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Abstract 
An elementary formula to know the number of primes in the interval ( ), 2x x  
close to the exact figure for a fixed x is given here. A new elementary equa-
tion is derived (a relation between prime numbers and composite numbers 
distributed in the interval [ ]1,2x ). An elementary method to know the num-
ber of primes in a given magnitude is suitably placed in the form of a general 
formula, and we have proved it. The general formula is applied to the terms 
of the equation, and a tactical simplification of the terms gives rise to an ex-
pression whose verification envisages scope for its further studies. 
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1. Introduction 

There are many questions concerning primes which are sophisticated. One of 
them is knowing how many primes are there in the interval ( ),2x x  for a fixed x. 
Joseph Bertrand, in 1845, conjectured that there is at least one prime p in the in-
terval ( ),2x x  after checking this numerically up to 300000x =  in ref. ([1], p: 
498). In 1850, P. Tschebyschew proved it, and simplified later by P. Erdös in 
1932 as in ref. [2]. Ramanujan proved it using gamma function in 1919 as in ref. 
[3]. Since then, many efforts have been made to show that there is a prime in a 
fixed interval. 

Generally, to know ( ) ( )2x xπ π− , it is done by computing each term by 
means of a sieve method which involves more labor. The other option is to have 
a general formula for evaluation & simplify it to get an expression to provide an 
estimated value. 

Earnest Meissel, in 1870-85, published a series of articles where he was able to 
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count exactly the number of primes up to a given magnitude x in ref. [4] [5] [6] 
[7]. Derrick Henry Lehmer, in 1959, simplified it and introduced a modified 
counting method of composite numbers as in ref. [8]. 

The ultimate goal of this research is to show that there exists an expres-
sion that even shows that there are more than 60,000 primes in the interval 

6 610 ,2 10 ×  . We can also call it an elementary formula of primes in the interval 
( ),2x x  for a fixed x. The idea behind this investigation is the identified rela-
tionship between composite numbers and prime numbers distributed in the in-
terval [ ]1,2x . 

On the basis of the computational technique of Legendre, E. Meissel, and D H 
Lehmer for composite numbers in ref. [4]-[9] respectively, a general formula for 
( )xπ  is written in a modified pattern along with its proof using an appropriate 

lemma. An illustrated example for an “example” number 100 is provided for 
reference. This general formula and the identified relationship were utilized, 
and a tactical simplification of terms enabled us to obtain the expression for 
( ) ( )2x xπ π− .  

2. Statement of the Result  

The number of primes in the interval ( ),2x x  for a fixed x is  

( ) ( ) ( ) ( )1
,2 , where ,

2
x x x x

µ µ
π π µ π

−
> − =  

a still better approximation,  

 ( ) ( ) ( ) ( )1 1
,2 where 2 .

2 2
x x x x

µ µ µ µ
π π µ π

′ ′ − −  ′> − − =    
 

We call these results as an expression for ( ) ( )2x xπ π− .  

3. Results  

We make readers familiarize themselves with the notations and symbols used 
here.  
● We define a new symbol “C” where ( )x  stands for the number of compo-

site numbers not exceeding a given positive integer x, e.g. ( )10 5= , they 
are 4, 6, 8, 9, 10.  

● ( )xπ  denote the number of primes not exceeding a fixed integer x, e.g. 
( )10 4π = , they are 2, 3, 5, 7.  

● ( ),2x xπ  denote the number of primes in the interval x to 2x, i.e.  
( )10,20 4π = , they are 11, 13, 17, 19; ( )11,22 3π = , they are 13, 17, 19, here 

“11” is not included.  
● Integer means positive integer, c runs for composite number, and p runs for 

prime number throughout.  

3.1. Idea  

We obtain a relation between prime numbers and composite numbers distri-
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buted in the interval [ ]1,2x . This identified relation was the basis for obtaining 
an expression for ( ) ( )2x xπ π− . We have by computational technique of Le-
gendre in ref. [9]  

 ( ) ( ) ( )1x x xπ = − −                         (1) 

Substitute 2x x= , we get  

 ( ) ( ) ( )2 2 1 2x x xπ = − −                       (2) 

Multiply Equation (1) by 2, we get  

 ( ) ( )2 2 2 2x x xπ = − −                        (3) 

(2)-(3) gives  

 
( ) ( ) ( ) ( ) ( )

( ) ( )
2 2 2 1 2 2 2 2

2 2 1

x x x x x x

x x

π π− = − − − + +

= − + +

 
 

           (4) 

On rearraging the terms of (4), we get  

 ( ) ( ) ( ) ( ) ( )( )2 2 2 1x x x x xπ π π− = − − +               (5) 

( ) ( ) ( ) ( )2 1x x x a xπ π π− = − +  

 ( ) ( ) ( ),2 = 1x x x a xπ π − +                    (6) 

where ( ) ( ) ( )2 2a x x x= −  , we call Equation (5) as our basic tool.  

3.2. Preliminaries  

We revert back to the notations, symbols, and definitions used here.  
● We define a new symbol π ′  where ( )xπ ′  denote number of primes strictly 

less than x, e.g. ( )5 2π ′ = , they are 2,3, here “5” is not included.  
● 1 2 3 4, , , ,p p p p   denotes primes 2,3,5,7, , x denote a fixed integer.  
● m denote a positive integer < x.  

● x
p

 
 
 

 stands for an integral part of x when x is divided by a “p”, e.g. 

10 3.33
3
= , here 10 3

3
  =  

, similarly for x
m
 
  

.  

● 
1r

p  is the largest prime in 
1

x
p

 
 
 

 means when x is divided by 1p , 
1r

p  is 

the largest prime less than 
1

x
p

 
 
 

.  

Definition 1. We define an integer 1 2 3
a b c l

rm p p p p= ⋅ ⋅  , where , , , , 0a b c l ≥ , 
and rp  is the largest prime |m.  

Keeping in mind the computational techniques of ref. [4] [5] [6] [7] [8] for 
computation of ( )x , we place it in the form of a general formula. This com-
putational technique is the modified pattern of ref. [4] [5] [6] [7] [8], where Le-
gendre sum in ref. [9] was utilized for a certain range, and for the rest, the tech-
nique. We place it here in the following lemma where the technique is extended 
for the entire range of m x< , conditionally and give its proof.  
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Lemma 1. The number of composite numbers not exceeding a given integer x 
is computed as given below.  

 ( )
[ ]

[ ]
0

2

r
x p
m

r
m x

xx p
m

π π

π π

  ′− >  

≤ <

   ′= −    
∑                    (7) 

an elaborated form of Lemma (1), expressed as in (7), is given below.  

( )
[ ] [ ]

[ ]
0 0

1 2

a
x xp p

p p

a
a p x

xx p
p

π π π π

π π

      ′− >  ′− >            

≥ ≤ ≤

   ′= −  
  

∑ ∑  step I 

[ ] [ ]

[ ]
0 0

6, 1

a b
x xq q

p q p q

a b
p q xa b

q p

x q
p q

π π π π

π π

      ′− >  ′− >      ⋅  ⋅      

≤ ⋅ <≥
>

   ′+ −  ⋅  
∑ ∑  step II 

Similarly for a b cm p q r= ⋅ ⋅  and so on.   
We write a lemma necessary in proving the lemma 1. This lemma is based on 

the standard pattern of the fundamental theorem of arithmetic as in ref. ([1], p. 
3). The proof of this lemma proves lemma 1 in the elaborated form.  

Lemma 2. Every c x≤  can be expressed as  

( )

{ }{ { }
{ } { }
{ } { }

1 2

3

1

1 1 1 2 1 3 1 4 1 2 2 2 3 2 4 2 5 2

2 2 2
3 3 3 4 3 5 3 6 3 1 1 1 2 1 3

2 2 2 2 2 2
2 2 2 3 2 4 3 3 3 4 3 5

2
1 2 1 2 3 1

1

, , , , , , , , , , , ,

, , , , , , , , , , ,

, , , , , , , ,

, ,

c x

r r

r

x

p p p p p p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p

p p p p p p p p p p p p

p p p p p p

< ≤
=

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

∑ 

 

  

 

{ } { }
{ } { }}

2
2 4 2 3 2 3 4 2 3 5

2
1 2 3 1 2 3 4 1 2 3 5 1 2 3

, , , , , , ,

, , , , , ; , , , 0a b c

p p p p p p p p p p

p p p p p p p p p p p p p p x a b c

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ∀ ⋅ ⋅ ≤ ≥

  

   

  

Proof. Let m x<  as per definition in (1). Let 
1r

p  is the largest prime in 
1

x
p

 
 
 

, 

2r
p  is the largest prime in 

2

x
p

 
 
 

,  . Let us obtain the pattern as in the lemma  

(2) c x∀ ≤ . We start with 1m p= ,  , and continue for 2
1m p= ,  , and so 

on m x∀ ≤ , conditionally. We write  

{ }11 1 1 2 1 3 1 4 1
1

, , , , , r
x p p p p p p p p p p
p

π
 

= ⋅ ⋅ ⋅ ⋅ ⋅ 
 

  (as required in the lemma 2)  

{ }22 1 2 2 2 3 2 4 2 5 2
2

, , , , , , r
x p p p p p p p p p p p p
p

π
 

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
 

  (not as required in lemma 2)  

{ }22 2 2 3 2 4 2 5 2, , , , , . rp p p p p p p p p p∴ ⋅ ⋅ ⋅ ⋅   

{ }22 1 2 2 2 3 2 4 2 5 2, , , , , , . rp p p p p p p p p p p p= ⋅ ⋅ ⋅ ⋅ ⋅   

{ }2 1p p− ⋅                 (to make it as required in lemma 2)  

2 12

1
p p x

x
p

π
⋅ <

 
= − 

 
∑  
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here in the second term, instead of counting 2 1p p x⋅ < , only 1p , strictly less 
than 2p  is counted to reflect the counting of 2 1p p⋅ , similarly in further steps, 
we write  

1 22

1
p p

x
p

π
<

 
= − 

 
∑  

[ ]2
2

x p
p

π π
 

′= − 
 

 

… jm p x= ≤ ; such that 0j
j

x p
p

π π
  

′   − >       
 and  

1 0j
j

x p
p

π π +

  
′   − ≤       

 because, here j jp p x⋅ ≤  but 1j jp p x+ ⋅ > ; similarly 

in further steps. 

Next { }2 2 2 2
1 1 1 2 1 3 1 42

1

, , , ,x p p p p p p p p
p

π
 

= ⋅ ⋅ ⋅ ⋅ 
 

  (as required in lemma 2).  

Similarly 

{ } { } { }

[ ]

2
1 2

1 2

2 2 2 2 2 2 2
2 2 2 3 2 4 2 1 2 2 2 4 2 1

2
2

2
2

22
2

, , , , , ,

1

1

p p x

p p

p p p p p p p p p p p p p p

x
p

x
p

x p
p

π

π

π π

⋅ <

<

⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ − ⋅

 
= − 

 

 
= − 

 
 

′= − 
 

∑

∑

 

 

… , 1am p a∀ = > , such that [ ] 0x p
m

π π   ′− >    
 where p is the largest 

prime |m. 

Similarly { }2 2
1 2 1 2 1 2 3 1 2 4 1 2 5

1 2

, , , , ,x p p p p p p p p p p p p p
p p

π
 

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 
  

& 

{ }
{ } { }

[ ]

2
1 2

1 2

2
1 2 1 2 3 1 2 4

2 2 2
1 2 1 2 1 2 3 1 2 4 1 2 5 1 2

1 2

1 2

2 2 1 2
1 2

, , ,

, , , , ,

1

1

; , largest |

p p x

p p

p p p p p p p p

p p p p p p p p p p p p p p p

x
p p

x
p p

x p p p p p
p p

π

π

π π

⋅ <

<

⋅ ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅

 
= − ⋅ 

 
= − ⋅ 

 
′= − ⋅ ⋅ 

∑

∑





 

… a bm p q∀ = ⋅ ; such that [ ] 0x q
m

π π   ′− >    
 where q is the largest prime 

|m. 
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& 

{ }
{ } { }

[ ]

2 2
1 2 3 1 2 3

1 2 3

2
1 2 3 1 2 3 4 1 2 3 5

2 2 2 2 2
1 2 3 1 2 3 1 2 3 1 2 3 4 1 2 3 1 2 3

1 2 3 ,

,1 2 3

3
1 2 3

, , ,

, , , , ,

1

1

;

p p p p p p x

p p p

p p p p p p p p p p p

p p p p p p p p p p p p p p p p p p p

x
p p p

x
p p p

x p
p p p

π

π

π π

⋅ ⋅ ⋅ ⋅ <

<

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅

 
= − ⋅ ⋅ 

 
= − ⋅ ⋅ 

 
′= − ⋅ ⋅ 

∑

∑





 

where 3p  is the largest 1 2 3|p p p p⋅ ⋅ . 

… a b cm p q r∀ = ⋅ ⋅  ; such that [ ] 0r
x p
m

π π   ′− >    
, where rp  is the larg-

est prime |m. Now, we ascertain that the entire pattern of lemma 2 is obtained. 

The condition [ ] 0r
x p
m

π π   ′− >    
, is by determination of the computational 

technique. This completes the proof of lemma 1.                        □ 
We illustrate the lemma 1 by taking a trivial example for example No “100”, in 

the way it is written in the elaborated form. Following are the steps how to pro-
ceed.  
● The fixed number (say 100 here) is to be divided by m x<  and find out the 

integral part.  

● Choose all 100m p= ≤  for which the condition [ ] 0x p
p

π π
   ′− >  

  
, sa-

tisfies.  
● Choose all m p q= ⋅ , product of two primes, say 2 2,2 3,2 5,⋅ ⋅ ⋅   for which 

the condition [ ] 0x q
p q

π π
   ′− >  ⋅  

, q p> , satisfies.  

● Choose all m p q r= ⋅ ⋅ , product of three primes, say 2 22 2 2,2 3,2 3 ,⋅ ⋅ ⋅ ⋅   

for which the condition [ ] 0x r
p q r

π π
   ′− >  ⋅ ⋅  

, r q p> > , satisfies.  

All possibilities of a b cm p q r= ⋅ ⋅  , for all combinations of , , , , , , ,p q r a b c   
are to be covered and care is taken that no non-trivial m is left out, ultimately,  

these are m x<  for which the condition [ ] 0r
x p
m

π π   ′− >    
, satisfies where 

rp  is the largest prime |m.  

Example. For 100x = , to work out for ( )100π , from (1), we have  
 ( ) ( )100 100 1 100π = − −                       (8) 

Computation of C(100): For Step I, am p= : 1a = , { }100 2,3,5,7m p= ≤ = ; 

not for 11m =  because [ ]100 11 0
11

π π  ′− ≤  
; for 2,3,a =  ,  

{ }2 2 3 3 4 52 ,3 ,2 ,3 ,2 ,2m = ; not for 62m =  because [ ]6
100 2 0
2

π π   ′− ≤    
, simi-
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larly for 43m =  and so on; we proceed for doing calculations, we have  

 

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

100 100 100 1002 3 5 7
2 3 5 7

50 0 33 1 20 2 14 3
15 0 11 1 8 2 6 3 15 10 6 3 34

π π π π π π π π

π π π π

       ′ ′ ′ ′+ − + − + − + −              
= − + − + − + −

= − + − + − + − = + + + =

 (9) 

 
[ ] [ ]

[ ] [ ]
2 2

100 1002 3
2 3
25 0 11 1 9 0 4 1 9 4 13

π π π π

π π

   ′ ′+ − + −      
= − + − = − + − = + =

          (10) 

 
[ ] [ ]

[ ] [ ]
3 3

100 1002 3
2 3

12 0 3 1 5 0 2 1 5 1 6

π π π π

π π

   ′ ′+ − + −      
= − + − = − + − = + =

           (11) 

 
[ ] [ ]

[ ] [ ]
4 5

100 1002 2
2 2

6 0 3 1 3 0 2 0 5

π π π π

π π

   ′ ′+ − + −      
= − + − = − + − =

              (12) 

For Step II: { }2 2 3 22 3,2 5,2 7,2 3,2 5,2 3,2 3 ,3 5a bm p q= ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ; not for  

2 11m = ⋅  because [ ]100 11 0
2 11

π π   ′− ≤  ⋅  
; similarly for  

2 3 22 7,2 5,3 7,2 5m = ⋅ ⋅ ⋅ ⋅  and so on; we proceed for doing calculations, we have  

 

[ ] [ ] [ ]

[ ] [ ] [ ]

100 100 1003 5 7
2 3 2 5 2 7
16 1 10 2 7 3

6 1 4 2 4 3 5 2 1 8

π π π π π π

π π π

     ′ ′ ′+ − + − + −     ⋅ ⋅ ⋅     
= − + − + −

= − + − + − = + + =

        (13) 

 

[ ] [ ] [ ]

[ ] [ ] [ ]
2 2 3

100 100 1003 5 3
2 3 2 5 2 3
8 1 5 2 4 1

4 1 3 2 2 1 3 1 1 5

π π π π π π

π π π

     ′ ′ ′+ − + − + −     ⋅ ⋅ ⋅     
= − + − + −

= − + − + − = + + =

      (14) 

 
[ ] [ ]

[ ] [ ]
2

100 1003 5
3 52 3

5 1 6 2 3 1 3 2 2 1 3.

π π π π

π π

   ′ ′+ − + −   ⋅⋅   
= − + − = − + − = + =

          (15) 

No Step III: for 2 3 5m = ⋅ ⋅ , because [ ]100 5 0
2 3 5

π π   ′− ≤  ⋅ ⋅  
 and so on; the  

sum of all (9) to (15) 34 13 6 5 8 5 3 74= + + + + + + =  substituting in (8), we get 
( )100 100 1 74 25π = − − = .  
We close this section with the following assertion.  
Assertion 3. Primes near 2x “thin out” compared to near x. We write  
( ) ( ),2x x xπ π< . There are a few rare intervals like ( )2,4 , ( )4,8 , ( )10,20  

where this assertion is not true is without loss of generality. Further, adding 
( )xπ  to both sides of this, we have ( ) ( ) ( ) ( ),2x x x x xπ π π π+ < +  which ⇒
( ) ( )2 2x xπ π< . 
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3.3. Expression  

Now, we show, how we arrive to an expression for ( ),2x xπ  using our basic 
tool at (5), and the general formula for ( )x  in the lemma 1 in its elaborated 
form, on evaluating all the terms of ( ) ( )2 2x x−   & substituting in (5), the 
exact value of ( ),2x xπ  can be obtained, but due to huge labor, it is kept aside 
at this stage. On observation, evaluation gives three types of terms:  
● Negative values & zero, say ( )j x ;  
● Redundant;  
● Positive values, say ( )k x .  

We proceed as per methodology of lemma 1 in an elaborated form, consider-
ing Step I terms for 1a = , for 2p x≤  and 1a = , for p x≤  for each term 
of ( ) ( )2 2x x−   respectively, we have a term for a “p” as  

 [ ] [ ]2 2x xp p
p p

π π π π
      ′ ′− − −      

      
                         (16) 

[ ] [ ]2 2 2x xp p
p p

π π π π
   ′ ′= − − +   
   

 

2 2x x
p p

π π
   

= −   
   

 is a term of negative value, by assertion 3. 

[ ] [ ]p pπ π′ ′− +  is redundant.  

[ ]pπ ′+  is a term of positive value.  

Taking the sum of all positive values p x∀ ≤  and balancing the term,  
[ ]< 2x p x pπ

≤
′−∑  with other terms, we get  

[ ] [ ] [ ] [ ] [ ]1 2 3 4 rp p p p pπ π π π π′ ′ ′ ′ ′+ + + + + , where rp x≤  and 1rp x+ >  

0 1 2 3 1r= + + + + + −  where [ ] 1rp rπ ′ = −  and [ ]rp rπ = , 
( )1

2
r r−

=  on 

substituting [ ]rr p xπ π  = =   , we get  

[ ] ( )
2

1
2p x

p
µ µ

π
≤ ≤

−
′ =∑  where xµ π  =    say ( )1 x , 

and is a term of positive value. that can be calculated by knowing the value of 
µ  from the table of primes. Similarly considering all positive values and nega-
tive values of all the steps I, II, III,..., and their sum total, we have  

 ( ) ( ) ( ) ( )( ) ( )2 2 k jx x x x a x− = − =∑ ∑             (17) 

Substituting ( )a x  in (6), we get  

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( )

1 2 1 2

1 2 1 2

,2

1

1

k j

k j

x x

x x x x x x x

x x x x x x x

π

π

π

= − + + + − − − − +

= − − + + − − − − +

 

 

     

     

 

Knowing the values of all the terms of ( )a x  in (17) is of huge labor. Hence, 
considering only ( )1A x , the highest positive value, and neglecting all other val-
ues, we get the expression  
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( ) ( ) ( )1,2x x x xπ π> −  

( ) ( ) ( )1
,2

2
wherex x x x

µ µ
π π µ π

−  > − =              (18) 

Value of the term µ  can be known from the table of primes. On careful ob-
servation of terms, the expression (18) can further be improved as given below to 
get a still better approximation. On reconsidering a term for a “p” at (16) as in the 
proof of (18) and further simplify. Taking a term for a “p”, for ( ) ( )2 2x x−  , 
we write  

[ ] [ ]

[ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

2 2

2 2 2

2 2

2 2

x xp p
p p

x xp p
p p

x xp p p
p p

x xp p p
p p

π π π π

π π π π

π π π π π

π π π π π

      ′ ′− − −      
      
   ′ ′= − − +   
   
   ′ ′ ′= − − + +   
   

        ′ ′ ′= − − − −       
        

 

a term for a “p” (16) is >0 by the computational technique of lemma 1. Hence,  

( )2x p
p

π π
  ′> 
 

 and [ ] [ ]2 x p p
p

π π π
   ′ ′− >  

  
, taking the sum of all positive  

values 2p x∀ ≤  for the first term, p x∀ ≤  for the second term, and pro-
ceed as in the proof of (18), we write  

[ ] ( )
2 2 2 2

12 where 2
2p x p x

x p x
p

µ µ
π π µ π

≤ ≤ ≤ ≤

′ ′ −   ′ ′> = =    
∑ ∑  

denote this value by ( )1 x′′ , and  

[ ] [ ] ( )
2 2

1
2 where

2p x p x

x p p x
p

µ µ
π π π µ π

≤ ≤ ≤ ≤

  −   ′ ′− > = =      
∑ ∑  

replacing the larger value with smaller one, and keeping the middle minus sign,  

the resulting term ( ) ( )1 1
2 2

µ µ µ µ′ ′ − −
− 

 
 may be taken as a better positive 

value, denote it by ( )1 x′ , then we write (17) as  

( ) ( ) ( ) ( )( ) ( )2 2 k jx x x x a x′ ′− = − =∑ ∑     

where ( )2 ,x′
  and ( )1 ,x′

  are resulting positive & negative values here, 
and we write (6) as  

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( )

1 2 1 2

1 2 1 2
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proceeding as before at (18), we get a better approximation  

https://doi.org/10.4236/apm.2024.141002


S. B. Kittur 
 

 

DOI: 10.4236/apm.2024.141002 25 Advances in Pure Mathematics 
 

 ( ) ( ) ( ) ( )1 1
,2

2 2
x x x

µ µ µ µ
π π

′ ′ − −
> − − 

 
              (19) 

Denote the value of expression (18) as ( )1 x  and its error with actual figure 
of ( ),2x xπ  as ( )1 x′ , of (19) as ( )2 x  and its error as ( )2 x′ . The value 
of ( ),2x xπ  calculated from (18) & (19) and their error obtained for 10nx =  
up to a trivial 6n = , verified from the website in [10], is shown in the Table 1. 
(18) & (19) are obtained results, there is no need to verify their truth but the data 
obtained from them helps in their further studies.  

Remark. The following are calculations for other large non-trivial intervals 
from (18).  

( )12 1210 ,2 10 34526983265π ⋅ >  

( )24 2410 ,2 10 17728422244191190407713π ⋅ >  

here the value of the terms required in R.H.S of (18) for calculation are from ref. 
[10].  

4. Further Studies  

On observing the data of results obtained from the expression at (18) & (19) in 
Table 1, the % error for knowing the exact value of ( ),2x xπ  gradually de-
creases when x increases and sometimes it varies. There is an improvement in % 
error of (19) compared to that of (18). Observation shows that smaller the value 
of ( )a x , the value of ( ),2x xπ  obtained is closer to its exact value. The plotted 
graph in Figure 1 showing the graph of data (from Table 1) for the value of 

( )1K x , ( )2K x , and the actual figure of ( ),2x xπ , shows that the results of the  
 

Table 1. Table showing the results of ( ), 2x xπ  from (18) and (19), see in ref. [10] for the value of ( )xπ . 

x ( )xπ  ( )2xπ  ( )1 x  ( )1 x′′  ( )1 x′  ( )1 x  ( )2 x  [ ], 2x xπ  ( )1 x′  ( )2 x′  

 µ  µ′  ( )1
2

µ µ −
 

( )1
2

µ µ′ ′ −
 ( ) ( )1 1x x′′ −   ( ) ( )1x xπ −  ( ) ( )1x xπ ′−   (%error) (%error) 

10 2 2 1 1 0 3 4 4 1 0 

         (25) (0) 

102 4 6 6 15 9 19 16 21 2 5 

         (9.5) (23.8) 

103 11 14 55 91 36 113 132 135 22 3 

         (16.3) (2.2) 

104 25 34 300 561 261 929 968 1033 104 65 

         (10.1) (6.3) 

105 65 86 2080 3655 1575 7512 8017 8392 880 375 

         (10.4) (4.6) 

106 168 223 14,028 24,753 10,725 64,470 67,773 70,435 5965 2662 

         (8.4) (3.8) 
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Figure 1. Figure showing the graph of ( )1K x , ( )2K x , and actual figure of ( ), 2x xπ . 

 
expression (18), (19) are inconsistent with ( ),2x xπ  (though not showing 
in the initial stage), and ( )2K x  runs close to ( ),2x xπ  than ( )1K x  is run-
ning. Knowing ( )xπ , ( )xπ , and ( )2xπ  from the table of primes can 
be avoided by applying the prime number theorem as in ref. ([1], p: 10) to the 
terms in R.H.S of (18), (19) for knowing their estimated values, again for (18), 
we write  

 

( ) 1,2 1
log 2 log log

1 11 1log 2 log log
2 2

1 2 2 1
log 2 log log

2 1
log log log

x x xx x
x x x

x x x
x x x

x x x
x x x

x x x
x x x

π
  

> − −      
  
  

= − −  
     
  

= − −      
 

= − −  
 

             (20) 

Similarly, for (19) we write  
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 ( ) 2 2 2 2,2 1 1
log log 2 log 2 log log

x x x x xx x
x x x x x

π
     > − − − −            

     (21) 

The workouts for an estimated value of ( ),2x xπ  from (20), (21) are shown 
in the Table 2 and Remark below.  

Remark. Calculation for other large intervals from (20), we have  

( )12 1210 ,2 10 33571660417π ⋅ >  

( )24 2410 ,2 10 17440714514802363566469π ⋅ >  

( )25 2510 ,2 10 167695213406436062322306π ⋅ >  

from (21), we have  
 
Table 2. Table showing the results of ( ), 2x xπ  from (20) and (21). 

x log
x

x
 Calculations 

from(20) 
% Error 

Calculations 
from (21) 

% Error 

103 144 107 20 119 11.85 

104 1085 850 17.71 927 10.26 

105 8685 7207 14.12 7521 10.37 

106 72,382 61,997 11.97 63,899 9.27 

 

 

Figure 2. Figure showing the graph of EXP’ (20), EXP’ (21), and actual value of ( ), 2x xπ . 
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( )12 1210 ,2 10 33823600357π ⋅ >  

( )24 2410 ,2 10 17472729013238329469058π ⋅ >  

( )25 2510 ,2 10 167979542770512164505980π ⋅ >  

On observing the data of results obtained from the expressions at (20), (21) in 
Table 2, the % error are quite similar to that of EXP’ (18), (19), and the graph 
plotted in this case in Figure 2 shows that they are inconsistent at regular inter-
vals but not form a part of an inconsistent system, may be they take a curved 
path when x →∞ . However, it shows that the path of EXP’ (20), (21) are with 
that of path of ( ),2x xπ .  

5. Conclusions and Suggestions  

However, the estimated value of ( ),2x xπ  where actual values are not yet 
known for a large fixed x can be known from (20), (21) to the extent machine 
can be used to calculate the value of the terms. Expressions (20), (21) are a suita-
ble answer to the query raised in Section 22.9, on “Primes in an interval”, in ref. 
([1], p: 494). We suggest the following future work.  
● The expressions (18), (19) are subject to some mathematical operations in x, 

the results of which may help in answering questions concerning primes.  
● To prove the statement that the number of primes in the interval ( ),2x x  is 

asymptotic to 2 1
log log log

x x x
x x x

 
− −  

 
, and to  

2 2 2 21 1
log log 2 log 2 log log

x x x x x
x x x x x

     − − − −            
.  

The discoveries and study conducted in this article shows that the “Assertion 
3”, is a truth.  
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