21..1.21, 1.21..1.21, ,plot d x y u v u v axes BOX= − = − =  

[ 110,73],orientation = −  

[" "," "," "], , ,labels x y v style PATCHNOGRID colour u= = =  

[ 1..1, 1..1, 25..25], [60,60].);view grid= − − − =  
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Note that we use the following: Given a constant c we can solve ewcw X=  
simply by solving eww X c=  which says ( )w W X c= , W is the LambertW 
function. The values are large in 3v  for viscous flows but become physical 
when we divide by 1δ  . In Figure 3 the quantity is scaled down by dividing 
by an appropriate large δ . Here the Riemann surface is centralized for small 
time s and very small viscosity in comparison to the viscosity shown in Figure 1 
and Figure 2 where an offset center exists of a dipole. For the (arbitrary) small 
viscosity this occurs near the center of the sphere. For low viscosity compared to 
the higher viscosity case, a finite time singularity occurs well before the higher 
viscous case. In the first command line of the previous program, taking the neg-
ative of both sides and then operating by the exponential function gives on the 
left side the argument of the LambertW function solution to the viscous prob-
lem.  

The vanishing of the derivative of 3v  wrt to 3y  is connected to Rummer 
and Fet’s theory [15] of expressing the volume integral of the Laplacian on an 
epsilon ball, where in Equation (17) the following reduced PDE occurs when 
viscosity is included in the PNS equations and thus the reduced form obtained,  

 

( )

22 2 2
3 3 3 3 3

3 2
3 3 1 3 23

22 22
3 3 3 3

1 2 3

1 1 1 1
2 2 6 6

1 0

v v v v vv
s y y y y yy

v v v v
s y y y

ρ ρ

δ

  ∂ ∂ ∂ ∂ ∂  − + + +   ∂ ∂ ∂ ∂ ∂ ∂∂    
     ∂ ∂ ∂ ∂   − − + + =       ∂ ∂ ∂ ∂        

 (17) 

Here the viscosity term is not taken to be zero but the gradient of omitted 
term in the derivative of 3v  wrt to 3y  vanishes itself. This is due to the chain 
rule and the large shift in the initial condition in ζ . As a result dividing by vis-
cosity 0µ ≠ , the following equation is introduced, 
 

 

Figure 3. Pair of equal and opposite dipoles at central location for 1e 5µ = −  and 
1000ρ = . Here the Dipole center is near the origin of sphere circumscribed in cube of 

dimensions [ ]31,1− . Shown is the Maple plot of Riemann surface of velocity 3v . Here 

as shown in [12], the result shows a singularity near the origin for the first derivative in 
time s. The singularity for small kinematic viscosity occurs at s much sooner than in Fig-
ure 1 and Figure 2 for the offset high viscosity centre case. 
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2

31 v
s

δ κ
µ

∂−   = ∂ 
 (18) 

 ( ) ( ) ( )3 1 2 3 1 1 2 3

1
, , , , ,

1
s

v y y y s F y y y
δ κµ
δ
−

= − +
−

 (19) 

Now it has been pointed out in Chapter 8 of reference [12] and [13] that since 
δ  approaching 1 from the right of 1 provides us with a blowup at minus infin-
ity from the right side of some *t T=  with linear graphs intersecting arbitrarily 
large 3v  values at 0s = , that it remains to show that the simplified equation, 
Equation (17), with κ  introduced in place of the derivative term squared has a 
solution which is Hölder continuous and whose solution has a first derivative 
blowup from the left at blowup point *t T= . This has already been shown in 
[12]. Taking 1ν = , we have full viscosity in the PNS problem as expected. In [12] 
the solution was in terms of a LambertW function and for zero viscosity. Here it 
is seen that as ν  goes from 0 to 1 that the the solution 3v  has a derivative in 

3y  which approaches zero. In Figure 1 and Figure 2 and Figure 4 the Riemann 
surfaces are obtained using Maple for the complexification of the solution in 
terms of the initial condition ζ  and large t determined (also see [16] on how 
to obtain the Maple plots of general Riemann surfaces using the “charisma func-
tion” Note that Figure 4 is a contour plot of the Riemann surface of 3v .). 

In the foregoing analyses a matching of two solutions for 3v  and hence 
( )4F s  has been carried out. One solution is the extended solution in [12] in 

which a LambertW solution is obtained as a function of a linear combination of 
spatial and time variables respectively and particularly for the shifted large data 
ζ  problem. The second solution is determined to be as in [13] which is the 
product of a JacobiSN function and a different form of a time dependent func-
tion. This is denoted as ( )4F s . Equating the two forms of the ( )4F s  functions’ 
LambertW arguments obtained yields, 

 

( )( )( ) ( )

( )( ) ( )( )( )
( )( ) ( )( )

( )
( )

22
0

22
1 20

2
1 20

2
1 20

2 EllipticE JacobiSN 2, , 2 d

2 d 3 3 EllipticE JacobiSN 2, ,

8 d 12 12 EllipticE JacobiSN 2, ,

8 d 12 12 18

1.0ln 0.000843648 8.280128000 9.29

t
a

t
a

t
a

t
a

R i i C s s s

C s sR t C t C i i

C s sR t C t C i i

C s sR t C t C

t

ρλ

λ ρ

λ ρ

λ ρ

− −

+ + −

+ − − +

+ + − −

= − +

∫

∫

∫

∫
2505600 0.000843648t−

 (20) 

 

 

Figure 4. A Dipole pair associated with a contour plot of 3y -component velocity 3v . 
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The incomplete elliptic integral EllipticE is defined as,  

 ( )
2 2

0 2

1EllipticE , d
1

z k tz k t
t

− +
=

− +
∫  (21) 

Differentiating twice and solving for ( )aC t  gives, 

 

( ) ( )(
( )

)

2 23 2

19

15

12

21720640.50 100493511.7 2.812791480 10

1972621614000.0 5.521324887 10

7058091538000000.0 2.709499507 10

173765124.0 3410895228000.0

aC t R i t

i t

i

t t

ρλ −

−

−

−

= − − − ×

+ + ×

+ − ×

+ − 

 (22) 

Here the constant R and 2λ  is such that, 

 2 1Rλ ≈  (23) 

In particular R is chosen to be extremely small and λ  is very large and as a 
benchmark test the values considered are, 
 1.225e 37R = −  (24) 

 0.1e19λ =  (25) 

 2 1C =  (26) 

 1 0.1e 1C = −  (27) 

 1C =  (28) 

 1ρ =  (29) 

where these values are substituted in the left side of Equation (20). (C = 1 is set 
in Equation (10) for the function Φ) This temporal solution for the function 

( )4F t  can be identified as a Hölder continuous function as shown in Figure 5.  
In the viscous case there exists a dipole which is not centered at the center of 

the cell of the Lattice. This immediately implies that since the dipole by defini-
tion has an equal in magnitude positive and negative peak in the third compo-
nent of velocity, then the dipole Riemann cut-off surface is covered by a closed 
surface which is the sphere 1=r  and where a given cell of dimensions 
[ ]31,1−  is circumscribed on a sphere of radius 1. See Figure 6. For such a closed 
surface containing a dipole it necessarily follows that the flux at the surface of 
the sphere of 3v  wrt to , 1,2,3iy i =  is zero. Finally as a result on the sphere a 
solution for 3v  is obtained which is proven to be Hölder continuous and it is 
proven that it is possible to extend Hölder continuity on the sphere to all of the 
interior of the sphere. 

Recalling the Weierstrass P function (P) based 1v , 2v  and szF  solutions in 

1y , 2y  and 3y  co-ordinates. 
The governing PDE at the boundary of Ω of the sphere is directly determined 

from Equations (6) and (7) and the zero flux condition since the ball contains a  

dipole, where all the derivatives 3 , 1,2,3
i

v i
y
∂

=
∂

 are taken to be zero. The result-

ing PDE in Cartesian co-ordinates is, 
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Figure 5. Plot of Hölder continuous function via matching. 
 

 

Figure 6. A cube cell [ ]31,1−  circumscribed on a sphere of radius 1. 

 

 
( )

2 2
31 1 2 2

1 2 1 2

2 3
2 2 23 3 3

3 32 2
3 3 3 2

1 2

1 0
2

sz sz

vv v v v
y y y y s

v v F F vv v
s y y y y s

δ

δ δ δρ

       ∂∂ ∂ ∂ ∂ − + +     ∂ ∂ ∂ ∂ ∂       
  ∂ ∂ ∂ ∂ ∂ + + + =   ∂ ∂ ∂ ∂ ∂ ∂     

 (30) 

( )
2 2 3

2 2 23 3 3 3 3
3 32 2

3 3 3 3 2

11 0
2

sz szv v v v F F vv v
y s s y y y y s

δ δ δ δρ
      ∂ ∂ ∂ ∂ ∂ ∂ ∂  − − + + + =     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂          

 

For Hölder continuous function ( )4F s  the corresponding solution is,  

 ( ) ( ) ( )( ) ( )( )1 12 3 2 3
3 3 4 1 2,3 , ,3 , ,v F y F s A P y m m A P y m m

− −
= + × +  (31) 

and ( )4F s  is Hölder. 

Here ( ) ( )
1
24 0F s s s= − . 

This implies that the forcing szF  is smooth in s and spatial variables since on 
the Riemann Sphere 2x A= −  and 2y A=  for A negative. In this case the so-
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lution szF C∞∈  for spatio-temporal variables. Substituting the form of Equa-
tion (31) for 3v  into the PDE above gives,  
 ( ) ( ) ( ) ( )1 2 3 1 1 2 3 3 2 1 2, , , , , d , ,szF y y y s F y y s F y y F y y s= +∫  (32) 

Let  

 ( ) ( )( )3
3

2
3 3

33

log e y C
iF y S W

yy
α − + + ∂ ∂  = −  ∂∂  

 (33) 

where W is the Lambert W function.  

( ) ( )sin
di

w
S w w

w
= ∫  

Plotting the 3y  part produces an oscillatory solution wrt to 3y  provided the 
constant LC C=  which is indexed by the box size of the cell of Lattice is pro-
portional to the finite number of such cells and is sufficiently large. Also at the 
poles of the Riemann sphere at 3 0y =  and 3y = ∞  the solution of 3v  in 
terms of the reciprocal of ( )3F y  is finite. The PDE above has as solution a 
Hölder continuous function in 3v  at six points where the surface of the sphere 
coincides with the boundary of a given open cube. This must be the solution on 
the sphere boundary which is therefore Hölder continuous. This follows since 
we have the following co-ordinate transformations between Cartesian and 
spherical co-ordinates,(see Figure 7) It is relatively straightforward to show by 
using the chain rule and the above transformations on the surface of the sphere 
that the new function 3v  in terms of ( ), , ,r tθ φ  is separable on the surface of 
the sphere and thus is in the same Hölder continuous form as the six points 
mentioned that are known to be Hölder continuous in s there. 
 

 

Figure 7. Spherical co-ordinate system associated with transformations to prove that 
Hölder continuity holds on sphere (TikZ.net [A.Tsagkaropoulos]). 
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( )

2 2 2

2 2

2 2

2 2

arccos arctan if 0

arctan if 0

if 0 and 0
2
undefined if 0.

arctan if 0

arctan if 0

sgn arccos

x y z

x yz z
r z

x y
z

z

z xy

x y zr
y x
x
y x
x

xy
x y

θ
φ

+ +

  +   = >       
  +  π + <  

 
π = ≠

 = = = 

   =  >     
  + π < 
 

 
  =
 + 

and 0

arctan if 0 and 0

if 0 and 0
2

if 0 and 0
2

undefined if 0.

y

y x y
x

x y

x y

x y















 



 ≥

   − π < <     
π  = > 

  π − = < 
  = =

 

It is relatively straightforward to show by using the chain rule and the above 
transformations on the surface of the sphere that the new function 3v  in terms 
of ( ), , ,r tθ φ  is separable on the surface of the sphere and thus is in the same 
Hölder continuous form as the six points mentioned earlier that are known to be 
Hölder continuous in s there.  

4. Main Theorem  

Finally on the sphere a solution for 3v  is obtained which is proven to be Hölder 
continuous. It is next proven that it is possible to extend Hölder continuity on 
the sphere uniquely to all of the interior of the ball. 

Theorem 1. Let nΩ⊆   be a smooth domain and suppose ( )f Cα∈ ∂Ω , 
where ( )0,1α ∈ . Then there exists a function ( )f Cα∈ Ω  so that |f f∂Ω ≡ .  

Proof of Theorem 1. The following fact is used  

( )1 2 1 3 2 3 1 3 2 3 .x x x x x x x x x x
α α αα− ≤ − + − ≤ − + −  

Let nE ⊆   and let :f E →  be such that ( ) ( )f x f y M x y α− ≤ − . for 
all ,x y E∈ . Define:  

( ) ( ){ }: inf : , .nh x f y M x y y E xα= + − ∈ ∈  

If x E∈ , then setting y x=  one gets that ( ) ( )h x f x≤ . To prove that 
( )h x  is finite for every nx∈ , we fix 0y E∈ . If y E∈  then:  

( ) ( )0 0 0 ,f y f y M x y M y y M x y M x yαα α− + − ≥ − − + − ≥ − −  

where we have used the fact that if 0a ≤  and 0b ≥  then a b≤ .  
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And so  

( ) ( ){ } ( )0 0inf : .h x f y M x y y E f y M x y αα= + − ∈ ≥ − − > −∞  

Note that if x E∈ , then we can choose 0 :y x=  in previous inequality to ob-
tain ( ) ( )h x f x≥ . Thus ( ) ( )h x f x≥ . Thus h extends f.  

Next it is proven that  

( ) ( )1 2 1 2 ,h x h x M x x α− ≤ −  

for all 1 2, nx x ∈ .  
Given 0ε > , by the definition of h there exists 1y E∈  such that,  

( ) ( )1 1 1 1 .h x f y M x y α ε≥ + − −  

Since ( ) ( )2 1 2 1h x f y M x y α≤ + − , we get  

( ) ( )1 2 1 1 2 1

1 2 .

h x h x M x y M x y

M x x

α α

α

ε

ε

− ≥ − − − −

≥ − − −
 

Letting 0ε →  gives  

( ) ( )1 2 1 2 .h x h x M x x α− ≥ − −  

Finally interchanging the roles of 1x  and 2x  proves that h is Hölder conti-
nuous.  

 
Finally there is a theorem in ([17] Problem 13 Section 18) that proves the 

unique determination for the extension of :f A Y→  into the closure of A. The 
statement of the theorem without proof is given here. 

Theorem 2. Let A X⊆ . Let :F A Y→  be continuous. Let Y be a Hausdorff 
space. Then f can be extended to a continuous function :g A Y→  and g is un-
iquely determined by f.  

So there is an extension to the interior of the boundary where the PNS equa-
tions hold. So working backwards there exists an extension for the function de-
fined on the interior of the sphere to the closure of the interior of the sphere 
thereby extending to the ball of radius 1.  

5. Discussion 

The fundamental idea of the present work is that of how external forces can lead 
to order in turbulent flow and in particular for the 3D Periodic Navier Stokes 
equations. The Turbulence problem is an open and important current problem. 
What is turbulence? Turbulence is disorder and fluctuation. The nonlinear 3D 
Navier Stokes equations have been addressed in this paper through a sequence of 
earlier works by the corresponding author of the present paper. When turbu-
lence arises, even if we could see these flows, it is difficult to discern any order in 
the whirling currents and eddies they contain. Michael Schatz at the Georgia In-
stitute of Technology in Atlanta has recently shown with experiments and simu-
lations that flow patterns with a surprising amount of order can underlie turbu-
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lent flow. Prediction of turbulence is very difficult to do, however they showed 
that there are ordered structures when conducting experiments in the lab [18]. 
To predict the complex spatio-temporal dynamics of turbulence is a daunting 
task however some order is possible in the 3-Torus. The existence of a sphere 
centered at each point of each cell of the lattice 3  with a Neumann zero flux 
condition as proven in this paper shows that there is some order in turbulent 
flow. We know this since for the flux of 3v , 3’rd component of velocity, it is  

zero and 1 2

1 2

v v
y y
∂ ∂

= −
∂ ∂

 on the sphere at the singular point in time. Note that on 

the surface of the sphere, in 2D ( ) 1 2

1 2

1,1 , 0v v
y y

 ∂ ∂
⋅ = ∂ ∂ 

 which signifies rotation of  

the sphere (Taylor Green Vortex solves this for example) together with the flux 
of third component of velocity, 3v  at the north and south pole of the sphere. As 
an analogy, if we consider the dynamics of rotating (about planet’s axes) plane-
tary motion and keep in mind that the spherical shapes of the planets in our so-
lar system and beyond obey this law shown in this work, namely that gases and 
liquids are more or less restrained from flowing outwards of the surface of a 
given planet (such as earth for example) as space is a near perfect vacuum sur-
rounding the planets it makes physical sense that this is true. Why? Because of 
universal gravitation which acts as an external force to the flow of gases and liq-
uids within the planets and keeps an atmospheric circulation zone intact and at-
tached to the surface of the sphere of a given planet. The 3-Torus is the easiest 
3-manifold to understand. In 1984, Alexei Starobinsky and Yakov Zeldovich at 
the Landau Institute in Moscow proposed a cosmological model where the shape 
of the universe is a 3-torus. To visualize the three-torus, we can obtain it by 
gluing just like the two-Torus: We start with a cube, and glue each face of the 
cube to the parallel face, by parallel translation. (See Thurston [19] on how to 
visulaize a three-Torus) In this cosmological structure that is being proposed 
again it is true that there is a separation of two main regions of highly turbulent 
flow. So we partition the flow dynamics in two areas of such cubes of the 
3-Torus, namely inside and outside the sphere. The Hölder continuous function 
for 3v  on the ball of radius 1 proves that acceleration can be arbitrarily large on 
the ball. Existence of non Hölder solutions on the ball is reserved for future work. 
For Dirichlet boundary conditions on the sphere existence and uniqueness of 
solutions may be possible [6]. The no-flux condition proves that there is an equi-
librium condition that turbulence adjusts or sets to. Observing inside the spher-
ical windows we see that there may exist infinitely many eddies and whirls. Now 
what can be said about the exterior of the sphere for all spheres in the lattice? 
Here one has to solve numerically for the flow problem of PNS in the corners of 
the cubes where there exist 8 vertices each with a cone surface for each cube in 
the lattice. It seems that there would be some flow interaction between all cor-
ners of the cubes and outside the spheres. So there can be trajectories confined 
within the sphere and outside of the sphere chaotic trajectories interacting with a 
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multitude of corners in the lattice.  

6. Conclusion 

In this paper, it has been determined that as the kinematic viscosity changes 
from the corresponding value at 0ν =  to the fully viscous case for the Periodic 
Navier Stokes equations (PNS) at the value 1ν =  the solution reaches a peak  

( 3

3

0v
y
∂

=
∂

) in 3y  (the third component of ( )1 2 3, ,y y y=r  in Cartesian coordi-

nates). Here in the viscous case, there exists a dipole which is not centered at the  
center of the cell of the Lattice. This immediately implies that since the dipole by 
definition has an equal in magnitude positive and negative peak in the third 
component of velocity, then the dipole Riemann cut-off surface is covered by a 
closed surface which is the sphere 1=r  and where a given cell of dimensions 
[ ]31,1−  is circumscribed on a sphere of radius 1. For such a closed surface con-
taining a dipole, it necessarily follows that the flux at the surface of the sphere of 

3v  wrt to surface normal n  is zero. In terms of mathematical analysis of the 
NS equations in a thin spherical shell, the convergence of the longitudinal veloc-
ity averaged in the radial direction across the shell to the strong solution to the 
two-dimensional NS equations on a sphere as the thickness of the shell con-
verges to zero has been rigorously proved by Temam and Ziane. However a Di-
richlet type impenetrability condition is used there with all three components of 
velocity (no gradients at the wall). In the present work a Neumann impenetra-
bility condition is used with the gradient of the third component of velocity. 
Here at the six points where the sphere touches the cube walls, it has been de-
termined that the velocities satisfy PNS and the function 3v  is Hölder conti-
nuous there. By using the spherical coordinate system in terms of Cartesian 
coordinates and using the chain rule the solution can be extended to all of the 
spheres. This is the first extension. Finally as a result of the present work, on the  

sphere with a Neumann boundary condition, (Here 3
3

v v∂
= ⋅∇

∂
n

n
) a non  

smooth solution [8] for 3v  exists which is Hölder continuous and it is proven 
that it is possible to extend Hölder continuity on the sphere uniquely to all of the 
interior of the Ball of radius one. Although non-uniqueness is proposed to occur 
for solutions in the interior of the ball for PNS equations, there exists at least one 
solution there that is Hölder continuous. In the present study, a point vortex at 
the center of the cells exists with a finite time singularity for Euler’s equation for 
derivatives of the velocities and as the kinematic viscosity changes from zero to 
one (maximum) then there is a surface vortex first derivative singularity along 
an atmospheric circulation layer. The inner part of this layer touching the sur-
face of a planet is the sphere. The fluid below this sphere of the atmosphere is a 
viscous fluid. This is evident by looking at Figure 1 and Figure 2 and Figure 4. 
There the dipole centre is not touching this sphere layer. The model proven in 
this paper has cosmological applications which are justified by PNS equations.  
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