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Abstract 
When :ξ η→  is a linear ordinary differential (OD) or partial differential 
(PD) operator, a “direct problem” is to find the generating compatibility con-
ditions (CC) in the form of an operator 1 :η ζ→  such that ξ η=  im-
plies 1 0η = . When   is involutive, the procedure provides successive 
first-order involutive operators 1, , n   when the ground manifold has 
dimension n. Conversely, when 1  is given, a much more difficult “inverse 
problem” is to look for an operator :ξ η→  having the generating CC 

1 0η = . If this is possible, that is when the differential module defined by 

1  is “torsion-free”, that is when there does not exist any observable quantity 
which is a sum of derivatives of η  that could be a solution of an autonom-
ous OD or PD equation for itself, one shall say that the operator 1  is para-
metrized by  . The parametrization is said to be “minimum” if the diffe-
rential module defined by   does not contain a free differential submodule. 
The systematic use of the adjoint of a differential operator provides a con-
structive test with five steps using double differential duality. We prove and 
illustrate through many explicit examples the fact that a control system is 
controllable if and only if it can be parametrized. Accordingly, the controlla-
bility of any OD or PD control system is a “built in” property not depending 
on the choice of the input and output variables among the system variables. 
In the OD case and when 1  is formally surjective, controllability just 

amounts to the formal injectivity of ( )1ad  , even in the variable coefficients 

case, a result still not acknowledged by the control community. Among other 
applications, the parametrization of the Cauchy stress operator in arbitrary 
dimension n has attracted many famous scientists (G. B. Airy in 1863 for 

2n = , J. C. Maxwell in 1870, E. Beltrami in 1892 for 3n = , and A. Einstein 
in 1915 for 4n = ). We prove that all these works are already explicitly using 
the self-adjoint Einstein operator, which cannot be parametrized and the 
comparison needs no comment. As a byproduct, they are all based on a con-
fusion between the so-called div operator induced from the Bianchi operator 
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2  and the Cauchy operator, adjoint of the Killing operator   which is 
parametrizing the Riemann operator 1  for an arbitrary n. This purely ma-
thematical result deeply questions the origin and existence of gravitational 
waves, both with the mathematical foundations of general relativity. As a 
matter of fact, this new framework provides a totally open domain of applica-
tions for computer algebra as the quoted test can be studied by means of 
Pommaret bases and related recent packages. 
 

Keywords 
Differential Operator, Differential Sequence, Killing Operator, Riemann  
Operator, Bianchi Operator, Cauchy Operator, Control Theory,  
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1. Introduction 

The aim of this paper is to establish for the first time links between the mathe-
matical foundations of OD or PD Control Theory (CT) and the theoretical 
framework of Gravitational Waves (GW) arising from General Relativity (GR). 
We start explaining why, trying after 1995 to use new differential homological 
techniques with the aim to revisit the mathematical foundations of CT, in par-
ticular controllability, in order to study the possible signals of GW. We arrived 
at the conclusion that GW cannot exist for purely mathematical reasons still 
neither known nor acknowledged today. We ask the reader not to forget that, at 
the time of the world centenary GW ceremony of 2015, most sponsors involved 
had decided to stop paying after one century without any result(!). 

We have been working for 25 years on GR before finding in 1995 the negative 
solution of the parametrizing problem for Einstein equations in vacuum, con-
trary to the general belief of the GR community, recalling in particular that J. 
Wheeler (Princeton University) was ready to offer 1000 dollars in 1970 to who 
could solve this challenge. The main point has not been to find such a result but 
to discover that its solution depended on quite delicate concepts in the construc-
tion of differential sequences like Compatibility Conditions (CC) and homolog-
ical algebra, which is to adapt purely algebraic procedures to the study of diffe-
rential modules, in particular, the systematic use of the adjoint of an operator 
leading to adjoint sequences or to exhibit self-adjoint operators. Hence, our first 
task has been to apply these new concepts to GW and their defining PD equa-
tions. It is only in 2017, while looking for explicit applications in dimensions 1 to 
3, that we discovered the confusion that had been made during a century or so 
between the Cauchy stress operator and the divergence operator induced by the 
(second) Bianchi identities in Riemannian geometry, a result that could have 
been found 20 years before. The byproduct has been a confusion between stress 
functions and the deformation of a metric. To push on the comparison, it is just 
like explaining earthquakes by means of the single Airy stress function when 
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2n =  or the 6 Beltrami (reduced by Maxwell to 3) stress functions when 3n =  
and we shall prove that Einstein did just copy these results when 4n =  in 1915. 
Such a FACT (we shall prove that the explicit comparison needs no comment!) 
explains the many successive contradictory positions of Einstein about GW 
during his life. It follows that the many explicit CT motivating examples pre-
sented (even for variable coefficients) in this paper just emphasize this claim and 
the fact that controllability is a “built-in” property of a control system, contrary 
to the belief of the control community(!). We just ask the reader to use ANY 
CHOICE OF THE INPUT/OUTPUT VARIABLES IN ANY TEXTBOOK 
EXAMPLE AND TO PLUG IT IN THE CORRESPONDING KALMAN TEST in 
order to check the application of THOREM 4.1 and/or COROLLARY 4.2 + 4.3. 
This is also the reason for which we have chosen so many domains of applica-
tions in order to convince the reader.  

Of course, the proof that Einstein’s equations cannot be parametrized is nothing 
else than these quoted Theorem and its corresponding Corollaries. Nevertheless, 
we have added a new concise proof of the fact that THE EINSTEIN OPERATOR 
IS SELF-ADJOINT. The problem is simply that the GR community must adapt 
to this new totally unknown language so frightening that, in 1970, we were the 
only physicists to dare learn it … at the source. The main difficulty started when 
we discovered that Spencer and collaborators were not even able to compute 
elementary examples. In particular, the reader can check in less than five mi-
nutes that the examples quoted in the Introduction of the only book “LIE 
EQUATIONS” written by D. C. Spencer and A. Kumpera in 1972 (Princeton 
University Press) have no link at all with the second main part of the book. As a 
counter-example, we advise the reader to look at the review Zbl 1079.93001. This 
is mainly the reason for which we could not produce other references in the ma-
thematical physics literature… apart from M. Kashiwara, an interesting experience 
for the reader if he is a beginner, exactly like we were in… 1995. 

As will be shown in the many explicit examples presented in this paper, the 
solution space of many systems of an ordinary differential (OD) or partial diffe-
rential (PD) equations in engineering or mathematical physics “can or cannot” 
be parametrized by a certain number of arbitrary functions behaving like “po-
tentials”. More precisely, if a linear inhomogeneous system of OD or PD equa-
tions is given in the form ξ η=  where   is a differential operator acting on 
a certain number of functions ξ  in such a way as to provide a certain number 
of functions η  as second members, a direct problem is to know about the (ge-
nerating) compatibility conditions (CC) in the form 1 0η =  that must be sa-
tisfied by η  in general and the solution of such a problem has been known 
since a long time [1] [2]. Conversely, when a homogeneous system is given in 
the form 1 0η = , the inverse problem is to decide whether there exists or not 
an operator   such that, if we write formally ξ η= , then the CC for η  are 
generated by 1 0η =  and the solution of such a problem has only been dis-
covered recently [3]-[9]. Both the direct and inverse problems can now be solved 
by computer algebra using Janet, Gröbner or Pommaret bases. 
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In view of the examples to be met later on, it is important to notice that the 
parametrizing operator may be of high order. Among the well-known examples, 
we recall that a classical OD control system is parametrizable if and only if it is 
controllable (Kalman test of 1969 in [10]). Among PD systems, the electromag-
netic (EM) field, the solution of the first set of four Maxwell equations, admits a 
well-known first order parametrization by means of the EM potential while the 
EM induction, solution of the second set of four Maxwell equations, also admits 
a first order parametrization by means of the so-called EM pseudo-potential. On 
the contrary, it has now known since 1995 [3] [10] that the set of ten 
second-order linearized Einstein equations for the ten perturbtion of the metric 
cannot be parametrized and cannot therefore be considered as field equations 
(see [9] for more details and  
http://wwwb.math.rwth-aachen.de/OreModules for a computer algebra solu-
tion). One of the best interesting and useful cases is concerned with continuum 
mechanics where the first-order stress equations (in vacuum) admit a rather 
simple second-order parametrization by means of the single Airy function in 
dimension 2 and, as we shall see later on, a much more complicated second or-
der parametrization can be achieved in dimension 2n ≥ . 

It is also now known that all the above problems are particular cases of a more 
sophisticated and general situation involving the formal theory of systems of PD 
equations pioneered by D. C. Spencer and collaborators after 1960 [11] [12] (jet 
theory, diagram chasing, differential sequences, …) (see [1] [2] for more details) 
and differential modules in the framework of “algebraic analysis” pioneered in 
1970 by V. Palamodov [13] and, after 1990, by U. Oberst [14] for the constant 
coefficients case and by M. Kashiwara [4] for the variable coefficients case, 
without ever providing any explicit example (See [6] for more details or exam-
ples and also consult Zentralblatt Zbl 1079.93001 for a review). The correspond-
ing differential duality theory, which is at the heart of all the previous examples 
and will be a central tool in this paper, highly depends on homological algebra 
techniques (localization, resolutions, extension modules…) which cannot be 
avoided.  

The purpose of the next sections is to apply these techniques in a way as sim-
ple and self-contained as possible in order to give a positive and explicit answer 
concerning the possibility of exhibiting a first-order parametrization of the 
stress/couple-stress equations met in the study of Cosserat media. At the same 
time, as a corollary of the homological test, we shall give for the first time the 
reason for which the CC for the deformation tensor in classical elasticity theory 
is second order while the corresponding CC for Cosserat fields [15] is only first 
order and explain why this order is equal to the order of the corresponding pa-
rametrization.  

At the end of the paper, we shall give hints in order to explain why, though 
the “fields” and their CC in classical and Cosserat elasticity theories look com-
pletely different at first sight, therefore providing different presentations of the 
corresponding field equations, nevertheless the possibility to obtain a parame-
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trization in one framework necessarily implies the possibility to have a parame-
trization in the other framework and vice-versa, even in the variable coefficients 
case. Though striking as it may look in such an engineering background, this to-
tally not evident result, which is neither known nor acknowledged today, is one 
of the simplest consequences of a basic result of homological algebra. In particu-
lar, the reader must look at the next section below with care, even though it does 
not seem to have anything to do with Maxwell or Cosserat equations. At the 
same time, revisiting the work of H. Weyl on electromagnetism in the light of 
group theory, exactly as we did for the work of E. and F. Cosserat on elasticity 
[16] [17] [18], we shall point out the close relation existing between the second 
set of Maxwell equations and the Cosserat equations, both with their parametri-
zations. Our claim is that one can treat OD or PD examples in a unique frame-
work, on the condition to revisit almost entirely the classical OD case because we 
shall understand why the controllability of a control system is a “built-in” prop-
erty not dependent on the presentation of the system or even on the choice of 
the input and output variables among the system variables, a result quite far 
from what is believed today by any control engineer. To be more convincing, we 
ask the reader to realize the double pendulum experiment with a few dollars and 
to try to imagine what can be the link between the Cosserat and Einstein equa-
tions.  

2. Mechanical Motivations 

In the middle of the last century, commutative algebra, namely the study of 
modules over rings, was facing a very subtle problem, the resolution of which led 
to the modern but difficult homological algebra. Roughly, the problem was es-
sentially to study properties of finitely generated modules not depending on the 
“presentation” of these modules by means of generators and relations. This 
“hard step” is based on homological/cohomological methods like the so-called 
“extension” modules which cannot therefore be avoided ([6] [19] [20] are fine 
references). 

A classical OD control system must be brought to first order with no deriva-
tive of input in order to apply the well-known Kalman test for checking its con-
trollability or, equivalently, the possibility of parametrizing it. However, there 
may be many different ways for following such a procedure and not a word is 
left for systems of PD equations. It is only after 1990 that a general OD/PD test 
was provided, showing that controllability is a “built in” property of a control 
system as we already said, contrary to engineering intuition [4] [6] [7] [10]. 

As before, using new rings of “differential operators” instead of polynomial 
rings leads to differential modules and to the challenge of adding the word “dif-
ferential” in front of concepts of commutative algebra. Accordingly, not only 
one needs properties not depending on the presentation, as we just explained, 
but also properties not depending on the coordinate system as it becomes clear 
from any application to mathematical or engineering physics where tensors and 
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exterior forms are always to be met like in the space-time formulation of elec-
tromagnetism or General Relativity. Unhappily, no one of the previous tech-
niques for OD/PD equations could work! 

By chance, the intrinsic study of systems of OD/PD equations has been pio-
neered in a totally independent way by D. C. Spencer and collaborators as we 
said, in a way superseding the “leading term” approach of Janet in 1920 [21] or 
Gröbner in 1940 but quite poorly known by the mathematical community, even 
today. Accordingly, it was another challenge to unify the “purely differential” 
approach of Spencer with the “purely algebraic” approach of commutative alge-
bra, keeping in mind the necessity to use the previous homological algebraic re-
sults in this new framework. This sophisticated mixture of differential geometry 
and homological algebra, now called “algebraic analysis” or “differential homo-
logical algebra”, has been achieved between 1970 and 1990 as we shall explain. 

Let k be a field containing the subfield   of rational numbers and  
( )1, , nχ χ χ=   be indeterminates over k. We denote by [ ]1, , nA k χ χ=   the 

ring of polynomials with coefficients in k. Next, let us introduce n commuting 
derivations 1, , nd d  for which k should be a field of constants and define the 
ring [ ] [ ]1, , nD k d k d d= =   of differential operators with coefficients in k. 
Then D and A are isomorphic by i id χ↔ . However, the (non-commutative) 
situation for a differential field K with n commuting derivations 1, , n∂ ∂  and 
subfield of constants k escapes from the previous (commutative) approach and 
must be treated “by its own”. For this, let ( )1, , nµ µ µ=   be a multi-index with 
length 1 nµ µ µ= + + . We set ( )1 1 11 , , , 1, , ,i i i i nµ µ µ µ µ µ− ++ = +   and we 
say that µ  is of class i if 1 1 0iµ µ −= = = , 0iµ ≠ . Accordingly, any operator 
P a d Dµ

µ= ∈  acts on the (formal) unknowns ky  for 1, ,k m=   as we may 
set k kd y yµ µ=  with 0

k ky y=  and introduce formally the jet coordinates  

{ }| 1, , ;0k
qy y k m qµ µ= = ≤ ≤ . A system of PD equations can be written in the 

form 0k
ka yτ τµ

µΦ ≡ =  with a K∈  and we define the (formal) prolongation of 
τΦ  with respect to id  to be 1i

k k
i k i kd a y a yτ τµ τµ

µ µ+Φ ≡ + ∂ . Finally, setting  
1 m mDy Dy Dy D= + +  , we may introduce the differential module  

M Dy D= Φ  and induce maps 1: :
i

k k
id M M y yµ µ+→ →  by residue. 

Setting as usual 1d d d dt dot= = =  when 1n = , we sketch the technique of 
“localization” in the case of OD equations, comparing to the situation met in 
classical control theory. If we have a given system of OD equations, a basic ques-
tion in control theory is to decide whether the control system is “controllable” or 
not. It is not our purpose to discuss here about such a question from an engineer-
ing point of view, but we just want to provide the algebraic counterpart in terms 
of a property of the corresponding differential module. We explain our goal on 
an academic example. 

EXAMPLE 2.1: With 3m =  and a constant parameter a, we consider the 
first order system 1 1 2 3 0y ay yΦ ≡ − − =  , 2 1 2 3 0y y yΦ ≡ − + =  . In order to 
study the transfer matrix, the idea is to replace the Laplace transform by another 
purely formal technique that could also be useful for studying systems of PD 
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equations with variable coefficiets. For this, let us replace “formally” d by the 
purely algebraic symbol χ  whenever it appears and obtain the system of linear 
equations: 

( ) ( )

1 2 3 1 2 3

1 3 2 3
2 2

0,1 0
1

,

y ay y y y y
a

y y y y
a a

χ χ χ χ
χ χ χ χ
χ χ

− − = − + =

+ +
⇒ = =

− −

 

but we could have adopted a different choice for the only arbitrary unknown 
used as single input. At this step there are only two possibilities: 
 0,1a ≠ ⇒  no “simplification” may occur and, getting rid of the common 

denominator, we get an algebraic parametrization leading to a differential 
parametrization as follows: 

( ) ( ) ( )1 2 3 2

1 2 3

, 1 ,

, ,

y a z y z y a z

y z az y z z y z az

χ χ χ χ χ= + = + = −

⇒ = + = + = −    

 

 0a =  or 1a = ⇒  a “simplification” may occur and no parametrization 
can be found. For example, if 0a = , setting 1 3z y y= −  we get 0zχ =  
that is to say 0z = , while, if 1a = , setting 1 2z y y′ = − , we get ( )1 0zχ ′− =  
that is to say 0dz z′ ′− = .  

Though similar examples could be found in any textbook on control theory, it 
does not seem that such a procedure could bring any distinction between the 
two conditions 0a =  and 1a = . It is only quite later on that we shall under-
stand the difference existing between these two conditions by revisiting the present 
example.  

EXAMPLE 2.2: With 1,n K= = , let us consider the differential module N 
defined by the OD equation ( ) ( )5 4 2 33 4d v d v d v d u duΦ ≡ + − − − , that is  

( )N Du Dv D= + Φ . We may define the input differential module L Du=  by 
using u and the output differential module M Dy Dv= ⊂  by setting 2y d v= . 
The differential module ( )L M M+ ⊂  with a strict inclusion, is defined by the 
OD equation ( ) ( )3 2 33 4 0d y d y y d u duΨ ≡ + − − − =  that we can also write  
( ) ( ) ( )( )21 2 1 0d d y d d u− + − + =  because K is a field of constants. As we can 
factor by ( )1d −  it follows that ( )t L M+  is generated by  

( ) ( )2 24 4z d y dy y d u du= + + − +  that satisfies 0dz z− = . The annihilator 

ideal of N/L is ( ) ( )( )( )22 1 2ann N L d d d= − +  and its radical is  

( )( )( ) ( ) ( ) ( )1 2 1 2d d d d d d− + = ∩ − ∩ +  which is an intersection of prime 
ideals. Similarly, we have 20 0y d v= ⇒ = , ( )3 0d d u− =  and thus  

( ) ( ) ( )2 3ann N M d d d= ∩ −  leading to  
( )( ) ( ) ( ) ( )1 1rad ann N M d d d= ∩ − ∩ +  which is also an intersection of prime 

differential ideals.  
REMARK 2.3: We have proved in ([6] [10]) how to use these differential 

submodules of N both with the new differential modules ( )L L t N′ = +  and 
( )M M t N′ = +  in order to study all the problems concerning poles and zeros 

https://doi.org/10.4236/apm.2024.142004


J.-F. Pommaret 
 

 

DOI: 10.4236/apm.2024.142004 56 Advances in Pure Mathematics 
 

of control systems. As we are only interested by controllability, we have just to 
study the differential submodules of the torsion-free differential module  

( )N t N . If we suppose that 0L M∩ = , we have the following commutative di-
agram of inclusions, in which the upper commutative square is the so-called mini-
mum controllable realization: 

( )

0

N

L M

t N
L M

′ ′

↑ ↑
↑ ↑

↑
↑

 

 

 

 

and just need to use the following delicate proposition [6].  
PROPOSITION 2.4: If 0 0M M M′ ′′→ → → →  is the short exact sequence 

of (differential) modules, then we have the formula  
( )( ) ( )( ) ( )( )rad ann M rad ann M rad ann M′ ′′= ∩  in which the radical of a (dif-

ferential) ideal a  is the (differential) ideal generated by all the elements with a 
power in a .  

Recapitulating, we discover that a control system is controllable and thus pa-
rametrizable if and only if one cannot get any autonomous element satisfying an 
OD equation by itself. For understanding such a result in an algebraic manner, 
let M be a module over an integral domain A containing 1. A subset S A⊂  is 
called a multiplicative subset if 1 S∈  and ,s t S st S∀ ∈ ⇒ ∈ . Moreover, we 
shall need/use the Ore condition on S and A, namely aS sA∩ ≠∅ , 

,a A s S∀ ∈ ∈ . 
DEFINITION 2.5: The localization of M at S is  

{ }1 1 | , /S M s x s S x M− −= ∈ ∈   with 1 1 ,s x t y u v A− − ⇔ ∃ ∈ , us vt S= ∈ ,  
ux vy=  (reduction to the same denominator in S) and we may introduce  
( ) { }| , 0St M x M s S sx= ∈ ∃ ∈ =  as the kernel of the morphism  

1 1: 1M S M x x− −→ → . If { } ( )10S A S A Q A−= − ⇒ =  field of fractions of A and 
we introduce the torsion submodule  
( ) ( ) { }| 0 , 0St M t M x M a A ax= = ∈ ∃ ≠ ∈ =  of M.  
In the case of a torsion-free module, that is when ( ) 0t M = , reducing to the 

same denominator as in the control example or as in the next example, we have 
the following classical proposition amounting to exhibit a parametrization. 
However, the reader must notice that it is useless in actual practice as one needs 
a test (like the Kalman test) for checking the torsion-free condition. This will be 
the hard part of the job in this paper! 

PROPOSITION 2.6: When M is a finitely generated torsion-free module and 
{ }0S A= − , from the inclusion of M into the vector space 1S M−  over ( )Q A , 

we deduce that there exists a finitely generated free module F over A with 
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M F⊂ . 
EXAMPLE 2.7: As an unexpected application to 2-dimensional elasticity, let 

us consider the well known Cauchy stress equations:  

11 21 12 22
1 2 1 20, 0σ σ σ σ∂ + ∂ = ∂ + ∂ =  

with 12 21σ σ= . Replacing i∂  by iχ , we may localize and obtain: 
11 21 12 22

1 2 1 20, 0χ σ χ σ χ σ χ σ+ = + =  

Reducing the fractions to the same denominator, we get: 

( ) ( )2 2
2 111 21 12 22 12 122 1

1 1 2 2 1 2

,
χ χχ χ

σ σ σ σ σ σ
χ χ χ χ χ χ

= − = − = − = −  

and obtain therefore the 1-dimensional subvector space over ( )1 2,χ χ : 

( ) ( )2 211 12 21 22
2 1 2 1, ,σ χ φ σ σ χ χ φ σ χ φ= = = − =  

a result providing at once the well known parametrization by the Airy function: 

11 12 21
22 12 22 11, ,σ φ σ σ φ σ φ= ∂ = = −∂ = ∂  

It may be interesting to compare this purely formal approach to the standard 
analytic aproach presented in any textbook along the following way. From the 
first stress equation and Stokes identity for the curl, there exists a function ϕ  
such that 11

2σ ϕ= ∂ , 21
1σ ϕ= −∂ . Similarly, from the second stress equation, 

there exists a function ψ  such that 22
1σ ψ= ∂ , 12

2σ ψ= −∂ . Finally, from the 
symmetry of the stress, there exists a function φ  such that 2ϕ φ= ∂ , 1ψ φ= ∂  
and we find back the same parametrization of course. The reader must notice 
that, in this example, one can check that the parametrization does work but no 
geometric inside can be achieved in arbitrary dimension 2n ≥ , even though 
exactly the same procedure can be applied through computer algebra (see A. 
Quadrat in  
http://www.risc.uni-linz.ac.at/about/conferences/aaca09/ModuleTheoryI.pdf). 

Taking into account the works of Janet [21] and Spencer [11], the study of 
systems of PD equations cannot be achieved without understanding involution 
and we now explain this concept by exhibiting the useful “Janet tabular”. For 
this, changing linearly the derivations if necessary, we may successively solve the 
maximum number of equations with respect to the jets of order q and class n, 
class ( )1n − , …, class 1. Moreover, for each equation of order q and class i, 

1, , id d  are called multiplicative while 1, ,i nd d+   are called non-multiplicative 
and 1, , nd d  are non-multiplicative for all the remaining equations of order 

1q≤ − . 
DEFINITION 2.8: The system is said to be involutive if each prolongation 

with respect to a non-multiplicative derivation is a linear combination of pro-
longations with respect to the multiplicative ones [1] [2] [6]. 

EXAMPLE 2.9: The system 11 0y = , 13 2 0y y− =  is not involutive. Effecting 
the permutation ( ) ( )1,2,3 3,2,1→ , we get the system 33 0y = , 13 2 0y y− = . As 
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( )1 33 3 13 2 23d y d y y y− − =  and ( )1 23 2 13 2 22d y d y y y− − = , the system 33 0y = ,

23 0y = , 22 0y = , 13 2 0y y− =  is involutive with 1 equation of class 3, 2 equa-
tions of class 2 and 1 equation of class 1. Another tricky example provided for 

3n =  by Macaulay in [22] is 33 0y = , 23 11 0y y− = , 22 0y = ) with 38 2=  pa-
rametric jet coordinates ( )1 2 3 11 12 13 111, , , , , , ,y y y y y y y y .  

EXAMPLE 2.10: The Killing system 0j i
i jy y+ =  for the Eucldean metric is 

not involutive but the first prolongation 0j i
i jy y+ = , 0k

ijy =  is involutive. This 
is the reason for which the Riemann tensor is a first order expression in the me-
tric and Christoffel symbols and thus second order in the metric alone (for more 
details, see [2], p 249-258). 

APPLICATION 2.11: ( )t M M=  if and only if the number of equations of 
class n is m. Otherwise there is a strict inclusion ( )t M M⊂  and, when 
( ) 0t M = , the minimum number of potentials in any parametrization is equal to 

the number of unknowns minus the number of equations of class n (See Propo-
sition 6.7). 

PROPOSITION 2.12: ([1] [2]) The following recipe (already used implicitly 
in the Kalman test) will allow to bring an involutive system of order q to an 
equivalent (isomorphic modules) involutive system of order 1 with no zero or-
der equations called Spencer form: 

1) Use a maximum set of arbitrary parametric derivatives up to order q as new 
unknowns. 

2) Make one prolongation. 
3) Substitute the new unknowns. 

3. Group Motivation 

This section, which is a summary of results already obtained in [6], is provided 
for fixing the notations and the techniques leading to various different (linear) 
differential sequences. All the results presented are local ones. A corresponding 
non-linear framework does exist but is out of the scope of this paper [6] [23]. 

Let X be a manifold of dimension n with local coordinates ( )1, , nx x x=   
and latin indices , 1, ,i j n=  . We denote by ( )T T X=  the tangent bundle to 
X and by ( )* *T T X=  the cotangent bundle to X while *r T∧  is the bundle of 
r-forms on X. Also, we denote by ( )qJ T  the q-jet bundle of T, that is to say the 
vector bundle over X having the same transition rules as a vector field and its 
derivatives up to order q under any change of local coordinates on X. Let now G 
be a Lie group of dimension p with identity e and local coordinates ( )a aτ=  
with 1, , pτ =  . We denote by ( )eT G=  the corresponding Lie algebra with 
vectors denoted by the greek letters λ . We shall identify a map :a X G→ , 
called a gauging of G over X, with its graph X X G→ × . We shall use the same 
notation for a bundle and its set of (local) sections as the background will always 
tell the right choice. In particular, when differential operators are involved, the 
sectional point of view must automatically be used. Such a convention allows to 
greatly simplify the notations at the expense of a slight abuse of language. 
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DEFINITION 3.1: A Lie group of transformations of a manifold X is a lie 
group G with an action of G on X better defined by its graph  

( ) ( )( ): , , ,X G X X x a x y ax f x a× → × → = =  with the properties that  
( ) ( )a bx ab x=  and ex x= , x X∀ ∈ , ,a b G∀ ∈ . The action is effective if 

ax x= , x X a e∀ ∈ ⇒ = . 
Such groups of transformations have first been studied by S. Lie in 1880. 

Among basic examples when 1n =  we may quote the affine group y ax b= +  
and the projective group ( ) ( )y ax b cx d= + +  of transformations of the real 
line. When 3n =  we may quote the group of rigid motions y Ax B= +  where 
now A is an orthogonal 3 × 3 matrix and B is a vector. Only ten years later, in 
1890, Lie discovered that the Lie groups of transformations were only examples 
of a wider class of groups of transformations, first called infinite groups but now 
called Lie pseudogroups. 

DEFINITION 3.2: A Lie pseudogroup Γ of transformations of a manifold X is 
a group of transformations ( )y f x=  solutions of a (in general nonlinear) sys-
tem of OD/PD equations, also called system of finite Lie equations. For example, 
y ax b= +  is the generic solution of 0xxy = .  

Setting now ( )y x t xξ= + +  and passing to the limit for 0t → , that is to 
say linearizing the defining system of finite Lie equations around the identity 
y x= , we get a linear system ( )q qR J T⊂  for vector fields, also called system of 

infinitesimal Lie equations, with solutions TΘ⊂  satisfying [ ],Θ Θ ⊂Θ  and 
the corresponding operator on vector fields is called a Lie operator. It can be 
proved that such a system may be endowed with a Lie algebra bracket on sec-
tions ( ) ( ) ( ) ( )( ): , , , ,k k k

q i ijx x x x xξ ξ ξ ξ→   as follows (See [1] [2] for more de-
tails). Let us first define by bilinearity ( ) ( ){ } [ ]( )1 1, ,q q qj j jξ η ξ η+ + = , , Tξ η∀ ∈  
with ( ) ( ) ( ) ( ) ( )( ): , , , ,k k k

q i ijj x x x x xξ ξ ξ ξ→ ∂ ∂  . Introducing the Spencer 
operator ( )*

1 1 1 1: :q q q q qd R T R jξ ξ ξ+ + +→ ⊗ → −  with local components  
( ) ( )( ) ( )1 , ,

i

k k k k k k
i i i i j ijx xµ µξ ξ ξ ξ ξ ξ+∂ − = ∂ − ∂ −  , we may set: 

{ } ( ) ( )1 1 1 1, , , ,q q q q q q q q qi D i D Rξ η ξ η ξ η η ξ ξ η+ + + +  = + − ∀ ∈   

where ( )i  is the interior multiplication (contraction) of a 1-form by a vector 
and we let the reader check that such a definition no longer depends on the “lifts” 

1 1,q qξ η+ +  over ,q qξ η . Such a bracket on sections transforms qR  into a Lie  
algebroid in the sense that we have ,q q qR R R  ⊂   with , ,q q q qξ η η ξ   = −     

and the Jacobi identity , , , , , , 0q q q q q q q q qξ η ζ η ζ ξ ζ ξ η          + + =           ,  

, ,q q q qRξ η ζ∀ ∈ . 

EXAMPLE 3.3: (Affine transformations) 1, 2,n q X= = =   
With evident notations, the system of finite Lie equations is defined by the 

single second order linear OD equation 0xxy = . Similarly, the solutions of R2 
are defined by ( ) 0xx xξ∂ =  while the sections of R2 are defined by ( ) 0xx xξ = . 
Accordingly, the components of [ ]2 2,ξ η  at order zero, one and two are defined 
by the totally unusual successive formulas: 
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[ ], x xξ η ξ η η ξ= ∂ − ∂  

[ ]( )1 1, x x x xx
ξ η ξ η η ξ= ∂ − ∂  

[ ]( )2 2, x xx x xx x xx x xxxx
ξ η ξ η η ξ ξ η η ξ= − + ∂ − ∂  

It follows that [ ]( )2 20, 0 , 0xx xx xx
ξ η ξ η= = ⇒ =  and thus [ ]2 2 2,R R R⊂ . 

In this apparently totally different framework, using the theorems of Lie, any 
action is locally generated by linearly independent infinitesimal generators 

( )( )| :1, ,i
ix pτ τθ θ τ= ∂   such that , cτ τ

ρ σ ρσθ θ θ  =  . If ( )qJ T  is the q-jet 
bundle of T, we may introduce an operator  

( ) ( ) ( ) ( ) ( )( ): : , , ,k k k k
q q i ijj T J T x x x xξ ξ ξ ξ→ → ∂ ∂   and so on up to order q 

included. Considering any section ( )q qJ Tξ ∈  of the form ( ) ( )k x xτ
µ µ τξ λ θ= ∂ , 

we obtain the first order Spencer operator ( )*
1: q qd J T J T+ → ⊗  or simply 

( )1 1 1q q qd jξ ξ ξ+ += −  by the formula: 

( ) ( ) ( ) ( ) ( ) ( )1 1, i

k k k k
q i ii

d x x x x xτ
µ µ µ τµ

ξ ξ ξ λ θ+ += ∂ − = ∂ ∂  

that has never been used for applications, in particular to control theory.  
Introducing a basis of *r T∧  made by the 1 ri iIdx dx dx= ∧ ∧  with  
( )1 rI i i= < < , we may define the exterior derivative * 1 *: r rd T T+∧ → ∧  by 

setting I i I
I i Idx d dx dxω ω ω ω= → = ∂ ∧  and one easily checks 2 0d d d= = . 

The (canonical linear) gauge sequence [24]: 

0 * 1 * 2 * * 0
d d d d

nT T T T∧ ⊗ →∧ ⊗ →∧ ⊗ → →∧ ⊗ →     

can be described by p copies (indexed by τ) of the Poincaré sequence for the ex-
terior derivative. 

However, we did not speak about the other differential sequences that can be 
found in the literature, namely the Janet sequence, which is for sure the best 
known differential sequence, and the Spencer sequence. For short, starting from 
a vector bundle E (for example T) and a linear differential operator  

: :E F ξ η→ →  of order q, if we want to solve the linear system with second 
member ξ η=  even locally, one needs “compatibility conditions” (CC) in the 
form 1 0η = . Denoting now F by F0, we may therefore look for an operator 

1 0 1: :F F η ζ→ →  and so on. Under the assumption that   is involutive 
while taking into account the work of M. Janet in 1920 [21], one can prove that 
such a chain of operators ends after n steps and we obtain the (canonical linear) 
Janet sequence, namely [1] [2]: 

1 2

0 10 0
n

nE F F F→Θ→ → → → → →

 

 

where 1, , n   are first order involutive operators. The (canonical linear) 
Spencer sequence is the Janet sequence for the corresponding first order Spencer 
form ( )1 1q qR J R+ ⊂ , namely: 

1 2

0 10 0
q nj DD D

nC C C→Θ→ → → → →  
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where 0 qC R=  and the first order involutive operators 1, , nD D  are induced 
by the Spencer operator d [1] [2]. It follows that, for any application where 
group theory is involved, we only have at our disposal the Janet sequence, the 
Spencer sequence and the gauge sequence. As these sequences are made by quite 
different operators, the use of one excludes the use of the others. 

In order to escape from this dilemma and for the sake of clarifying the key 
idea of the brothers Cosserat by using these new mathematical tools, we shall 
explain, in a way as elementary as possible in the linear framework, why the Ja-
net sequence and the gauge sequence cannot be used in continuum mechanics. 
By this way we hope to convince the reader about the need to use another diffe-
rential sequence, namely the Spencer sequence, though striking it could be. We 
notice that we have already exhibited the link existing between the gauge se-
quence and the Spencer sequence. Accordingly, the gauge sequence is isomor-
phic to the Spencer sequence:  

31 20 * 1 * 2 * *0 0
q nj D DD D

n
q q q qT R T R T R T R→Θ→∧ ⊗ →∧ ⊗ →∧ ⊗ → →∧ ⊗ →  

the isomorphisms being induced by the (local) isomorphism qX R× →  of Lie 
algebroids just described above [1] [2]. It follows that gauging   amounts to 
use an arbitrary section of Rq [24]. It is essential to notice that, though the 
Spencer sequence and the isomorphisms crucially depend on the action, by a 
kind of “miracle” the gauge sequence no longer depends on the action. Another 
difference lies in the fact that all the indices in the Spencer sequence range from 
1 to n while in the gauge sequence the index τ ranges from 1 to p. However, only 
the Spencer sequence can be used for Lie pseudogroups of transformations that 
are not coming from Lie groups of transformations.  

Using the Stokes formula, the Cosserat stress and couple-stress equations are 
[17] [18]:  

,,ir i ij r ij ji ij
r rf mσ µ σ σ∂ = ∂ + − =  

This result shows that the surface density of forces σ  and couples µ  is 
equivalent, from the point of view of torsor equilibrium, to a volume density of 
forces f



 and of momenta m , providing the preceding stress and couple-stress 
equations are satisfied, and this interpretation explains the sign adopted. Of 
course, most of the engineering continua have the specific “constitutive laws” 

0µ = , 0m =  and we get ij jiσ σ= , a situation not always met in liquid crys-
tals. 

However, the combination of the stress and couple-stress equations have first 
been exhibited by E. and F. Cosserat in 1909 (See [5] and [16], p 137), without 
any static equilibrium experimental background and we now invite the reader to 
imagine how these equations could be related with the Spencer operator.  

The following theorem leads to the same equations just from group theoretical 
arguments:  

THEOREM 3.4: When 33,n X= =   and we deal with the group of rigid 
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motions, the Cosserat couple-stress equations are described by the formal ad-
joint of the first Spencer operator.  
 The gauge sequence cannot be used: 

Looking at the book [16] written by E. and F. Cosserat, it seems at first sight 
that they just construct the first operator of the gauge sequence for 1n =  (p 7), 

2n =  (p 66), 3n =  (p 123) and finally 4n =  (p 189) in the linearized 
framework. This is not true indeed because the corresponding adjoint operator 
is a divergence like operator, a situation not met in the couple-stress equations. 
In fact, a carefull study of [16] proves that somewhere in chapter 3 the action of 
the group on the space is used, but this is well hidden among many very technic-
al formulas and has never been noticed.  
 The Janet sequence cannot be used: 

This result is even more striking because all textbooks of elasticity use it along 
the same scheme that we now describe. Indeed, after gauging the translation by 
defining the “displacement vector” ( ) ( )( )1 2,x xξ ξ ξ=  of the body, from the 
initial point ( )1 2,x x x=  to the point ( )y x xξ= + , one introduces the (small) 
“deformation tensor” ( )1 2ε ξ ω=   as one half the Lie derivative with respect 
to ξ  of the euclidean metric ω , namely, in our case, the three components 
only (care): 

( )( )1 2 1 2
11 1 12 21 1 2 22 21 1,

2
2 ,ε ε ξ ε ε ξ ξ ε ξ= = ∂ = = ∂ + ∂ = ∂ = Ω  

One may check at once the only generating second order CC 1 0D ε = , name-
ly: 

11 22 22 11 12 122 0ε ε ε∂ + ∂ − ∂ =  

which is nothing else than the Riemann tensor of a metric, linearized at ω . 
For an arbitrary dimension n, one uses to consider the Lie operator  

( ) *
2:T S Tξ ξ ω= →   (symmetric tensors), sometimes called Killing opera-

tor for the metric ω , through the formula: 

( ) 2r r r
rj i ir j r ij ij ij ijijξ ω ξ ω ξ ξ ω ε≡ ∂ + ∂ + ∂ = Ω = Ω =  

and one obtains the ( )2 2 1 12n n −  second order CC by linearizing at ω  the 
Riemann tensor. However, the main experimental reason for introducing the 
first operator of this type of Janet sequence is the fact that the deformation is 
made from the displacement and first derivatives but must be invariant under 
any rigid motion. In the general case it must therefore have  

( ) ( )( ) ( )2 1 2 1 2n n n n n n n+ − + − = +  components, that is 3 when 2n = , and 
this is the reason why introducing the deformation tensor ε . For most finite 
element computations, the action density (local free energy) w is a (in general 
quadratic) function of ε  and people use to define the stress by the formula 

ij
ijwσ ε= ∂ ∂  which is not correct because w only depends on 11 12 22, ,ε ε ε  

when 2n =  as the deformation tensor is symmetric by construction. Finally, 
textbooks escape from this trouble by deciding that the stress should be symme-
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tric and this is a vicious circle because we have proved it was not an assumption 
but an experimental result depending on specific constitutive laws. Accordingly, 
when 2n = , we should have ( )11 12 22

11 12 222ij
ijσ ε σ ε σ ε σ ε= + + . Hence, even if 

we find the correct stress equations with this convenient duality keeping the 
factor “2”, we have no way to get the stress and couple-stress equations together. 
 Only the Spencer sequence can be used: 

Let us construct the formal adjoint of the Spencer operator by multiplying all 
the ( )2 2 2 6× + =  linearly independent nonzero components by corresponding 
test functions. For simplifying the summation, we shall raise and lower the in-
dices by means of the (constant) euclidean metric, setting in particular 

r
i irξ ω ξ=  and ,

r
i j ir jξ ω ξ= . The only nonzero first jets coming from the 2 × 2 

skew-symmetric infinitesimal rotation matrix of first jets are now 1,2 2,1ξ ξ= −  
while the second order jets are zero because isometries are linear transforma-
tions. We obtain the summation: 

( ) ( )11 21 12 22 12,
1 1 1 2 2,1 2 1 1,2 2 2 1,2

r
rσ ξ σ ξ ξ σ ξ ξ σ ξ µ ξ∂ + ∂ − + ∂ − + ∂ + ∂  

Integrating by parts and changing the sign, we just need to look at the coeffi-
cients of 1 2,ξ ξ  and 1,2ξ , namely: 

11 12 1
1 1 2

21 22 2
2 1 2

12, 12 21 12
1,2

r
r

f
f

m

ξ σ σ
ξ σ σ
ξ µ σ σ

 → ∂ + ∂ =


→ ∂ + ∂ =
 → ∂ + − =

 

in order to get the adjoint operator  
( ) ( ) ( )1 * * * *

1 1: : , ,n nad d T R T R f mσ µ−∧ ⊗ →∧ ⊗ →  relating for the first time 
the torsor framework to the dual *

1R  of the Lie algebroid R1. These equations 
are exactly the three stress and couple-stress equations of 2-dimensional Cosse-
rat elasticity.  

For an arbitrary dimension n, the sections of R2 satisfy , , 0i j j iξ ξ+ = , 0k
ijξ =  

and we have to consider now the summation: 

( ) ( ),
, ,

ij ij r
j i i j r i ji jσ ξ ξ µ ξ

<
∂ − + ∂∑  

Integrating by part and changing the sign, we get, up to a divergence: 

( ),
,

ir ij r ij ji
r i r i ji jσ ξ µ σ σ ξ

<
∂ + ∂ + −∑  

and obtain the generalized Cosserat equations:  

,,ir i ij r ij ji ij
r rf mσ µ σ σ∂ = ∂ + − =  

which can be used for the Poincaré group of space-time, even though, in this 
case, no direct approach can be provided. 

Enlarging the group, the case of the conformal group of space-time could be 
treated similarly and the sections of the corresponding new system 2 3

ˆ ˆR R  sa-
tisfy:  

2 0, 0, 0, 3r r r k k r k r ks r k
rj i ir j ij r ij i rj j ri ij rs ijrn n

n
ω ξ ω ξ ω ξ ξ δ ξ δ ξ ω ω ξ ξ+ − = − − + = = ∀ ≥  
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where 0k
iδ =  if k i≠  or 1 if k i= . Accordingly, among the components of 

the Spencer operator one may find k k k
r ij ijr r ijξ ξ ξ∂ − = ∂  and thus the components 

r r
i rj j ri ijFξ ξ∂ − ∂ =  of the EM field with EM potential r

ri iAξ =  coming from the 4 
elations, along lines only sketched by H. Weyl [25] because the needed mathe-
matics were not available before 1970. Roughly, E. and F. Cosserat were only 
dealing with { }, | 0k k r

i rξ ξ ξ =  while, in a somehow complementary way, H. 
Weyl was only dealing with { },r r

r riξ ξ . The new Cosserat equation  
( ) 0r r

r r traceξ µ σ→ ∂ + =  (in vacuum) explains why the trace of the EM ene-
gy-momentum tensor vanishes as a consequence of the conservation of the den-
sity µ  of electric current ([25], §35, (74)) and the Spencer operator  

* 2 *
2 2 2

ˆ ˆ:D T R T R⊗ →∧ ⊗  (field equations) projects onto 2 * 3 *:d T T∧ → ∧  
(Maxwell equations). Such a result perfectly agrees with piezzoelectricity (qua-
dratic lagrangian) and photoelesticity (cubic lagrangian) but could not be ob-
tained with the gauge sequence and thus disagrees with gauge theory and the use 
of U(1) [26]. 

4. Parametrization Problem 

The main tool in this section will be duality theory, namely the systematic use of 
the formal adjoint of an operator (see [6] for more details). For this, if E is a 
vector bundle, we introduce its dual *E  to be the vector bundle with inverse 
transition matrix (for example *T  is the dual of T). The formal adjoint of an 
operator : E F→  is the operator ( ) * * * *: n nad T F T E∧ ⊗ →∧ ⊗  defined 
by the following relation between volume forms: 

( ), ,ad dλ ξ λ ξ α= +   

where  is the usual contraction, λ  is a test row vector density and 
1 *n Tα −∈∧  comes from Stokes formula of integration by part. Any operator can 

be considered as the formal adjoint of another operator because we have the 
identity ( )( )ad ad =  . Also, if ,P Q D∈  and P a dµ µ= , then  

( ) ( )1ad P d aµ µ
µ= −∑  and ( ) ( ) ( )ad PQ ad Q ad P= . 

Let us start with a given linear differential operator 
1

η ζ→


 between the sec-
tions of two given vector bundles F0 and F1 of respective fiber dimension m and 
p. Multiplying the equations 1η ζ=  by p test functions λ  considered as a 
section of the adjoint vector bundle ( ) * *

1 1
nad F T F= ∧ ⊗  and integrating by 

parts as we did in the introduction, we may introduce the adjoint vector bundle  

( ) * *
0 0

nad F T F= ∧ ⊗  with sections µ  in order to obtain the adjoint operator 
( )1ad

µ λ←


, writing on purpose the arrow backwards, that is from right to left. 
More generally, let us consider a differential sequence:  

1

ξ η ζ→ →


 

such that 1  generates the CC of   or, equivalently, such that 1  is para-
metrized by  .  

We may introduce the adjoint differential sequence:  
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( ) ( )1ad ad

ν µ λ← ←
 

 

As we have 1 0=  , we obtain ( ) ( )1 0ad ad =  . However, if 1  ge-
nerates the CC of  , then ( )ad   may not generate the CC of ( )1ad   as 
we shall see and the so-called extension modules have been introduced in order 
to measure these “gaps” (See the introduction of [27] for motivations).  

The following nontrivial theorem, first obtained in [3], provides a purely for-
mal test for deciding about the existence of a parametrization and exhibiting one. 
It is already implemented on the computer algebra package  
http://wwwb.math.rwth-aachen.de/OreModules. 

THEOREM 4.1: Test for checking that a given differential module M1 is tor-
sion-free:  

1  Write the corresponding defining operator 1 . 
2  Construct its formal adjoint ( )1ad  . 
3  Work out generating CC for ( )1ad   as an operator ( )ad  . 
4  Construct ( )( )ad ad D= . 
5  Work out generating CC for   as an operator 1′ . 

Then M1 is torsion-free if and only if 1  and 1′  have the same solutions 
(both provide M1). 

( ) ( )

1

1

1

5

4 1

3 2
ad ad

ζ

ξ η ζ

ν µ λ

′

′

→ →

← ←





 



 

We have used the fact that ( )( )ad ad D=  and that  
( ) ( )1 10 0ad ad = ⇒ =     , that is 1  is surely among the CC of   

but other CC may also exist.  
COROLLARY 4.2: Each new CC brought by 1′  which is not already a dif-

ferential consequence of 1  is providing a torsion element of the differential 
module M1 determined by 1 . Hence   provides a parametrization of the 
system determined by ( )1 1M t M  or, equivalently, ( )1 1 1M M t M′ =  is the tor-
sion-free module determined by 1′  which is exactly the minimum controllable 
realization in classical control theory as we shall see.  

COROLLARY 4.3: When 1  can be parametrized, that is 1  constructed 
as in the theorem generates the CC of   or, equivalently, when M1 is tor-
sion-free and can be thus embedded into a free module lD , we have thus 

( )1Drk M l l′= ≤ . There is a constructive procedure in order to embed M1 into 
lD ′ , that is to obtain a minimum parametrization.  

https://doi.org/10.4236/apm.2024.142004


J.-F. Pommaret 
 

 

DOI: 10.4236/apm.2024.142004 66 Advances in Pure Mathematics 
 

The procedure with 4 steps is as follows in the operator language (See Exam-
ple 1.3):  

1  Start with the formally exact parametrizing sequence already constructed 
by differential biduality. We have thus ( ) ( )1im ker=   and the correspond-
ing diffferential module M1 defined by 1  is torsion-free by assumption.  

2  Construct the adjoint sequence which is also formally exact by assump-
tion.  

3  Find a maximum set of differentially independent CC ( ) :ad µ ν′ ′→  
among the generating CC ( ) :ad µ ν→  of ( )1ad   in such a way that 

( )( )im ad ′  is a maximum free differential submodule of ( )( )im ad   that is 
any element in ( )( )im ad   is differentially algebraic over ( )( )im ad ′ .  

4  Using differential duality, construct ( )( )ad ad′ ′=  .  
Then ′  is a minimum parametrization of 1 .  

( ) ( )

( )

1

1

4

1

2

3

0 0

ad ad

ad

ξ

ξ η ζ

ν µ λ

ν

′

′

′

↑

→ →

← ←

↑

′

↑





 









 

Using the fact that the Poincaré sequence for the exterior derivative is self-adjoint 
up to sign (for 3n =  the adjoints of , ,grad curl div  are respectively  

, ,div curl grad  up to sign) and that the extension modules do not depend on the 
sequence used for their definition [6] [20], we have: 

COROLLARY 4.4: In the case of a Lie group of transformations, the gauge 
sequence is self-adjoint up to sign and thus ( )ad   generates the CC of 

( )1ad   in the adjoint of any sequence where 1  generates the CC of the Lie 
operator   while ( )1ad D  generates the CC of ( )2ad D  in the adjoint of the 
corresponding Spencer sequence. 

COUNTEREXAMPLE 4.5: Whith 1, 2, 2m n q= = = , let us consider formally 
the involutive operator ( )1 2

12 22: ,y d y u d y u→ = =  with  

( ) ( )1 2 2 1
1 1 2: ,u u d u d u→ − . Then ( ) ( ) ( )1 2 1 2

12 22: ,ad d dφ φ φ φ→ +  does not 
generate the CC of ( ) ( )1 2

1 2 1: ,ad d dλ λ φ λ φ→ = − =  which are generated by 
the divergence condition 1 2

1 2 0d dφ φ+ = . 
EXAMPLE 4.6: As a first striking consequence that does not seem to have 

been noticed by mechanicians up till now, let us consider the situation of classic-
al elasticity theory where   is the Killing operator for the euclidean metric, 
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namely ( )ξ ξ ω=   and 1  the corresponding CC, namely the linearized 
Riemann curvature with ( )2 2 1 12n n −  components. According to the above 
corollary, in order to parametrize the stress equations, that is ( )ad  , one just 
needs to compute ( )1ad  . For 2n = , we get: 

( ) ( ) ( )11 22 22 11 12 12 22 11 12 12 11 22 1 22 2 ... ...φ ε ε ε φε φε φε∂ + ∂ − ∂ = ∂ − ∂ + ∂ + ∂ + ∂  

and recover the parametrization by means of the Airy function in a rather unex-
pected way. For an arbitrary dimension n, this result is coherent with Example 2.7 
as we have indeed ( ) ( )2 21 2 1 12n n n n− ≤ − , 2n∀ ≥ , with equality only for 

2n = . 
EXAMPLE 4.7: We finally treat the case of the Cosserat equations. In this 

case we have * *
1

r r
rC T R T= ∧ ⊗ ∧ ⊗  with ( ) ( )1 2dim n n p= + = . As we 

have shown in the last section that the Cosserat equations were just ( )1ad D , 
according to the above corollary a first order parametrization is thus described 
by ( )2ad D  and needs ( ) ( )2 2

2 1 4dim C n n= −  potentials. We provide the de-
tails when 2n =  but we know at once that we must use 3 potentials only. 

The Spencer operator D1 is described by the equations: 

1 1 11 1 2 2,1 21 2 1 1,2 12 2 2 22 1 1,2 1 2 1,2 2, , , , ,A A A A B Bξ ξ ξ ξ ξ ξ ξ ξ∂ = ∂ − = ∂ − = ∂ = ∂ = ∂ =  

because R1 is defined by the equations 1,1 0ξ = , 1,2 2,1 0ξ ξ+ = , 2,2 0ξ = .  
Accordingly, the 3 CC describing the Spencer operator D2 are: 

1 12 2 11 1 1 22 2 21 2 1 2 2 10, 0, 0A A B A A B B B∂ − ∂ + = ∂ − ∂ + = ∂ − ∂ =  

Multiplying these equations respectively by 1 2 3, ,φ φ φ , then summing and in-
tegrating by part, we get ( )2ad D  and the desired first order parametrization in 
the form: 

11 1 12 1 21 2 22 2
2 1 2 1

12,1 3 1 12,2 3 2
2 1

, , , ,

,

σ φ σ φ σ φ σ φ

µ φ φ µ φ φ

= ∂ = −∂ = ∂ = −∂

= ∂ + = −∂ +
 

as announced previously [15]. It is important to notice that such a parametriza-
tion, which could also be obtained by localization, is coherent with the classical 
one already obtained by localization in Example 2.6, which can be recovered if 
we cancel the couple-stress and set 3φ φ= − .  

For an arbitrary dimension n, D1 is given by the ( )2 1 2n n +  equations 
k k k

i i iAξ ξ∂ − = , ,
k k

i j j iBξ∂ =  and D2 provides the ( )2 2 1 4n n −  CC: 

, , , ,0, 0k k k k k k
i j j i j i i j i r j j r iA A B B B B∂ − ∂ + − = ∂ − ∂ = . 

Lowering the index k and contracting them respectively by test functions 
, ,k ij k jiφ φ= −  and , , ,kr ij rk ij kr jiψ ψ ψ= − = −  for i j< , then integrating by part, 

we obtain the first order parametrization ( )2ad D : 
, , , , ,,ij i jr ij r ij rs j ir i jr

r sσ φ µ ψ φ φ= ∂ = ∂ + − . 

This result is coherent with the fact that the minimum number of potentials is 
now ( )1n p−  as we have indeed ( ) ( )2 2 21 2 1 4n n n n− ≤ − , 2n∀ ≥ , with 
equality only for 2n = . Using the conformal group of space-time provides a 
common parametrization for the Cosserat and Maxwell equations in a unique 
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framework. 

5. System Theory 

For example, the fact that the Cauchy operator is the adjoint of the Killing oper-
ator for the Euclidean metric is in any textbook of continuum mechanics in the 
chapter “variational calculus” and the parametrization problem has been quoted 
by many famous authors, as we said in the Abstract, but only from a computa-
tional point of view. However it is still not known that the adjoint of the 20 
components of the Bianchi operator has been introduced by C. Lanczos as we 
explained with details in [28]. However, the main trouble is that these two prob-
lems have never ben treated in an intrinsic way and, in particular, changes of 
coordinates have never been considered. The same situation can be met for 
Maxwell equations but is out of our scope [26].  

PROPOSITION 5.1: The Cauchy operator is the adjoint of the Killing opera-
tor in arbitrary dimension, up to sign.  

Proof: Let X be a manifold of dimension n with local coordinates ( )1, , nx x , 
tangent bundle T and cotangent bundle *T . If *

2S Tω∈  is a metric with  
( ) 0det ω ≠ , we may introduce the standard Lie derivative in order to define the 

first order Killing operator:  

( ) ( ) ( )( ) *
2: r r r

ij rj i ir j r ijT x x x S Tξ ω ξ ω ξ ξ ω∈ →Ω = Ω = ∂ + ∂ + ∂ ∈  

Here start the problems because, in our opinion at least, a systematic use of 
the adjoint operator has never been used in mathematical physics and even in 
continuum mechanics apart through a variational procedure. As will be seen 
later on, the purely intrinsic definition of the adjoint can only be done in the 
theory of differential modules by means of the so-called side changing functor. 
From a purely differential geometric point of view, the idea is to associate to any 
vector bundle E over X a new vector bundle ( ) * *nad E T E= ∧ ⊗  where *E  is 
obtained from E by patching local coordinates while inverting the transition 
matrices, exactly like *T  is obtained from T. It follows that the stress tensor 

( ) ( )* *
2 2

ij nad S T T S Tσ σ= ∈ = ∧ ⊗  is not a tensor but a tensor density, that is 
transforms like a tensor up to a certain power of the Jacobian matrix. When 

4n = , the fact that such an object is called stress-energy tensor does not change 
anything as it cannot be related to the Einstein tensor which is a true tensor in-
deed. Of course, it is always possible in GR to use ( )( )

1
2det ω  but, as we shall 

see, the study of contact structures must be done without any reference to a 
background metric. In any case, using the metric to raise or lower the indices, we 
may define:  

( ) * *
2: :n nad T S T T T σ ϕ∧ ⊗ →∧ ⊗ →  

Multiplying ijΩ  by ijσ  and integrating by parts, the factor of 2 kξ−  is 
easly seen to be:  

ik ik k ij k
i i ijσ σ γ σ ϕ∇ = ∂ + =  
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with well known Christoffel symbols ( )1
2

k kr
ij i rj j ir r ijγ ω ω ω ω= ∂ + ∂ − ∂ .  

However, if the stress should be a tensor, we should get for the covariant de-
rivative:  

ij ij i sj j is ik ik r ik k ij
r r rs rs i i ri ijσ σ γ σ γ σ σ σ γ σ γ σ∇ = ∂ + + ⇒∇ = ∂ + +  

The difficulty is to prove that we do not have a contradiction because σ  is a 
tensor density. This tricky technical result, which is not evident at all, explains why 
the additional term we had is just disappearing in fact when σ  is a density.  

 
If X is a manifold of dimension n with local coordinates ( ) ( )1, , nx x x=  , we 

denote as usual by ( )T T X=  the tangent bundle of X, by ( )* *T T X=  the 
cotangent bundle, by *r T∧  the bundle of r-forms and by *

qS T  the bundle of 
q-symmetric tensors. More generally, let E be a vector bundle over X with local 
coordinates ( ),i kx y  for 1, ,i n= 

 and 1, ,k m=   simply denoted by 
( ),x y , projection ( ) ( ): : ,E X x y xπ → →  and changes of local coordinate 

( )x xϕ= , ( )y A x y= . We shall denote by *E  the vector bundle obtained by 
inverting the matrix A of the changes of coordinates, exactly like *T  is obtained 
from T. We denote by ( ) ( )( ): : ,f X E x x y f x→ → =  a global section of E, 
that is a map such that Xf idπ =  but local sections over an open set U X⊂  
may also be considered when needed. Under a change of coordinates, a section 
transforms like ( )( ) ( ) ( )f x A x f xϕ =  and the changes of the derivatives can 
also be obtained with more work. We shall denote by ( )qJ E  the q-jet bundle 
of E with local coordinates ( ) ( ), , , , ,i k k k

i ij qx y y y x y=  called jet coordinates 
and sections ( ) ( ) ( ) ( )( ) ( )( ): , , , , ,k k k

q i ij qf x x f x f x f x x f x→ =  transforming 
like the sections  

( ) ( ) ( ) ( ) ( )( ) ( )( )( ): , , , , ,k k k
q i ij qj f x x f x f x f x x j f x→ ∂ ∂ =  where both qf  

and ( )qj f  are over the section f of E. For any 0q ≥ , ( )qJ E  is a vector 
bundle over X with projection qπ  while ( )q rJ E+  is a vector bundle over 

( )qJ E  with projection q r
qπ
+ , 0r∀ ≥ . 

DEFINITION 5.2: A linear system of order q on E is a vector sub-bundle 
( )q qR J E⊂  and a solution of qR  is a section f of E such that ( )qj f  is a sec-

tion of qR . With a slight abuse of language, the set of local solutions will be de-
noted by EΘ⊂ . 

Let ( )1, , nµ µ µ=   be a multi-index with length 1 nµ µ µ= + + , class i if 

1 1 0iµ µ −= = = , 0iµ ≠  and ( )1 1 11 , , , 1, , ,i i i i nµ µ µ µ µ µ− ++ = +  . We set 

{ }|1 ,0k
qy y k m qµ µ= ≤ ≤ ≤ ≤  with k ky yµ =  when 0µ = . If E is a vector 

bundle over X and ( )qJ E  is the q-jet bundle of E, then both sections 
( )q qf J E∈  and ( ) ( )q qj f J E∈  are over the section f E∈ . There is a natural 

way to distinguish them by introducing the Spencer operator  
( ) ( )*

1: q qd J E T J E+ → ⊗  with components ( ) ( ) ( ) ( )1 1, i

k k k
q ii

df x f x f xµ µµ+ += ∂ − . 
The kernel of d consists of sections such that  

( ) ( ) ( )1 1 2 1 1q q q qf j f j f j f+ − += = = = . Finally, if ( )q qR J E⊂  is a system of 
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order q on E locally defined by linear equations ( ) ( ), 0k
q kx y a x yτ τµ

µΦ ≡ =  and 
local coordinates ( ),x z  for the parametric jets up to order q, the r-prolonga- 
tion ( ) ( ) ( ) ( )( )q r r q r q q r r qR R J R J E J J Eρ+ += = ∩ ⊂  is locally defined when 

1r =  by the linear equations ( ), 0qx yτΦ = ,  

( ) ( ) ( )1 1, 0
i

k k
i q k i kd x y a x y a x yτ τµ τµ

µ µ+ +Φ ≡ + ∂ =  and has symbol  
( )*

q r q r q r q rg R S T E J E+ + + += ∩ ⊗ ⊂  if one looks at the top order terms. If 

1 1q qf R+ +∈  is over q qf R∈ , differentiating the identity ( ) ( ) 0k
ka x f xτµ

µ ≡  with 
respect to ix  and substracting the identity ( ) ( ) ( ) ( )1 0

i

k k
k i ka x f x a x f xτµ τµ

µ µ+ + ∂ ≡ , 
we obtain the identity ( ) ( ) ( )( )1 0

i

k k
k ia x f x f xτµ

µ µ+∂ − ≡  and thus the restriction 
*

1: q qd R T R+ → ⊗ . More generally, we have the restriction:  

( )( ) ( ) ( )( )( )* 1 *
1 , , 1 ,: :s s k I k k i I

q q I i I Ii
d T R T R f x dx f x f x dx dxµ µ µ

+
+ +∧ ⊗ →∧ ⊗ → ∂ − ∧  

with standard multi-index notation for exterior forms and one can easily check 
that = 0d d . The restriction of -d to the symbol is called the Spencer map δ  
in the sequences:  

1 * * 1 *
1 1

s s s
q r q r q rT g T g T g

δ δ
− +

+ + + + −∧ ⊗ →∧ ⊗ →∧ ⊗  

because 0δ δ =  similarly, leading to the purely algebraic δ-cohomology 
( )s

q r qH g+  at *s
q rT g +∧ ⊗  with similar notation for the coboundary  

( ) ( )B im Z ker H Z Bδ δ= ⊆ = ⇒ =  bundles.  
DEFINITION 5.3: A system qR  is said to be formally integrable when all the 

equations of order q r+  are obtained by r prolongations only, 0r∀ ≥  or, 
equivalently, when the projections ( ): sq r s

q r q r s q r q rR R Rπ + +
+ + + + +→ ⊆  are such that 

( )s
q r q rR R+ += , , 0r s∀ ≥ .  
Finding an intrinsic test has been achieved by D. C. Spencer in 1970 [11] 

along coordinate dependent lines sketched by M. Janet in 1920 [21]. The next 
procedure providing a Pommaret basis and where one may have to change li-
nearly the independent variables if necessary, is intrinsic even though it must be 
checked in a particular coordinate system called δ-regular [1] [6].  
 Equations of class n: Solve the maximum number n

qβ  of equations with re-
spect to the jets of order q and class n. Then call ( )1, , nx x  multiplicative 
variables. 

 Equations of class 1i ≥ : Solve the maximum number i
qβ  of remaining equ-

ations with respect to the jets of order q and class i. Then call ( )1, , ix x  
multiplicative variables and ( )1, ,i nx x+

  non-multiplicative variables. 
 Remaining equations equations of order 1q≤ − : Call ( )1, , nx x  

non-multiplicative variables. 
In actual practice, we shall use a Janet tabular where the multiplicative “va-

riables” are in upper left position while the non-multiplicative variables are 
represented by dots in lower right position.  

DEFINITION 5.4: A system of PD equations is said to be involutive if its first 
prolongation can be obtained by prolonging its equations only with respect to 
the corresponding multiplicative variables. In that case, we may introduce the  
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characters ( )
( ) ( )

1 !
1 ! !

i i
q q

q n i
m

q n i
α β

+ − −
= −

− −
 for 1, ,i n= 

 with 1 0n
q qα α≥ ≥ ≥  

and we have ( ) 1 n
q q qdim g α α= + +  while ( ) 1

1
n

q q qdim g nα α+ = + + .  

REMARK 5.5: As long as the Prolongation/ Projection (PP) procedure allow-
ing to find two integers , 0r s ≥  such that the system ( )s

q rR +  is involutive, has 
not been achieved, nothing can be said about the CC (The Killing operator for 
the Kerr metric provides a fine example in [29]).  

When qR  is involutive, the operator ( ) ( ) 0:
qj

q q qE J E J E R F
Φ

→ → =  of 
order q is said to be involutive. Introducing the Janet bundles  

( ) ( )( )* * *
1/r r

r q q qF T J E T R S T Eδ += ∧ ⊗ ∧ ⊗ + ⊗ , we obtain the linear Janet 
sequence (Introduced in [1] [2]): 

1 2

0 10 0
n

nE F F F→Θ→ → → → → →

 

 

where each other operator is first order involutive and generates the CC of the 
preceding one.  

Similarly, introducing the Spencer bundles ( )* 1 *
1= r r

r q qC T R T gδ −
+∧ ⊗ ∧ ⊗  

we obtain the linear Spencer sequence induced by the Spencer operator [1] [2]:  

1 2

0 10 0
q nj DD D

nC C C→Θ→ → → → →  

6. Module Theory 

Let K be a differential field with n commuting derivations ( )1, , n∂ ∂  and con-
sider the ring [ ] [ ]1, , nD K d d K d= =  of differential operators with coeffi-
cients in K with n commuting formal derivatives satisfying i i id a ad a= + ∂  in 
the operator sense. If [ ]P a d D K dµ

µ= ∈ = , the highest value of µ  with 
0aµ ≠  is called the order of the operator P and the ring D with multiplication 

( ),P Q P Q PQ→ =  is filtred by the order q of the operators. We have the fil-
tration 0 10 qK D D D D D∞⊂ = ⊂ ⊂ ⊂ ⊂ ⊂ =  . As an algebra, D is generat-
ed by 0K D=  and 1 0T D D=  with 1D K T= ⊕  if we identify an element 

i
id Tξ ξ= ∈  with the vector field ( )i

ixξ ξ= ∂  of differential geometry, but 
with i Kξ ∈  now. It follows that D DD D=  is a bimodule over itself, being at 
the same time a left D-module by the composition P QP→  and a right 
D-module by the composition P PQ→ . We define the adjoint functor  

( ) ( ): : 1opad D D P a d ad P d aµµ µ
µ µ→ = → = −  and we have ( )( )ad ad P P=  

both with ( ) ( ) ( )ad PQ ad Q ad P= , ,P Q D∀ ∈ . Such a definition can be ex-
tended to any matrix of operators by using the transposed matrix of adjoint op-
erators (See [6] for more details and applications to control theory or mathe-
matical physics).  

Accordingly, if ( )1, , my y y=   are differential indeterminates, then D acts 
on ky  by setting k k k k

i id y y d y yµ µ= → =  with 1i

k k
id y yµ µ+=  and 0

k ky y= . We 
may therefore use the jet coordinates in a formal way as in the previous section. 
Therefore, if a system of OD/PD equations is written in the form 0k

ka yτ τµ
µΦ ≡ =  
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with coefficients a K∈ , we may introduce the free differential module 
1 m mDy Dy Dy D= + +   and consider the differential module of equations 

I D Dy= Φ ⊂ , both with the residual differential module M Dy D= Φ  or 
D-module and we may set DM M=  if we want to specify the ring of differen-
tial operators. We may introduce the formal prolongation with respect to id  by 
setting ( )1i

k k
i k i kd a y a yτ τµ τµ

µ µ+Φ ≡ + ∂  in order to induce maps  

1: :
i

k k
id M M y yµ µ+→ →  by residue with respect to I if we use to denote the re-

sidue : k kDy M y y→ →  by a bar like in algebraic geometry. However, for 
simplicity, we shall not write down the bar when the background will indicate 
clearly if we are in Dy  or in M. As a byproduct, the differential modules we 
shall consider will always be finitely generated ( 1, ,k m= < ∞ ) and finitely 
presented ( 1, , pτ = < ∞ ). Equivalently, introducing the matrix of operators  

( )ka dτµ
µ=  with m columns and p rows, we may introduce the morphism 

( ) ( ):
D

p mD D P P τ
τ τ→ → Φ  over D by acting with D on the left of these row vec-

tors while acting with   on the right of these row vectors by composition of 
operators with ( )im I= . The presentation of M is defined by the exact coker-

nel sequence 0
D

p mD D M→ → → . We notice that the presentation only de-
pends on ,K D  and Φ  or  , that is to say never refers to the concept of  
(explicit local or formal) solutions. It follows from its definition that M can be 
endowed with a quotient filtration obtained from that of mD  which is defined 
by the order of the jet coordinates qy  in qD y . We have therefore the induc-
tive limit 0 10 qM M M M M∞⊆ ⊆ ⊆ ⊆ ⊆ ⊆ =   with 1i q qd M M +⊆  and 

qM DM=  for 0q  with prolongations r q q rD M M +⊆ , , 0q r∀ ≥ . It is im-
portant to notice that it may be sometimes quite difficult to work out qI  or 

qM  from a given presentation which is not involutive [29].  
DEFINITION 6.1: An exact sequence of morphisms finishing at M is said to 

be a resolution of M. If the differential modules involved apart from M are free, 
that is isomorphic to a certain power of D, we shall say that we have a free reso-
lution of M.  

Having in mind that K is a left D-module with the action  
( ) ( ), : ,i iD K K d a a→ →∂  and that D is a bimodule over itself with PQ QP≠ , 
we have only two possible constructions:  

DEFINITION 6.2: We may define the right (care) differential module 
( ),Dhom M D  with  

( )( ) ( )( ) ( )( ) ( )( )( ) ( )( )( ) ( )( )fP m f m P fPQ m fP m Q f m P Q f m PQ= ⇒ = = = .  
DEFINITION 6.3: We define the system ( ),KR hom M K=  and set  

( ),q K qR hom M K=  as the system of order q. We have the projective limit  

1 0qR R R R R∞= → → → → →  . It follows that : k k
q qf R y f Kµ µ∈ → ∈  with 

0k
ka fτµ

µ =  defines a section at order q and we may set =f f R∞ ∈  for a section 
of R. For an arbitrary differential field K, such a definition has nothing to do 
with the concept of a formal power series solution (care). 

PROPOSITION 6.4: When M is a left D-module, then R is also a left 
D-module.  
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Proof: As D is generated by K and T as we already said, let us define:  

( )( ) ( ) ( ) , ,af m af m f am a K m M= = ∀ ∈ ∀ ∈  

( )( ) ( ) ( ) , ,i
if m f m f m a d T m Mξ ξ ξ ξ= − ∀ = ∈ ∀ ∈  

In the operator sense, it is easy to check that i i id a ad a= + ∂  and that  
[ ],ξη ηξ ξ η− =  is the standard bracket of vector fields. We finally get  

( ) ( )( ) 1i

k k k k
i i id f d f y f fµ µ µµ += = ∂ −  and thus recover exactly the Spencer operator 

of the previous section though this is not evident at all. We also get  
( ) 1 1 1 1 , , 1, ,

j i i j

k k k k k
i j ij i j i j j id d f f f f f d d d d i j nµ µ µ µµ + + + += ∂ − ∂ − ∂ + ⇒ = ∀ =   and 

thus 1i q q id R R d R R+ ⊆ ⇒ ⊂  induces a well defined operator  
* : i

iR T R f dx d f→ ⊗ → ⊗ . This operator has been first introduced, up to sign, 
by F. S. Macaulay as early as in 1916 but this is still not ackowledged [22]. For 
more details on the Spencer operator and its applications, the reader may look at 
[23].  

 
The two following definitions, which are well known in commutative algebra, 

are also valid (with more work) in the case of differential modules (See [6] for 
more details or the references [10] [19] [20] for an introduction to homological 
algebra and diagram chasing).  

DEFINITION 6.5: The set of elements  
( ) { }| 0 , 0t M m M P D Pm M= ∈ ∃ ≠ ∈ = ⊆  is a differential module called the 

torsion submodule of M. More generally, a module M is called a torsion module 
if ( )t M M=  and a torsion-free module if ( ) 0t M = . In the short exact se-
quence ( )0 0t M M M ′→ → → → , the module M’ is torsion-free. Its defining 
module of equations I ′  is obtained by adding to I a representative basis of 
( )t M  set up to zero and we have thus I I ′⊆ .  
DEFINITION 6.6: A differential module F is said to be free if rF D  for 

some integer 0r >  and we shall define ( )Drk F r= . If F is the biggest free dif-
ferential module contained in M, then M/F is a torsion differential module and 

( ), 0Dhom M F D = . In that case, we shall define the differential rank of M to be 
( ) ( )D Drk M rk F r= = . Accordingly, if M is defined by a linear involutive oper-

ator of order q, then ( ) n
D qrk M α= .  

PROPOSITION 6.7: If 0 0M M M′ ′′→ → → →  is a short exact sequence 
of differential modules and maps or operators, we have  

( ) ( ) ( )D D Drk M rk M rk M′ ′′= + .  

In the general situation, let us consider the sequence 
f g

M M M′ ′′→ →  of 
modules which may not be exact and define ( ) ( )B im f Z ker g H Z B= ⊆ = ⇒ = . 

In order to conclude this section, we may say that the main difficulty met 
when passing from the differential framework to the algebraic framework is the 
“inversion” of arrows. Indeed, when an operator is injective, that is when we  

have the exact sequence 0 E F→ →


 with ( )dim E m= , ( )dim F p= , like in 

the case of the operator ( )0
qj

qE J E→ → , on the contrary, using differential  
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modules, we have the epimorphism 0p mD D→ →


. The case of a formally sur-

jective operator, like the div operator, described by the exact sequence 0E F→ →


  
is now providing the exact sequence of differential modules  
0 0p mD D M→ → → →


 because   has no CC.  

In order to conclude this section, we may say that the main difficulty met 
when passing from the differential framework to the algebraic framework is the  
“inversion” of arrows. Indeed, with ( )dim E m= , ( )dim F p= , when an oper-

ator : E F→  is injective, that is when we have the exact sequence 0 E F→ →


, 

like in the case of the operator ( )0
qj

qE J E→ → , on the contrary, using diffe-

renial modules, we have the epimorphism 0p mD D→ →


. The case of a formal-
ly surjective operator, like the div operator, described by the exact sequence 

0E F→ →


 is now providing the exact sequence of differential modules 

0 0p mD D M→ → → →


 because   has no CC.  
In addition, it is a fact that has been tested with many students during more 

than ten years through European international courses, that it is quite difficult to 
understand certain results that are far from intuition, like the following theorem 
that can be generalized with the so-called purity filtration as a way to classify 
differential modules (See [10], p 201 or [6] [30] for more details):  

THEOREM 6.8: Defining the map ε  by ( )( ) ( )m f f mε = , m M∀ ∈ ,  
( ),Df hom M D∀ ∈ , we have the exact sequence:  

( ) ( )( )0 , ,D Dt M M hom hom M D D
ε

→ → →  

which is explaining why the torsion submodule of M has to do with the kernel of 
( )ad   when M is defined by  , a fact only known in classical control theory 

when 1n =  as we shall see with the example of the double pendulum.  

7. Motivating Examples  

We present a few examples organized in such a way they end with totally similar 
diagrams and open domains for future research as well as test examples for the 
use of computer algebra.  

EXAMPLE 7.1: (Example 2.1 revisited) With 3, 1m n= =  and a constant pa-
rameter a, let us consider the formally surjective first order operator:  

( ) ( )1 2 3 1 2 3 1 1 2 3 2
1 : , , = ,d a d d dη η η η η η ζ η η η ζ→ − − − + =  

Multiplying on the left by two test functions ( )1 2,λ λ  and integrating by 
parts, we obtain:  

( ) ( ) ( )1 2 1 2 1 1 2 2 1 2 3
1 : , , ,ad d a d d dλ λ λ λ µ λ λ µ λ λ µ→ − + = − + = − =  

In order to look for the CC of this operator, we obtain first  
1 2 1 2 3aλ λ µ µ µ− + = + + 1 2 1 2 3ad d d d dλ λ µ µ µ⇒ − + = + +  
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( ) ( )11a d jλ µ⇒ − ∈ . Hence, ( )11a d jλ µ≠ ⇒ ∈  and thus ( )10a jλ µ≠ ⇒ ∈ . 
Substituting when 0,1a ≠ , we obtain therefore the second order CC operator:  

( ) ( )1 2 3 2 1 2 2 2 3 1 2 3: , ,ad d d d ad d aµ µ µ µ µ µ µ µ µ ν→ + + − − − =  

Multiplying on the left by a test function ξ  and integrating by parts, we ob-
tain the second order injective parametrization:  

( )
( ) ( )

2 1 2 2 2 3

1 2 3

: , ,

1 1

d ad d d d a

a a a a

ξ ξ ξ η ξ ξ η ξ ξ η

ξ η η η

→ + = + = − =

⇒ − = − + −


 

We have the long exact sequence and its adjoint sequence which is also exact:  

( ) ( )

1

1

2 1

2 1

0 0

0 0
ad ad

ξ η ζ

ν µ λ

→ → → →

← ← ← →



 

 

At no moment one has to decide about the choice of inputs and outputs and 
we advise the reader to effect ANY CHOICE for applying Kalman test.  

We end this example showing that the same procedure can be followed with a 
variable coefficient ( )a a x=  contrary to any tentative using the Kalman test.  

Indeed, we obtain easily by subtraction 1 1 0d aλ λ− = , 2 2 0dλ λ− = ,  
1 2 2 10 0d aλ λ λ λ− = ⇒ − =  and thus by elimination ( )2 1 0a a a λ∂ + − =  with 

1 20 0λ λ= ⇒ = .  
It follows that the system is controllable if and only if 2 0a a a∂ + − ≠  (Ric-

cati equation).  
Of course ( )1 0a cst a a= ⇒ − ≠  in a coherent way.  
EXAMPLE 7.2: (Bose conjecture) With 3m n= = , let M1 be defined by the 

two PD equations with jet notations 1 3 2 3
12 3 0y y yζ ≡ − − = , 2 3 1

22 3 0y yζ ≡ − = . 
This system is not formally integrable and crossed derivatives provide at once 
the new second order equation 2 1 2 1 3

1 2 23 13 2 0y y yζ ζ− ≡ − + = . The reader could 
spend hours in order to find out the generating torsion element 2 1 1

22 12z y y y= − +  
that satisfies the autonomous PD equation 3 0z = . We shall find it by using only 
the parametrization test and its corollary. For this, let us multiply on the left the 
first by the test function 1λ , the second by the test function 2λ , sum and inte-
grate by parts. The adjoint operator is:  

1 2 1
3

2 1 2
3

3 2 1 1 3
22 12

1 2 3
1 2 3
1 2

y d
y d
y d d

λ µ
λ µ
λ λ λ µ

 → =


→ =
 → + − = •

 

The only CC is 3 2 2 1
3 12 22 0d d dν µ µ µ µ≡ − + − + = . By double duality, we ob-

tain:  
1 1

22
2 2

12
3 3

3

d y
d y
d y

µ φ
µ φ φ
µ φ

 → =


→ − =
 → =
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As the left system is not formally integrable, using crossed derivatives on the 
two first equations, we obtain 1 2 2

11 12y y yφ = − −  and thus at least the two CC 
([10], Example 5.27, p 219):  

2 1 1 2 1 1 2 1 2 3
22 12 11 12 123 113 30 0z y y y y y y yζ ζ ζ≡ − + = − − ≡ − + + =  

However, such a system is quite far from being even formally integrable and 
we may not be sure to have generating CC indeed. Hence, we must transform 
the previous system for φ  to an involutive system because no information on 
generating CC can be known without achieving the PP procedure. The first 
point is to notice that the parametrization is injective and that the corresponding 
involutive operator must be 2j  in the following diagram using jet notations:  

3
33 3

3
23 2

1
22

3
13 1

1 2
12 11 12

1 2 2
11 1111 1112 11

3
3

1 2
2 1 2

1 2 2
1 111 112 1

1 2 2
11 12

1 2 3
1 2
1 2
1
1
1

y
y
y
y
y y
y y y
y
y y
y y y
y y y

φ
φ
φ
φ
φ
φ
φ
φ
φ
φ

 =
 •=
 •=


• •=
 • •= −
 • •= − −
 • • •=


• • •= −
 • • •= − −

• • • = − −

 

As the generating CC of 2j  are produced by the first order operator D1, we 
can wait for a fourth order system for y, at least a third order system. In fact, 
though this not evident at at first sight, the solution we gave in 2001 of the Bose 
conjecture implies that the only two generating CC for the torsion-free differen-
tial module ( )1 1M t M  are the two previous ones. For example, we have:  

( ) ( )2 1 2 3 2 1 1 2 1 3
2 123 113 3 13 22 12 23 13 2 0d y y y y d y y y y y y− + + − − + = − + =  

( ) ( )1 2 1 2 1 1
2 2 22 2 1 2 22 12 0d d y y y y y yφ φ− = − − = − − + =  

This result points out the importance of the Spencer operator in actual prac-
tice and we conclude with the diagram:  

( )

( ) ( )

( )
( )

( )

1

1

1

1 2

1 2 3 1 2

2 2

1 2 3

2 2

, ,

0 , , ,

0 , ,
ad ad

z

y y y

ζ ζ

φ ζ ζ

ν µ µ µ λ

′

→ → →

← ← ←





 



 

EXAMPLE 7.3 (RLC electrical circuit) As we shall prove below, we do believe 
that the standard control theory of electrical circuits does not allow at all to 
study the structure of the various underlying differential modules defined by the 
corresponding systems (torsion submodules, extension modules, resolutions, …), 
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in particular if some of the RLC components depend on time.  
Let us consider as in ([6], p 576) a RLC electrical circuit made up by a battery 

with voltage u delivering a current y to a parallel subsystem with a branch con-
taining a capacity C with voltage x1 between its two plates and a resistance R1 
while the other branch, crossed by a current x2, is containing a coil L and a resis-
tance R2. The three corresponding OD equations are easily seen to be:  

1 1 2 2 1 2 1 2
1 2

1 1

1 1, ,R Cdx x u Ldx R x u Cdx x y x x u
R R

+ = + = + = = − + +  

Such a system can be set up at once in the standard matrix form x Ax Bu= + , 
y Cx Du= +  but we shall avoid the corresponding Kalman criterion that could 

not be used if 1 2, ,R R L  or C should depend on time. The two first OD equa-
tions are defining a differential module N over the differential field  

( )1 2, , ,K R R L C=  while the elimination of ( )1 2,x x  is providing the input 
submodule Du L N= ⊂  and the output submodule Dy M N= ⊂  with 
( ),L M N⊆ . However, nothing can be said as long as the PP procedure has not 
been achieved but it has never been used in control theory, in particular for elec-
trical circuit. In the present situation, we have to distinguish carefully between 
two cases (See [29] for other explicit examples):  
 If 1 2R R C L≠ , we have a single second order CC for ( ),u y  and the the 

system is observable, that is we have indeed the strict equality ( ),L M N=  
(Hint: We let the reader check this fact with 1 1R C L= = = , 2 2R =  and get 

2 23 2 3 0d y dy y d u du u+ + − − − =  which is controllable).  
 If 1 2R R C L= , we have only a single first order equation  

2 2 0Ly R y R Cu u+ − − =  . Multiplying by a test function λ  and integrating 
by parts, we have to solve the two equations 2 | 0Ld R mabdaλ− − + =  and 

2 0R Cd ambdaλ− = . Hence, this equation is controllable if and only if 
( )2

2L R C≠ , thus 1 2R R≠ , and we have the strict inclusion ( ),L M N⊂  
(Hint: Choose 1 2 1R R L C= = = =  and get 2 0d y y du uΦ ≡ + − − =  which 
is not controllable because z y u= −  is a torsion element with 0dz z+ = ).  

Though it is already quite difficult to find such examples, there is an even 
more striking fact. Indeed, if we consider only the two first equations for 
( )1 2, ,x x u , we have a formally surjective first order operator   defined over K. 
Taking into account the intrinsic definition of controllability which is supersed-
ing Kalman’s one (again because it allows to treat time depending coefficients as 
well), we let the reader check that the corresponding system is controllable if and 
only if the first order operator ( )ad   is injective. Indeed, multiplying the first 
OD equation by a test function 1λ  and the second by 2λ , we get for the kernel 
of the adjoint operator:  

1 1 1 2 2 2 1 2
1 20, 0, 0x R Cd x Ld R uλ λ λ λ λ λ→ − + = → − + = → + =  

This system is clearly not formally integrable because we obtain by elimina-
tion 1 2

1 2 0L R R Cλ λ+ =  and thus 0λ =  iff 1 2R R C L≠  which is the only con-
dition insuring that ( ) 0t N =  a result that must be compared with the Kalman 
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procedure.  
Finally, we have to study the differential correspondence between ( )1 2,x x  

and ( ),u y , that is to eliminate ( )1 2,x x  in order to find the resolvent system 
for ( ),u y . First of all, we have 1 2

1 1R y x R x u= − + +  and obtain successively:  

1 2 1 21 2 1
1 1 1

1 1

1 1R R RR dy dx R dx du R dy x x du u u
R C L R C L

= − + + ⇒ = − + − +  

The determinant of this linear system with respect to ( )1 2,x x  is vanishing if 
and only if 1 1R R C L= . In this case, eliminating ( )1 2,x x  by linear combination 
provides the only single first order OD equation for defining ( ),L M  by the 
differential residue ( )Dy Du D+ Φ  and ( )1 2,x x  cannot be recovered from 
( ),u y . Otherwise, we may exhibit 1x  and 2x  separately in order to find the 
second order resolvent system for ( ),u y  (See [6] for other examples).  

As noticed in [5] for the Backlund problem, we point out the fact that the best 
way to study a differential correspondence is to apply the PP procedure to the 
system in solved form:  

2 2 1 1 2 12

1 1 1 1

1 1 1 1 1, ,Rdx x u dx x x x y u
L L R C R C R R

+ = = = − = − . 

These new results could be extended to time dependent electrical components 
and open a large domain for future control research on electrical circuits.  

EXAMPLE 7.4: Let 2, 1n m= =  and introduce the trivial vector bundle E 
with local coordinates ( )1 2, ,x x ξ  for a section over the base manifold X with 
local coordinates ( )1 2,x x . Let us consider the linear second order system  

( )2 2R J E⊂  defined by the two linearly independent equations 22 0d ξ = ,  

12 1 0d adξ ξ+ =  where a is an arbitrary constant parameter. Using crossed de-
rivatives, we get the second order system ( )1

2 2R R⊂  defined by the PD equa-
tions 22 0d ξ = , 12 1 0d adξ ξ+ = , 2

1 0a d ξ =  which is easily seen not to be in-
volutive. Framing essential results and Janet tabulars, we have two possibilities 
[29]:  
 0a = : We obtain the following second order homogeneous involutive sys-

tem:  

( ) ( )
2

1 22
2 2 2 1

12

1 2
1

d
R R J E

d

ξ η

ξ η

 == ⊂  •=
 

with the only first order homogeneous involutive CC 2 1
1 2 0d dη η− =  leading to 

the Janet sequence:  
1

0 12 1
0 0E F F→Θ→ → → →



. 

We let the reader check as an easy exercise that ( )ad   which is of order 2 
does not generate the CC of ( )1ad   which is of order 1.  
 0a ≠ : We obtain the second order system ( )1

2R  defined by 22 0d ξ = ,  

12 0d ξ = , 1 0d ξ =  with a strict inclusion ( )1
2 2R R⊂  because 3 4< . We may 

define 2 1 1
1 2d d aη η η η= − +  and obtain the involutive and finite type system 

in δ-regular coordinates:  
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( ) ( )

2
22

1
12

2
2 2

11 12

1 2

1 2
1

1

1 1

1

d

d
a

R J E
d d

a

d
a

ξ η

ξ η η

ξ η

ξ η

 =     = − •   ⊂   •=     • •=   

 

Counting the dimensions, we have the following strict inclusions by compar-
ing the dimensions:  

( )(2) 1)
2 2 2 2 , 2 3 4 6R R R J E⊂ ⊂ ⊂ < < < . 

We have proved symbol 2 rg +  is involutive with ( )2 1rdim g + = , 0r∀ ≥  and 
that ( )2 4rdim R + = , 0r∀ ≥ .  

After differentiating twice, we could be waiting for CC of order 3. However, 
we obtain the 4 CC:  

( )

1 2 1
2 2 1 12 1 12

1
2 1 12 2

1 1 10, 0,

1 1 10, 0

d d d d d d
a aa

d d d
aa a

η η η η η η

η η η η η

− − = − + =

− + = − =
 

The last CC that we shall call “identity to zero” must not be taking into ac-
count. The second CC is just the derivative with respect to 1x  of the third CC 
which amounts to  

( ) ( )2 1 1 2 1 2 1 1
12 22 2 1 2

2 1 2
12 22 1

0

0

d d ad a a d d a

d d ad

η η η η η η η

η η η

− + − + − + =

⇔ − + =
 

which is a second order CC amounting to the first. Hence we get the only for-
mally surjective generating CC operator:  

( )1 2 2 1 2
1 12 22 1: , d d adη η η η η ζ→ − + =  

As a byproduct we have the exact sequences 0r∀ ≥ :  

( ) ( ) ( )4 4 2 0 10 0r r r rR J E J F J F+ + +→ → → → →  

Such a result can be checked directly through the identity:  

( )( ) ( )( ) ( )( )4 5 6 2 2 3 4 2 1 2 2 0r r r r r r− + + + + + − + + =  

We obtain therefore the formally exact sequence we were looking for, namely:  
1

0 12 2
0 0E F F→Θ→ → → →


 

The surprising fact is that, in this case, ( )ad   generates the CC of ( )1ad  . 
Indeed, multiplying by the Lagrange multiplier test function λ  and integrating 
by parts, we obtain the second order operator:  

( ) ( )1 2
1 22 12 1: ,ad d d adλ λ µ λ λ µ→ − = − =  

and thus 2 1 2 2
1 1 2a d d d aλ µ µ µ− = + + . Substituting, we finally get the only 

second order CC operator:  

( ) ( )1 2 1 2 1
12 22 1: ,ad d d adµ µ µ µ µ ν→ + − =  
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We have the long exact sequence and its adjoint sequence which is also exact:  

( ) ( )

1

1

2 2

2 2

1 2 1 0

0 1 2 1
ad ad

→ → →

← ← ←



 

 

Contrary to what happens in OD control theory, in the present situation with 
2n = , 1  may be formally surjective and may admit a parametrization but its 

adjoint may not be injective.  
As in Example 7.1, we may also suppose that ( )1 2,a a x x=  is a variable coef-

ficient in a differential field K. In that case, the PP procedure brings the first or-
der PD equation ( )2

2 1 0a a d ξ∂ − =  and we are facing two cases. Indeed, if the 
Riccati PD equation 2

2 0a a∂ − =  is satisfied, the initial system is involutive. 
However, if we have 2

2 0a a∂ − ≠ , the PP procedure produces 1 0d ξ =  and the 
system 22 0ξ = , 12 0ξ = , 11 0ξ = , 1 0ξ =  is involutive with a zero symbol. We 
notice that this new system does not depend any longer on a but the general sit-
uation could become quite tricky… a reason for which it has never been consi-
dered in PD control theory.  

EXAMPLE 7.5: The following example illustrates the concept of parametriza-
tion, showing in particular that different parametrizations may exist that may 
not be minimum parametrizations.  

Let us consider the first order operator with two independent variables ( )1 2,x x :  

( )1 2 1 2 2 2
1 2 1: , d d xη η η η η ζ→ − + =  

The ring of differential operators involved is [ ]1 2,D K d d=  with  

( ) ( )1 2,K x x x= =  . Multiplying on the left by a test function λ  and inte-
grating by parts, we get the adjoint operator:  

( ) ( )1 2 2
1 2 1: ,ad d d xλ λ µ λ λ µ→ − = + =  

Using crossed derivatives, this operator is injective because  
2 1 2 1

2 1d d xλ µ µ µ= + +  and we even obtain a lift λ µ λ→ → . Substituting, we 
get ( ) ( ) ( )1 2 1 2: , ,ad µ µ ν ν→ :  

( )

2 1 2 1 1 1
22 12 2

22 1 2 1 2 2 2 1 2 2
12 11 1 2

2 ,

2

d d x d

d d x d x d x

µ µ µ µ ν

µ µ µ µ µ µ ν

+ + + =

+ + + + − =
 

allowing to define a second order operator   by using the fact that  
( )( )ad ad =  . This operator is involutive and the only corresponding gene-

rating CC is 2 1 2 1
2 1 0d d xν ν ν− − = . Therefore 2ν  is differentially dependent 

on 1ν  but 1ν  is also differentially dependent on 2ν . Multiplying on the left by 
a test function θ  and integrating by parts, the corresponding adjoint operator 
is:  

( )2 1 2
1 1 2: ,d x dθ θ θ ξ θ ξ− → − = − =  

https://doi.org/10.4236/apm.2024.142004


J.-F. Pommaret 
 

 

DOI: 10.4236/apm.2024.142004 81 Advances in Pure Mathematics 
 

Multiplying now the first equation of ( )ad   by the test function 1ξ , the 
second equation by the test function 2ξ , adding and integrating by parts, we get 
the second order operator:  

( ) ( )

1 2 2 2 2 2
22 12 21 2

21 2 2 1 2 2 1 2 2 1
12 11 2 1

2
: ,

2

d d x d

d d x d x d x

ξ ξ ξ ξ η
ξ ξ

ξ ξ ξ ξ ξ ξ η

 + − − =→ 
+ − − + + =

  

which is easily seen to be a parametrization of 1 . This operator is involutive 
and the kernel of this parametrization has differential rank equal to 1 because 

1ξ  or 2ξ  can be given arbitrarily.  
We can now consider each component of ξ  separately. Keeping for example 

1ξ ξ=  while setting 2 0ξ = , we get the first second order minimal parametri-
zation  

( )2 2 1
22 12 2,d d x dξ ξ η ξ ξ ξ η→ = − + =  

This system is again involutive and the parametrization is minimal because 
the kernel of this parametrization has differential rank equal to 0. With a similar 
comment, setting now 1 0ξ =  while keeping 2ξ ξ ′= , we get the second second 
order minimal parametrization:  

( )( )22 2 1 2 2
11 1 12 22 , 2d x d x d x dξ ξ ξ ξ η ξ ξ ξ η′ ′ ′ ′ ′ ′ ′→ − + = − − =  

which is again easily seen to be involutive by exchanging 1x  with 2x .  
With again a similar comment, setting now 1

1dξ φ= , 2 2dξ φ= −  in the ca-
nonical parametrization, we obtain the third different second order minimal pa-
rametrization:  

( )( )22 2 2 2 1
22 2 12 2 12 ,x d d x d x d dφ φ φ η φ φ φ η→ + = − + =  

We have the long exact sequence and its adjoint sequence which is also exact:  

( ) ( ) ( )

1 1

1 1

1 2 1

1 2 1

0 1 2 2 1 0

0 1 2 2 1 0
ad ad ad

−

−

→ → → → →

← ← ← ← ←

 

  

 

We notice that 1  is parametrized by   which is again parametrized by 

1− , exactly like div is parametrized by curl which is again parametrized by grad 
in classical vector geometry. In the present example, one can prove that there is 
an isomorphism ( )( )1 1, ,D DM hom hom M D D  and M1 is called a “reflexive” 
differential module (See [10], p 200 for more details).  

EXAMPLE 7.6: (Contact transformations): With 3m n= = , 1q = ,  
( ) ( )1 2 3, ,K x x x x= =  , we may introduce the 1-form 1 3 2 *dx x dx Tα = − ∈  

and consider the Lie pseudogroup of transformations preserving α  up to a 
function factor, defined by ( ) ( ) ( )1

1j f xα ρ α− =  that is to say  
( )( ) ( ) ( ) ( )k

k i if x f x x xα ρ α∂ = . Also,  
( ) ( ) ( )11 2 3 2

1d dx dx dx dx j f dx x dxα α ρ−∧ = ∧ ∧ = ⇒ = . Eliminating the factor 
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( )xρ  and linearizing at the identity, we obtain a first order system of infinite-
simal Lie equations which is not even formally integrable and must use the PP 
procedure to get an involutive system with corresponding Janet tabular:  

3 2 1 3 2 3
3 2 1 1

1 3 2 2
3 3

1 3 2 3 1 3 2 2 3 1
2 2 1 1

2 1 2 3
1 2 3
1 2( )

x

x

x x x

ξ ξ ξ ξ η

ξ ξ η

ξ ξ ξ ξ ξ η

∂ + ∂ − ∂ + ∂ =
∂ − ∂ =
 •∂ − ∂ + ∂ − ∂ − =

  

There is thus one CC of order 1 described by the formally surjective first order 
operator 1 :  

1 2 3 2 3
1 3 2 1d d x dη η η η ζ− − + =  

Multiplying ( )1 2 3, ,η η η  by the test functions ( )1 2 3, ,µ µ µ  and integrating 
by parts, we obtain (by chance!) the involutive operator:  

( )

3 1 3
3

2 3 1 1 3 1
3 1 2 1

3 3 3 2 2 3 1
2 1

1 2 3
1 2 3
1 2( )

ad x

x x

µ µ ν

µ µ µ µ ν

µ µ µ ν ν

∂ + = −
∂ + ∂ + ∂ − ∂ = −
 •∂ + ∂ − = − +

  

providing the only first order CC:  

( ) ( )1 2 3 3 1 1 2 3 3 3
1 3 3 2 1: , , 2 0ad x xν ν ν ν ν ν ν ν− → ∂ + + ∂ − ∂ − ∂ =  

and the classical injective parametrization:  

3 1 2 3 3 1 3 2
1 3 3 2 1, ,x x xφ φ ξ φ ξ φ φ ξ ξ ξ φ− − ∂ + = − ∂ = ∂ + ∂ = ⇒ − =  

Using the Vessiot structure equations [31], we notice that α  is not invariant 
by the contact Lie pseudogroup. The associated invariant geometric object is a 
1-form density ω  leading to the system of infinitesimal Lie equations in Me-
dolaghi form:  

( )( ) 1 0
2

r r r
i r i i r r ii

ξ ω ω ξ ω ξ ξ ωΩ ≡ ≡ ∂ − ∂ + ∂ =  

which becomes formally integrable if and only if the following only Vessiot 
structure equation, still not known today, is satisfied:  

( ) ( ) ( )1 2 3 3 2 2 3 1 1 3 3 1 2 2 3 cω ω ω ω ω ω ω ω ω∂ − ∂ + ∂ − ∂ + ∂ − ∂ =  

with the only structure constant c. In the present contact situation, we may 
choose ( )31, ,0xω = −  as we did and get 1c =  but we may also choose  

( )1,0,0ω =  and get 0c = . This new choices is also bringing an involutive sys-
tem:  

3 2 1 1 1
1 3 2 1 2 2 3 32 = 0, 0, 0ξ ξ ξ ξ ξ− Ω ≡ ∂ + ∂ − ∂ Ω ≡ ∂ = Ω ≡ ∂ =  

having the only CC 2 3 3 2 0d dΩ − Ω = . However, 1ξ  is indeed a torsion element 
and one cannot find a parametrization. Such an example is thus proving that the 
existence of a parametrization for systems of Lie equations highly depends on 
the Vessiot structure constants.  
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EXAMPLE 7.7: (Double pendulum) Many examples can be found in classical 
ordinary differential control theory because it is known that a linear control sys-
tem is controllable if and only if it is parametrizable (See [6] [10] for more de-
tails and examples). In our opinion, the best and simplest one is the so-called 
double pendulum in which a rigid bar is able to move horizontally with refer-
ence position x and we attach two pendulums with respective length 1l  and 2l  
making the (small) angles 1θ  and 2θ  with the vertical, the corresponding 
control system does not depend on the mass of each pendulum and the two equ-
ations easily follow by projection from the Newton laws:  

2 2 1 1 2 2 2 2
1 1 20 0, 0d x l d g d x l d gη θ θ θ θ= ⇔ + + = + + =  

where g is the gravity. A first result, still not acknowledged by the control com-
munity, is to prove that this control system is controllable if and only if 1 2l l≠  
without using a tedious computation through the standard Kalman test but, 
equivalently, to prove that the corresponding second order operator ( )1ad   is 
injective. Though this is not evident, such a result comes from the fact D is a 
principal ideal ring when 1n =  and thus, if the differential module M1 is tor-
sion-free, then M1 is also free and has a basis allowing to split the short exact 
resolution 

12 3
10 0D D M→ → → →



 with 1M D  in this case (See [10] p 
204-205 or [6] for details). Hence, multiplying on the left the first OD equation 
by 1λ , the second by 2λ , then adding and integrating by parts, we get:  

( )

2 1 2 2 1

1 2 1 1 2
1 1

2 2 2 2 3
2

x d d
ad l d g

l d g

λ λ µ
λ µ θ λ λ µ

θ λ λ µ

 → + =


= ⇔ → + =
 → + =

  

The main problem is that the operator ( )1ad   is not formally integrable 
because we have:  

( )1 2 2 3 1
2 1 2 1 1 2g l l l l l lλ λ µ µ µ+ = + −  

and is thus injective if and only if 1 2l l≠  because, differentiating twice this equ-
ation, we also get:  

( ) ( ) ( )1 2
2 1 1 2 2l l l l jλ λ µ+ ∈  

Hence, if 1 2l l≠ , we finally obtain ( )2jλ µ∈  and, after substitution, a single 
fourth order CC for µ  showing that ( )ad   is indeed a fourth order operator, 
a result not evident indeed at first sight. It follows that we have thus been able to 
work out the parametrizing operator   of order 4, namely:  

( )4 2 2
1 2 1 2

4 2
2 1

4 2
1 2

l l d g l l d g x

l d gd

l d gd

φ φ φ

φ η φ φ θ

φ φ θ

− − + − =
= ⇔ + =
 + =

  

This parametrization is injective iff 1 2l l≠  because we have successively with 
0g ≠ :  
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( )2 2
2 1 1 20 0 0 0l d g l d g g l lφ φ φ φ φ φ+ = ⇒ + = ⇒ − = ⇒ =  

We have the long exact sequence and its adjoint sequence which is also exact:  

( ) ( )

1

1

4 2

4 2

0 1 3 2 0

0 1 3 2 0
ad ad

→ → → →

← ← ← ←



 

 

We finally consider the case 1 2l l l= = . Substracting the two OD equations, 
we discover that 1 2z θ θ= −  is an observable quantity that satisfies the auto-
nomous system 2 0ld z gz+ =  existing for a single pendulum. It follows that z is 
a torsion element and the system cannot be controllable. When  

1 20z θ θ θ= ⇒ = =  we let the reader prove that the remaining OD equation 
2 2 0d x ld gθ θ+ + =  can be parametrized by 2ld g xξ ξ+ = , 2d ξ θ− = .  
Comparing this approach to the standard Kalman procedure that can be 

found in all textbooks, such an example is proving that the mathematical foun-
dations of control theory must be entirely revisited because controllability is a 
built in property of a control system, not depending on the choice of inputs and 
outputs among the system variables.  

At this stage of the reading, we invite the reader to realize this experiment 
with a few dollars, check how the controllability depends on the lengths and 
wonder how this example may have ANYTHING to do with the Cosserat, Eins-
tein or Maxwell equations.  

EXAMPLE 7.8: (Einstein equations) A less academic and more difficult ex-
ample is proving that Einstein equations cannot be parametrized contrary to 
Maxwell equations. The Einstein operator is self-adjoint, that is  

( )ad Einstein Einstein=  (a crucial property indeed, for which you will not find 
any reference!!!), we obtain successively [10] [32]:  

( ) ( )1 1

1

1 , 2 , 3 ,

4 , 5

D Einstein ad Einstein ad Cauchy

Killing Riemann

= = =

′= =

 

 
 

and we obtain thus the strict symbolic inclusion 1 1′⊂   by counting the 
number of CC as ( ) ( )2 21 2 1 12n n n n+ ≤ − , 3n∀ ≥  along the following dia-
gram and invite the reader to do it for 3n =  or 4n = :  

( ) ( )( )

( ) ( )

( ) ( )

2 2 2 21 1 2

12 24

1 1
0

2 2

1 1
0

2 2

Riemann Bianchi

Killing Einstein div

Cauchy Einstein

n n n n n

n n n n
n n

n n n n
n

− − −
→

↓ ↓

+ +
→ → → →

+ +
← ← ←



 

https://doi.org/10.4236/apm.2024.142004


J.-F. Pommaret 
 

 

DOI: 10.4236/apm.2024.142004 85 Advances in Pure Mathematics 
 

As a byproduct, we are facing only two possibilities, both leading to a contra-
diction:  

1) If we use the operator * *
2 2

Einstein
S T S T→  in the “geometrical” setting of H. 

Poincaré, the *
2S T  on the left has indeed something to do with the perturba-

tion of the metric but the *
2S T  on the right has strictly nothing to do with the 

stress.  
2) If we use the adjoint operator 

( )
* *

2 2

ad Einstein
n nT S T T S T∧ ⊗ ← ∧ ⊗  in the 

“physical” setting of H. Poincaré, then *
2

nT S T∧ ⊗  on the left has of course 
something to do with the stress but the *

2
nT S T∧ ⊗  on the right has strictly 

nothing to do with the perturbation of a metric.  
It follows that the Cauchy and Killing operators (left side) has strictly nothing 

to do with the Bianchi and thus div operators (right side). In addition, the 10 
stress potentials are no longer tensors but tensor densities and have nothing to 
do with the perturbation of the metric. According to the last corollary, the 
20 10 10− =  new CC are generating the torsion submodule of the differential 
module defined by the Einstein operator. One can prove that such a basis is 
made by the 10 independent components of the Weyl tensor, each one being 
killed by the second order Dalembertian, a result leading to the so-called Lich-
nerowicz waves (in France!) [33] and totally unknown in this differential module 
framework. With more details, there exists a second order operator   such 
that we have an identity:  

Weyl Ricci=   

The specific cases 2n =  and 3n =  will be considered later on.  
THEOREM 7.9: the Einstein operator is self-adjoint (with a slight abuse of 

language), where by Einstein operator we mean the linearization of the Einstein 
tensor over the locally constant Minkowski metric ω .  

Proof: First of all, the linearizations of the Christoffel symbols k
ijγ  and the 

Riemann tensor ,
k
l ijρ  are:  

( ) ,
1 .
2

k kr k k k
ij i rj j ir r ij l ij i lj j lid d d R d dωΓ = Ω + Ω − Ω ⇒ = Γ − Γ  

Setting rs
rsωΩ = Ω , we deduce 

1
2

r
ri idΓ = Ω  and get:  

( )2 rs rs rs rs ij
ij rs ij ij ri sj rj si rs ri sjR d d d d R d dω ω ω ω ω= Ω + Ω − Ω + Ω ⇒ = Ω− Ω . 

Setting 
1
2ij ij ijE R Rω= −  with rs

rsR Rω= , we obtain the linear Einstein op-

erator (6 terms):  

( ) ( )2 rs rs rs ru sv
ij rs ij ij ri sj rj si ij rs rs uvE d d d d d dω ω ω ω ω ω= Ω + Ω − Ω + Ω − Ω − Ω . 

It is essential to notice that the Ricci operator is not self-adjoint because we 
have for example:  

( ) ( )
ad

ij rs rs ij ij rs
ij rs ij rs rs ijd d dλ ω ω λ ω λΩ → Ω = Ω  

and ad provides a term appearing in ij Rω−  but not in 2 ijR .  
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After two integrations by parts, we obtain successively:  

( )rs ij ij rs ij ij
ij rs ij sj ri si rj

rs ij ru sv ij
ij rs ij uv rs

d d d d

d d

ω λ λ ω λ λ

ω ω λ ω ω ω λ

Ω +Ω − Ω +Ω

− Ω + Ω
. 

Setting ij
ijλ ω λ= , we may change the indices in order to factor out ijΩ  and 

finally get:  

( )rs ij ij rs ri sj rj si ij rs ri sj
rs rs rs rs rs rsd d d d d dω λ ω λ ω λ ω λ ω ω λ ω ω λ+ − + − +  

the 6 terms being exchanged between themselves with  
( ) ( )1,2,3,4,5,6 1,6,3,4,5,2→ .  

  
EXAMPLE 7.10: When 3n =  and the Euclidean metric, we obtain:  

( )
( )

11 22 11 33 22 11 22 33 33 11 33 22

12 12 13 13 23 232

R d d d d d d

d d d

= Ω + Ω + Ω + Ω + Ω + Ω

− Ω + Ω + Ω
 

12 12 33 12 12 33 13 23 23 132 2R E d d d d= = Ω + Ω − Ω − Ω  

( ) ( ) ( )11 22 33 11 11 22 33 12 12 13 132 2R d d d d d= + Ω + Ω +Ω − Ω + Ω  

11 22 33 33 22 23 232 2E d d d− = Ω + Ω − Ω  

We let the reader check that eight to twelve terms are disappearing each time, 
a reason for which nobody saw that the Einstein equations had been written ex-
actly (up to sign) by E. Beltrami in 1892 in order to parametrize the Cauchy 
stress equations while using 6 stress functions ij jiφ φ=  in place of ij jiΩ =Ω , 25 
years before Einstein ([1] [7] [23] [28]). The comparison needs no comment!  

EXAMPLE 7.11 (Maxwell equations) When 4n = , a similar comment can 
be done for electromagnetism through the exterior derivative as the first set of 
Maxwell equations 2 * 3 *:d T T∧ → ∧  can be parametrized by the EM potential 
1-form with * 2 *: :d T T A dA F→∧ → = , while the second set of Maxwell equa-
tions (adjoint of this parametrization) ( ) 4 * 2 4 :ad d T T T= ∧ ⊗∧ →∧ ⊗ →   
can be parametrized by the EM pseudo-potential  

( ) 4 * 3 4 * 2:ad d T T T T∧ ⊗∧ →∧ ⊗∧  and we have the exact Poincaré sequence 
and its adjoint sequence which is also exact:  

( ) ( )

1 1

1 1

4 6 4

4 6 4

d d

ad d ad d

A F→

→ →

← ←

← 

 

These results are even strengthening the common conformal origin of elec-
tromagnetism and gravitation along the dream of H. Weyl.  

However, these purely mathematical results question the origin and existence 
of gravitational waves.  
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8. Riemannian Geometry Revisited  

Linearizing the Ricci tensor ijρ  over the Minkowski metric ω , we obtain the 
usual second order homogeneous Ricci operator RΩ→  with 4 terms, which is 
not self-adjoint [32]:  

( )2 2rs
ij rs ij ij rs ri sj sj ri jiR d d d d Rω= Ω + Ω − Ω − Ω =  

( ) ( )ij ij ru sv
ij ij rs uvtr R R d tr dω ω ω ω= = Ω − Ω  

We may define the Einstein operator by setting ( )1
2ij ij ijE R tr Rω= −  and ob-

tain the 6 terms, which, surprisingly, is self-adjoint [32]:  

( ) ( )2 rs rs uv ru sv
ij rs ij ij rs ri sj sj ri ij rs uv rs uvE d d d d d dω ω ω ω ω ω= Ω + Ω − Ω − Ω − Ω − Ω . 

We have the (locally exact) differential sequence of operators acting on sec-
tions of vector bundles where the order of an operator is written under its ar-
row.:  

*
2 1 21 2 1

Killing Riemann Bianchi
T S T F F→ → →  

( ) ( ) ( )( )
1 22 2 2 21 2 1 12 1 2 24n n n n n n n n→ + → − → − −
 

. 

Our purpose is now to study the differential sequence onto which its right part 
is projecting:  

* * *
2 22 1

0
Einstein div

S T S T T→ → →  

( ) ( )1 2 1 2 0n n n n n+ → + → →  

and the following adjoint sequence where we have set ( )Lanczos ad Bianchi=  
[28]:  

( ) ( ) ( ) ( )*
2 1 2

Cauchy Beltrami Lanczos
ad T ad S T ad F ad F← ← ← . 

In this sequence, if E is a vector bundle over the ground manifold X with di-
mension n, we may introduce the new vector bundle ( ) * *nad E T E= ∧ ⊗  
where *E  is obtained from E by inverting the transition rules exactly like *T  
is obtained from T. We have for example  

( ) * * * 1 *n n nad T T T T T T−= ∧ ⊗ ∧ ⊗ ∧   because *T  is isomorphic to T by 
using the metric ω . The Einstein operator is induced from the Riemann opera-
tor and the div operator matrix is induced from the Bianchi operator by con-
tracting indices. We advise the reader not familiar with the formal theory of sys-
tems or operators to follow the computation in dimension 2n =  with the Airy 
operator, which is the formal adjoint of the Riemann operator, and 3n =  with 
the Beltrami operator which is the formal adjoint of the Riemann operator 
which will be seen to be self-adjoint up to a change of basis. With more details, 
we have:  
 2n = : The stress equations become 11 12

1 2 0d dσ σ+ = , 21 22
1 2 0d dσ σ+ = . 

Their second order parametrization 11
22dσ φ= , 12 21

12dσ σ φ= = − ,  
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22
11dσ φ=  has been provided by George Biddell Airy in 1863 [34] and is 

well known in plane elasticity, for example when constructing a dam (See the 
Introduction of [6]). We get the second order system with Janet tabular:  

11
22

12
12

22
11

0 1 2
0 1

10

d

d

d

σ φ

σ φ

σ φ

 ≡ =
− ≡ = •
 •≡ =

 

which is involutive with one equation of class 2, 2 equations of class 1 and the 2 
corresponding first order CC are just the Cauchy equations. Of course, the Airy 
function (1 term) has absolutely nothing to do with the perturbation of the me-
tric (3 terms). Indeed, when ω  is the Euclidean metric, we may consider the 
only component:  

( ) ( )( ) ( )11 22 11 22 11 11 12 12 22 22

22 11 11 22 12 12

2
2

tr R d d d d d
d d d

= + Ω +Ω − Ω + Ω + Ω

= Ω + Ω − Ω
 

Multiplying by the Airy function φ  and integrating by parts, we discover 
that:  

( ) ( )Airy ad Riemann Riemann ad Airy= ⇔ =  

in the following exact sequence and its exact adjoint sequence:  

1 2

1 2

2 3 1 0

0 2 3 1

Killing Riemann

Cauchy Airy

→ → →

← ← ←

 

 3n = : It is quite more delicate to parametrize the 3 PD equations:  
11 12 13

1 2 3
21 22 23

1 2 3
31 32 33

1 2 3

0,

0,

0

d d d

d d d

d d d

σ σ σ

σ σ σ

σ σ σ

+ + =

+ + =

+ + =

 

A direct computational approach has been provided by Eugenio Beltrami in 
1892 [35] and James Clerk Maxwell in 1870 [36] by introducing the 6 stress 
functions ij jiφ φ=  in the Beltrami parametrization:  

11
33 22 22 33 23 23

12
13 23 23 13 33 12 12 33

13
23 12 12 23 22 13 13 22

22
33 11 11 33 13 13

23
12 13 13 12 23 11 11 23

33
22 11 11 22 12 12

2 0

0

0

2 0

0

2 0

d d d

d d d d

d d d d

d d d

d d d d

d d d

σ φ φ φ

σ φ φ φ φ

σ φ φ φ φ

σ φ φ φ

σ φ φ φ φ

σ φ φ φ

 ≡ + − =


≡ + − − =


≡ + − − =


≡ + − =


≡ + − − =
 ≡ + − =

 

Changing the sign of the second and fifth equations, this system is involutive 
with 3 equations of class 3, 3 equations of class 2 and no equation of class 1. The 
corresponding Janet tabular is:  
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1 2 3

1 2 3

1 2 3

1 2

1 2

1 2

•

•

•

 

The 3 CC are describing the stress equations which admit therefore a parame-
trization… but without any geometric framework, in particular without any 
possibility to imagine that the above second order operator is nothing else but 
the formal adjoint of the Riemann operator, namely the (linearized) Riemann 
tensor with ( )2 2 1 2 6n n − =  independent components when 3n =  [27] [28]. 

However, if Ω is a perturbation of the metric ω , the standard implicit sum-
mation used in continuum mechanics is, when 3n = :  

11 12 13 22 23 33
11 12 13 22 23 33

22 33 11 33 22 11 23 23 11

23 13 12 13 23 12 12 33 12 33 12 12

2 2 2

2

ij
ij

d d d
d d d d

σ σ σ σ σ σ σ

φ φ φ
φ φ φ φ

Ω = Ω + Ω + Ω + Ω + Ω + Ω

= Ω +Ω − Ω +

+Ω +Ω −Ω −Ω +





 

because the stress tensor density σ  is supposed to be symmetric. Integrating by 
parts in order to construct the adjoint operator, we get:  

11 33 22 22 33 23 23

12 13 23 23 13 33 12 12 33

2d d d
d d d d

φ
φ

→ Ω + Ω − Ω

→ Ω + Ω − Ω − Ω
 

and so on. The identifications ( )Beltrami ad Riemann= , ( )Lanczos ad Bianchi=  
in the diagram:  

1 2 1

1 2 1

3 6 6 3 0

0 3 6 6 3

Killing Riemann Bianchi

Cauchy Beltrami Lanczos

→ → → →

← ← ← ←
 

prove that the Cauchy operator has nothing to do with the Bianchi operator [27] 
[28].  

When ω  is the Euclidean metric, the link between the two sequences is es-
tablished by means of the elastic constitutive relations ( )2 2ij ij ijtrσ λ ω µ= Ω + Ω  
with the Lamé elastic constants ( ),λ µ  but mechanicians are usually setting 

2ij ijεΩ = . Using the standard Helmholtz decomposition ξ ϕ ψ= ∇ +∇ ∧
  

  and 
substituting in the dynamical equation 2 2ij j

id d dtσ ρ ξ=  where ρ  is the 
mass per unit volume, we get the longitudinal and transverse wave equations,  

namely 
2

2 0
2

d
dt

ρϕ ϕ
λ µ

∆ − =
+

 and 
2

2 0d
dt

ρψ ψ
µ

∆ − =
  , responsible for earth-

quakes.  
Taking into account the factor 2 involved by multiplying the second, third and 

fifth row by 2, we get the new 6 × 6 operator matrix with rank 3 which is clearly 
self-adjoint:  
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33 23 22

33 23 13 12

23 22 13 12

33 13 11

23 13 12 11

22 12 11

0 0 0 2
0 2 2 0 2 2
0 2 2 2 2 0

0 2 0 0
2 2 2 0 2 0

2 0 0 0

d d d
d d d d

d d d d
d d d

d d d d
d d d

− 
 − − 
 − −
 

− 
 − −
  − 

 

Surprisingly, the Maxwell parametrization is obtained by keeping 11 Aφ = , 

22 Bφ = , 33 Cφ =  while setting 12 23 31 0φ φ φ= = =  in order to obtain the system: 
11

33 22
22

33 11
23

23
33

22 11
13

13
12

12

0
0

0
0

0
0

d B d C
d A d C

d A
d A d B

d B
d C

σ
σ
σ

σ
σ
σ

 ≡ + =


≡ + =
− ≡ =


≡ + =
− ≡ =

− ≡ =

 

This system may not be involutive and no CC can be found “a priori” because 
the coordinate system must be changed. Effecting the linear change of coordi-
nates 1 1x x= , 2 2x x= , 3 3 2 1x x x x= + +  and taking out the bar for simplicity, 
we obtain the involutive system as a Pommaret basis:  

33 13 23 12

33 13

33 23

23 22 13 13 12

23 22 13 12 11

22 22 12 11 11

0 1 2 3
0 1 2 3
0 1 2 3

0 1 2
2 0 1 2

2 0 1 2

d C d C d C d C
d B d B
d A d A
d C d C d C d B d C
d A d C d B d C d C
d A d C d C d C d B

+ + + =
 + =
 + =
 + − − − = •
 − + + − = •


+ − + + = •

 

and the 3 CC obtained just amount to the desired 3 stress equations when com-
ing back to the original system of coordinates. We have thus a minimum para-
metrization. Again, if there is a geometrical background, this change of local 
coordinates is hiding it totally. Moreover, we notice that the stress functions kept 
in the procedure are just the ones on which 33∂  is acting. The reason for such 
an apparently technical choice is related to very general deep arguments in the 
theory of differential modules that the extension modules do not depend on the 
differential sequence used for defining them [20].  

Finally, setting 13 23 33 0φ φ φ= = = , we may even provide the new minimum 
parametrization:  

11
33 22

12
33 12

22
33 11

13
23 12 13 22

23
23 11 13 12

33
22 11 11 22 12 12

0 1 2 3
0 1 2 3

0 1 2 3
1 20
1 20
1 22 0

d

d

d

d d

d d

d d d

σ φ

σ φ

σ φ

σ φ φ

σ φ φ

σ φ φ φ

 ≡ =

− ≡ =
 ≡ =
 •≡ − =
 •− ≡ − =

• ≡ + − =
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PROPOSITION 8.1: The Cauchy operator can be parametrized by the formal 
adjoint of the Ricci operator (4 terms) and the Einstein operator (6 terms) is 
thus useless. The gravitational waves equations are thus nothing else than the 
formal adjoint of the linearized Ricci operator.  

Proof: The Einstein operator EΩ→  is defined by setting ( )1
2ij ij ijE R tr Rω= −   

that we shall write Einstein C Ricci=   where * *
2 2:C S T S T→  is a symmetric 

matrix only depending on ω , which is invertible whenever 3n ≥ . Surprisingly,  

we may also introduce the same linear transformation ( )1:
2

C trωΩ→Ω =Ω− Ω   

and the unknown composite operator : EΩ→Ω→  in such a way that 
Einstein C=   where   is defined by (See [37], 5.1.5 p 134):  

2 rs rs rs ru sv
ij rs ij ri sj sj ri ij rs uvE d d d dω ω ω ω ω ω= Ω − Ω − Ω + Ω . 

Now, introducing the test functions ijλ , we get:  

( )1 1
2 2

ij ij ij rs ij ij
ij ij ij rs ij ijE R tr R R Rλ λ ω λ λ ω ω λ   = − = − =   

   
. 

Integrating by parts while setting as usual rs
rsdω= , we obtain:  

( )rs rs ij sj ri ri sj rs
ij ij ij rs rsd d dλ ω λ ω λ ω λ σ+ − − Ω = Ω . 

Moreover, suppressing the “bar” for simplicity, we have:  

0rs ij rs rs ij sj ri ri sj
r rij rij rij rijd d d d dσ ω λ ω λ ω λ ω λ= + − − = . 

As Einstein is a self-adjoint operator (contrary to the Ricci operator), we have 
the identities:  

( ) ( ) ( ) ( )
( ) ( )

ad Einstein ad C ad Einstein C ad

ad Ricci ad Ricci

= ⇒ =

⇒ = ⇒ =

  

 
. 

Indeed, ( )ad C C=  because C is a symmetric matrix and we know that  
( )ad Einstein Einstein= . Accordingly, the operator ( )ad Ricci  parametrizes 

the Cauchy equations, without any reference to the Einstein operator that cannot 
be obtained by any diagram chasing. The three terms after the Dalembert oper-
ator disappear if we add the differential constraints 0ri

id λ = . When 4n = , we 
finally obtain the adjoint sequences:  

( )

4 10 10

0 4 10 10

Killing Ricci

ad RicciCauchy

→ →

← ← ←

 

without any reference to the Bianchi operator and the induced div operator but 
the upper sequence is not exact because the CC of the Killing operator are gen-
erated by the Riemann operator, not by the Ricci operator as we saw.  

 
REMARK 8.2: In the opinion of the author of this paper who is not an histo-

rian of sciences but a specialist of mathematical physics interested by the analogy 
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existing between electromagnetism (EM), elasticity (EL) and gravitation (GR) by 
using the conformal group of space-time, it is difficult to imagine that Einstein 
could not have been aware of the works of Maxwell and Beltrami on the founda-
tions of EL and tensor calculus. Indeed, not only they were quite famous when 
he started his research work but it must also be noticed that the phenomenolog-
ical law of field-matter couplings (piezzoelectricity, photoelasticity) had been 
discovered by… Maxwell himself.  

In order to extend the classical control concepts of poles and zeros to arbitrary 
n, we need a few more definitions.  

DEFINITION 8.3: The symbol qg  of a given system ( )q qR J E⊂  is 
( )*

q q q qg R S T E J E= ∩ ⊗ ⊂ . With any differential module M we shall associate 
the graded module ( )G gr M=  over the polynomial ring ( ) [ ]gr D K χ  by 
setting 0q qG G∞

== ⊕  with 1q q qG M M +=  and we may also set  

( )* ,q q K qg G hom G K= =  where the symbol 1qg +  is defined by the dual short 
exact sequences with respect to K:  

1

1 1 1 10 0 0 0
q
q

q q q q q qM M G g R R
π +

+ + + +→ → → → ⇔ → → → → . 

PROPOSITION 8.4: The Spencer operator *: q qd R T R+ → ⊗  restricts to 
*

1: q qg T gδ + → ⊗  up to sign and more generally to the so-called δ-sequence of 
Spencer, namely [1] [2]:  

1 * 1 *
1 1

s s s
q r q r q rT g T g T g

δ δ
− ⊗ +

+ + + + −∧ → ∧ ⊗ →∧ ⊗  . 

We denote by ( ) ( ) ( ) ( )s s
q r q q r qB g im Z g kerδ δ+ += ⊆ = , ( )s

q r qH g+  the purely 
algebraic coboundary, cocycle and cohomology bundles at *s

q rT g +∧ ⊗ . The 
cohomology is vanishing for any 0 s n≤ ≤  and for any 0r ≥  when qR  and 
thus qg  is involutive. Also, qg  is said to be s-acyclic if  

( ) ( )1 0, , 0s
q r q q r qH g H g+ += = , 0r∀ ≥ .  
Let ( )q qR J E⊂  be a first order involutive system of order q with no CC of 

order 1. The following diagram allows to compute the number ( )1dim F  of CC 
of order 2:  

( ) ( )

( ) ( )

* *
3 3 2 0 1

3 3 2 0 1

2 2 1 0

0 0 0 0

0 0

0 0

0 0

0 0 0

g S T T S T F F

R J T j F F

R J T J F

↓ ↓ ↓ ↓
→ → ⊗ → ⊗ → →

↓ ↓ ↓
→ → → → →

↓ ↓ ↓ ↓
→ → → →

↓ ↓ ↓



 

We shall apply the previous results to the following inclusion of groups:  

POINCARE GROUP CONFORMAL GROUP⊂  
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that is 10 15<  when 4n =  and our aim is now to explain why the mathemat-
ical structures of electromagnetism and gravitation only depend on the second 
order jets.  

With more details, the Killing system ( )2 2R J T⊂  is defined by the infinite-
simal Lie equations in Medolaghi form with the well known Levi-Civita iso-
morphism ( ) ( )1, jω γ ω  involving the metric ω  with ( ) 0det ω ≠  and the  

corresponding Christoffel symbols ( )1
2

k kr
ij i rj j ir r ijγ ω ω ω ω= ∂ + ∂ − ∂ . replacing 

the partial derivatives of vectors by jet notation, we have the defining system:  

0

0

r r r
ij rj i ir j r ij

k k r k r r k r k
ij rj i ir j ij r r ij

ω ξ ω ξ ξ ω

γ ξ γ ξ γ ξ ξ γ

Ω ≡ + + ∂ =

Γ ≡ + − + ∂ =

. 

We notice that ( ) ( )2 2R R aω ω ω ω= ⇔ = , a cst= , γ γ=  and refer the 
reader to [LAP] for more details about the link between this result and the de-
formation theory of algebraic structures. We also notice that R1 is formally in-
tegrable and thus R2 is involutive if and only if ω  has constant Riemannian 
curvature along the well known result of L. P. Eisenhart in 1926 [31]. The only 
structure constant c appearing in the corresponding Vessiot structure equations 
is such that c c a=  (See also [31] for details). The symbol g1 with  

( ) ( )1 1 2dim g n n= −  is defined by 0r r
rj i ir jω ξ ω ξ+ =  and we have 2 0g = . 

One can find in any GR textbook the fact that the number of components of the 
Riemann tensor is ( ) ( )( ) ( )22 2 2 21 4 1 2 6 1 12n n n n n n n+ − + + = − , thus 20 
when 4n = . As we have the short exact sequence:  

2 * 3 *
10 0T g T T

δ
→ ∧ ⊗ →∧ ⊗ →  

the fact that we have also  
( )( ) ( ) ( )( ) ( )22 2 2 2 2

1 1 1 4 1 2 6 1 12dim H g n n n n n n n= − − − − = −  while chang-
ing “+” to “−” is definitively proving that the foundations of Riemannian geo-
metry must be revisited. The proof can be obtained by applying the δ-map to the 
top row of the preceding diagram as it will be done for the conformal case.  

The conformal system ( )2 2R̂ J T⊂  is defined by the following infinitesimal 
Lie equations:  

( )
( ) ( ) ( )

2r r r
rj i ir j r ij ij

k k r k r r k r k k k kr
ij rj i ri j ij r r ij i j j i ij r

A x

A x A x A x

ω ξ ω ξ ξ ω ω

ξ γ ξ γ ξ γ ξ ξ γ δ δ ω ω

 + + ∂ =


+ + − + ∂ = + −
 

and is involutive if and only if 0i iA A∂ − =  or, equivalently, if ω  has vanish-
ing Weyl tensor.  

Introducing the metric density ( )( )
1

ˆ n
ij ij detω ω ω=  and substituting, we 

obtain the system of (n − 1) (n + 2)/2 linearly independent equations:  

2ˆ ˆ ˆ ˆ ˆ 0r r r r
ij rj i ir j ij r r ijn

ω ξ ω ξ ω ξ ξ ωΩ ≡ + − + ∂ =  

Contracting the first equations by ˆ ijω  we notice that r
rξ  is no longer va-
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nishing. It is essential to notice that the symbols 1ĝ  and 2ĝ  only depend on 
ω  and not on any conformal factor. Hence, we obtain ( ) ( )1ˆ 1 2 1dim g n n= − +   

and 1ĝ  is simply defined by 
2 0r r r

rj i ir j ij rn
ω ξ ω ξ ω ξ+ − =  with now ( )2ˆdim g n= .  

We have proved in [26] that 3ˆ 0g =  when 3n ≥ , that 2ĝ  is 2-acyclic when 
4n ≥  and 3-acyclic when 5n ≥  (These results have been checked by computer 

algebra up to 5n =  [38]).  
When 4n =  and 3 4 5ˆ ˆ ˆ0 0 0g g g= ⇒ = ⇒ =  in the conformal case, we have 

the commutative diagram with exact vertical long δ-sequences but the left one: 

* *
3 3 2 0 1

* * * * *
2 2 0

2 * 2 * * 2 *
1 0

3 * 3 *

0 0 0

ˆ ˆˆ0 0

ˆˆ0 0

ˆˆ0 0

0 0

0 0

g S T T S T F F

T g T S T T T T F

T g T T T T F

T T T T

δ δ δ

δ δ δ

δ δ

↓ ↓ ↓

→ → ⊗ → ⊗ → →
↓ ↓ ↓

→ ⊗ → ⊗ ⊗ → ⊗ ⊗ →
↓ ↓ ↓

→ ∧ ⊗ → ∧ ⊗ ⊗ → ∧ ⊗ →
↓ ↓ ↓

→ ∧ ⊗ = ∧ ⊗ →
↓ ↓

 

0 0

0 80 90 10 0

0 16 160 144 0

0 42 96 54 0

0 16 16 0

0 0

δ δ

δ δ δ

δ δ

↓ ↓
→ → → →

↓ ↓ ↓
→ → → →

↓ ↓ ↓
→ → → →

↓ ↓ ↓
→ = →

↓ ↓

 

A diagonal snake chase proves that ( )2
1 1
ˆ ˆF H g . However, we obtain at once 

( )( )2
1ˆ 16dim B g =  but, in order to prove that the number of components of the 

Weyl tensor is 42 32 10− =  or, equivalently, to prove that  
( )( )2

1ˆ 42 16 26dim Z g = − = , we have to prove that the last map δ in the left 
Weyl δ-sequence is surjective, a result that it is almost impossible to prove in lo-
cal coordinates. Let us prove it by means of circular diagram chasing in the pre-
ceding commutative diagram as follows. Lift any 3 *a T T∈∧ ⊗  to  

2 * *b T T T∈∧ ⊗ ⊗  because the vertical δ-sequence for *
3S T  is exact. Project it 

by the symbol map ( )1
ˆσ Φ  to 2 *

0̂c T F∈∧ ⊗ . Then, lift c to *
0̂d T T F∈ ⊗ ⊗  

that we may lift backwards horizontally to * *
2e T S T T∈ ⊗ ⊗  to which we may 

apply δ to obtain 2 * *f T T T∈∧ ⊗ ⊗ . By commutativity, both f and b map to c 
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and the difference f b−  maps thus to zero. Finally, we may find 2 *
1ˆg T g∈∧ ⊗  

such that ( )b g eδ= +  and we obtain thus ( ) ( ) ( )2a g e gδ δ δ= + = , proving 
therefore the desired surjectivity. Going one step further, we let the reader dis-
cover the following result, found in 2016 but still not acknowledged today! 

WHEN 4n = , THE WEYL TENSOR WITH 10 COMPONENTS HAS ONLY 
9 GENERATING BIANCHI-LIKE CC OF ORDER 2;  

In order to prove that both classical and conformal differential geometry must 
be entirely revisited, let us prove that the analogue of the Weyl tensor is made by 
a third order operator when 3n =  which is also neither known nor nacknow-
ledged today. As before, we shall proceed by diagram chasing as the local com-
putation can only be done by using computer algebra and does not provide any 
geometric insight (See [38] for the details).  

* *
4 4 3 0 1

* * * * *
3 3 2 0

2 * 2 * * 2 * *
2 2 0

3 * 3 * * 3 *
1 0

4 * 4 *

0 0 0

ˆ ˆˆ0 0

ˆˆ0 0

ˆˆ0 0

ˆˆ0 0

0 0

0 0

g S T T S T F F

T g T S T T T S T F

T g T S T T T T F

T g T T T T F

T T T T

↓ ↓ ↓

→ → ⊗ → ⊗ → →
↓ ↓ ↓

→ ⊗ → ⊗ ⊗ → ⊗ ⊗ →
↓ ↓ ↓

→ ∧ ⊗ → ∧ ⊗ ⊗ → ∧ ⊗ ⊗ →
↓ ↓ ↓

→ ∧ ⊗ → ∧ ⊗ ⊗ → ∧ ⊗ →
↓ ↓ ↓

→ ∧ ⊗ = ∧ ⊗ →
↓ ↓

 

0 0

0 45 50 5 0

0 90 90 0

0 9 54 45 0

0 4 9 5 0

0 0 0

↓ ↓
→ → → →

↓ ↓
→ → →

↓ ↓ ↓
→ → → →

↓ ↓ ↓
→ → → →

↓ ↓ ↓

 

We have indeed:  
3 3 1 3 10translations rotations dilatation elations parameters+ + + = . 

We obtain from a chase ( )2
1 1
ˆ ˆF H g=  and the totally unexpected formally 

exact sequences on the jet level are thus, showing in particular that second order 
CC do not exist:  

( ) ( )3 3 2 0
ˆ ˆ0 0 0 10 60 50 0R J T J F→ → → → ⇒ → → → →  
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( ) ( )4 4 3 0 1
ˆ ˆ ˆ0 0 0 10 105 100 5 0R J T J F F→ → → → → ⇒ → → → → →  

( ) ( ) ( )5 5 4 0 1 1 2
ˆ ˆ ˆ ˆ0 0

0 10 168 175 20 3 0

R J T J F J F F→ → → → → →

⇒ → → → → → →
. 

We obtain the minimum differential sequence, which is nervertheless not a 
Janet sequence: 

1 2ˆ ˆˆ ˆ

0 1 21 3 1 1 3 1
ˆ ˆ ˆ ˆ ˆ0 0 0 3 5 5 3 0T F F F→Θ→ → → → → ⇒ →Θ→ → → → →

  
 

with ̂  the conformal Killing operator and vanishing Euler-Poincaré charac-
teristic 3 5 5 3 0− + − = . We have proved very recently (to appear soon) that the 
5 × 5 operator 1̂  is self-adjoint.  

As a byproduct, we end this paper with the following fundamental diagram II 
first presented in 1983 [18] but still not yet acknowledged as it only depends on 
the Spencer δ-map, explaining both the splitting vertical sequence on the right 
existing in Riemannian geometry and the vector bundle isomorphism *

2Ricci S T . 
Indeed, the diagonal chase providing it could not be even imagined by using 
classical methods because its involves Spencer δ-cohomology with the standard 
notations ( )B im δ= , ( )Z ker δ= , H Z B=  for coboundary, cocycle, coho-
mology at *s

q rT g +∧ ⊗  when q rg +  is the r-prolongation of a symbol qg . It is 
important to notice that all the bundles appearing in this diagram only depend 
on the metric ω  but not on any conformal factor.  

( )

( )

2
1 1

* 2
2 1 1

* * * 2 *
2

0

0

0 0

ˆ ˆ0 0

0 0

0 0

Ricci

Z g Riemann

T g Z g Weyl

S T T T T

δ

δ δ

↓

↓ ↓
→ → →

↓ ↓ ↓

→ ⊗ → → →
↓ ↓ ↓

→ → ⊗ → ∧ →
↓ ↓

 

When 4n = , we have explained in recent books [8] [39] and papers [28] [32], 
that the horizontal lower sequence is splitting because  

( ) ( ), , , , ,
1 1
2 2i j i j j i i j j ia a a a a= + + −  and provides an isomorphism  

* * * * 2 *
2 2ˆT g T T S T T⊗ ⊗ ⊕∧   which can be locally described by ( ),ij ijR F  

in which ( ijR ) is the GR part and ( ijF ) the EM part as a unification of gravita-
tion and electromagnetism. Accordingly, the vector bundle splitting  
Riemann Ricci Weyl⊕  is thus only depending on the second order jets of 
conformal transformations, contrary to the philosophy of GR today. We finally 
notice that such a result is contradicting the mathematical foundations of clas-
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sical gauge theory relating EM to U(1) while allowing to understand the confu-
sion done by E. Cartan and followers between “curvature alone” (F1) and “cur-
vature + torsion” ( 2 *

2 2C T R= ∧ ⊗ ).  

9. Conclusions 

We have already proved in our book “Lie Pseudogroups and Mechanics” (1988) 
that the group foundation of elasticity pioneered by E. and F. Cosserat (1909) 
was just described by adding to the non-linear Spencer sequence (1972) a conve-
nient variational calculus. As a crucial conclusion and similar to classical elastic-
ity, even if the initial background is non-linear, the resulting stress/couple-stress 
equations are linear. Accordingly, in order to parametrize these equations, one 
just needs to refer to infinitesimal Lie equations and the three corresponding 
canonical linear differential sequences that can be constructed, namely the gauge 
sequence, the Janet sequence and the Spencer sequence, though only the last one 
is useful. 

The main result of this paper, coming from unavoidable arguments of homo-
logical algebra, is that the Cosserat couple-stress equations are just described by 
the formal adjoint of the first Spencer operator while the formal adjoint of the 
second Spencer operator just describes a possible parametrization. Accordingly, 
the parametrization of the Cosserat couple-stress equations is first order while 
the parametrization of the classical Cauchy stress equations is second order as it 
comes from dualizing second-order CC described by the Riemann operator. 
When 4n = , we have also proved that the use of differential double duality ap-
plied to the Spencer sequence for the conformal Lie pseudogroup allows the un-
ifying of the Cosserat, Maxwell and Einstein equations, hence elasticity, electro-
magnetism and gravitation, along the dream of H. Weyl and that such a result 
only depends on the second-order jets called “elations” by E. Cartan in 1920. 
However, we have proved that the mathematical theory of gravitational waves is 
not coherent with double differential duality, a fact explaining why Einstein 
himself has not been very confident in their existence all along his life (See [39] 
for a recent paper and [40] for a recent preprint showing how to use computer 
algebra).  

Nevertheless, the most surprising result is that the same homological argu-
ments, namely the systematic use of the adjoint operators, also provide the need 
to revisit the mathematical foundations of control theory. Indeed, when a diffe-
rential field K having n commuting derivations is given together with two finite-
ly generated differential extensions L and M of K, an important problem in dif-
ferential algebra is to exhibit a common differential extension N in order to de-
fine the new differential extensions L M∩  and the smallest differential field 
( ),L M N⊂  containing both L and M. Such a result allows to generalize the use 
of complex numbers in classical algebra. Similarly, having now two finitely gen-
erated differential modules L and M over the non-commutative ring ring 

[ ] [ ]1, , nD K d d K d= =  of differential operators with coefficients in K, we may 
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look for a differential module N containing both L and M in order to define 
L M∩  and L M+ . This is exactly the situation met in linear or non-linear 
OD or PD control theory by selecting the inputs and the outputs among the sys-
tem variables. However, in many recent books and papers, we have shown that 
controllability was a built-in property of a control system, not depending on the 
choice of inputs and outputs among the system variables. Another purpose of 
this paper is thus to revisit the mathematical foundations of control theory by 
showing the specific importance of the two previous problems and the part plaid 
by N in both cases for the parametrization of the control system. The essential 
tool will be the study of differential correspondences, a modern name for what 
was called Bäcklund problem during the last century, namely the study of elimi-
nation theory for groups of variables among systems of linear or nonlinear OD 
or PD equations [41]. The difficulty is revisiting differential homological algebra 
by using non-commutative localization. Finally, when M is a D-module, this 
paper is using for the first time the fact that the system ( ),KR hom M K=  is a 
D-module for the Spencer operator acting on sections, avoiding thus behaviors, 
trajectories and signal spaces. We finally hope that the many explicit applica-
tions presented will be used in the future as test examples for computer algebra. 
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