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Abstract 
This paper discusses further the roughness of Riemann-Liouville fractional 
integral on an arbitrary fractal continuous functions that follows Rfs. [1]. A 
novel method is used to reach a similar result for an arbitrary fractal function 

( )f x , ( ) ( )dim , dim , ,ν− ≤ B BD f J f J  where ( )ν−D f x  is the Rie-

mann-Liouville fractional integral. Furthermore, a general result  

( ) ( )dim , dim , 1ν− = = B BD f J f J  is arrived at for 1-dimensional fractal 

functions such as with unbounded variation and(or) infinite lengths, which 
can infer all previous studies such as [2] [3]. This paper’s estimation reveals 
that the fractional integral does not increase the fractal dimension of ( )f x , 

i.e. fractional integration does not increase at least the fractal roughness. 
And the result has partly answered the fractal calculus conjecture and com-
pletely answered this conjecture for all 1-dimensional fractal function (Xiao 
has not answered). It is significant with a comparison to the past researches 
that the box dimension connection between a fractal function and its Rie-
mann-Liouville integral has been carried out only for Weierstrass type and 
Besicovitch type functions, and at most Hlder continuous. Here the proof 
technique for Riemann-Liouville fractional integral is possibly of methodolo-
gy to other fractional integrals.  
 

Keywords 
Upper Box Dimension, Riemann-Liouville Fractional Integral, Fractal  
Continuous Function, Box Dimension 

 

1. Introduction 

There are many formulas for fractional integrals and differentiations, since Rie-
mann-Liouville integral of order ν  (See [4] [5] [6] [7])  
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( ) ( ) ( ) ( ) [ ]1

0

1 d , 0 1, 0,1νν ν
ν

−− = − < < ∈
Γ ∫

x
D f x x t f t t x        (1.1) 

and Weyl-Marchaud derivative of order α  (See [6] [7] [8])  

( ) ( )
( ) ( ) ( )10

d , 0 1 left-sided
1

α
α

α α
α

∞

+

− −
= < <
Γ − ∫

f x f x t
D f x t

t
    (1.2) 

are widely applied in physics such as Rfs. [6] [7] [9] [10] [11] [12] and deeply 
studied in theory such as Rfs. [5] [6] [13]. Particularly, according to five criteria 
for definition of the fractional integration and differentiation provided by Ross 
[12], (1.1) and (1.2) may be one of the best definitions of fractional integrations 
and differentiations. Hence, the research is restricted to the Riemann-Liouville 
fractional integral to discuss its box dimension. 

For classic calculus, it is well known that the smoothness of a function would 
increase after integration and decrease after differentiation. For fractal calculus, 
one believes that similar behaviour holds. So the following conjecture has been 
put forward, which may be mentioned firstly by Tatom [4] and Zähle and Zie-
zold [8]. 

Conjecture 1.1. [1] [4] [8] [14] [15] [16] Let ( )f x  be a fractal function on 
[ ]0,1=J . Its graph is indicated by ( )dim ,B f J , and the graph of its integral 

and derivative by ( ),ν− D f J  and ( ),α D f J  respectively. 
1) If ( )dim , 1=B f J , then  

( ) ( )dim , dim , 1.ν− = = B BD f J f J  

2) If the box dimension does not exist, then  

( ) ( ) ( ) ( )dim , dim , , dim , dim , .ν α− ≤ ≥   B B B BD f J f J D f J f J  

Furthermore,  

( ) ( ) ( ) ( )dim , dim , , dim , dim , .ν αν α− ≤ − ≤ +   B B B BD f J f J D f J f J  

3) If the box dimension exists, then  

( ) ( ) ( ) ( )dim , dim , , dim , dim , .ν α− ≤ ≥   B B B BD f J f J D f J f J  

Furthermore,  

( ) ( ) ( ) ( )dim , dim , , dim , dim , .ν αν α− = − = +   B B B BD f J f J D f J f J  (1.3) 

The best answer is Formula (1.3), which includes descriptions of smoothness 
about traditional calculus: the smoothness of a function would be decreased one 
after derivative, and increased one after integration, i.e. if ( )∈ nf x C  (n-th dif-
ferentiable functions), then ( ) 1−′ ∈ nf x C  and ( ) 1d +∈∫ nf x x C . Here, take 

1ν α= = , understand ( )dim ,B f J  as the reasonable description about 
smooth of a function ( )f x . In this view Conjecture 1.1 is believed true. 

For this problem, the research works can be classified into three branches ac-
cording to the box dimension of fractal integrand ( ) ( )dim , 1 2= ≤ ≤B f J s s . 

1) ( )dim , 1= =Bs f J  
The box dimension of Riemann-Liouville fractional integral ( )dim ,ν−B D f J  
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is 1, same as the integrand’s box dimension, including the integrand with 
bounded variation [17] or at most finite unbounded variation points [18]. If 
1-box dimension function is continuous with countable unbounded variation 
points, the box dimension of its Riemann-Liouville fractional integral is still 1 
(See [2] [19]). Liang [3] and Liu [20] investigated the relationship of 1-dimensional 
continuous function ( )f x  with its Riemann-Liouville integral, and proved that 

( )dim , 1ν− =B D f J  for some special constructed functions. All these discus-
sions show that  

( ) ( )dim , dim , 1,ν− = = B BD f J f J  

which seems to indicate that Riemann-Liouville integral does not increase the 
box dimension. 

2) ( )1 dim , 2< = <Bs f J  
Since the integrand is of any box dimension ( )1 2< <s s , estimation of 

( )dim ,ν−B D f J  is sophisticated. Usually Weierstrass type functions and Hlder 
functions are considered such as in references [21] [22] [23]. No other literature 
appears about these identities (1.3). For Von Koch curve, Liang [24] proved that  

( ) ( )dim , dim , .ν− ≤ B BD f J f J              (1.4) 

And Liang [14] also proved (1.4) holds when the integrand ( )f x  is α-Hlder 
continuous. But Wu [25] reached a better estimation for α-Hlder continuous 
function:  

( ) ( )dim , dim , ,ν ν− ≤ − B BD f J f J            (1.5) 

under conditions 2 1α− >  and 1α ν+ < . Rfs. [26] presented the same estima-
tion of (1.5) for Weyl fractional integral. All these seem to show that Rie-
mann-Liouville integral decreases box dimension linearly. 

3) ( )dim , 2= =B f J s  
It seems that ( )dim , 2=B f J  or ( )dim , 2=B f J  holds only for some 

special Weierstrass type functions with rapidly growing frequencies like in ref-
erences [5] [21] [23] [27] [28] [29] (Some researchers called it Besicovitch func-
tion). 

For Besicovitch function, Liang and Su [15] proved that (1.3) holds, and con-
jectured that (1.3) holds for any fractal function ( )f x . All these seem to point 
out that Tatom’s [4] assertion is true for 2-box dimension Weierstrass type func-
tions. 

In a word, the relation of fractal dimension between the fractal function and 
its integro-differentiation has been discussed in past years only for Weierstrass 
type functions, Besicovitch functions, Hlder continuous functions. However, it is 
generally believed that (1.3) holds although no theory proof appears. Xiao [1] 
proved that (1.4) is true for all fractal continuous functions, which is the first 
discussion the conjecture 1.1 for an arbitrary fractal functions. This paper tries 
to improve Rfs. [1] by taking a novel method that is completely different from 
Rfs. [1]. 
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2. Preliminaries 

For any set Ω∈ nR , box dimensions are defined as follows. 
Definition 2.1. [5] [13] Let ( )Ω ≠ ∅  be any bounded subset of nR  and 
( )δ ΩN  the smallest number of sets coving Ω with diameters at most δ. Lower 

and upper box dimension of Ω are defined, respectively  

( ) ( )
0

log
dim lim

log
δ

δ δ→

Ω
Ω =

−B

N
 

and  

( ) ( )
0

log
dim lim .

log
δ

δ δ→

Ω
Ω =

−B

N
 

Similarly, box dimension of Ω is defined as  

( ) ( )
0

log
dim lim .

log
δ

δ δ→

Ω
Ω =

−B

N
 

Let JC  be the set of all continuous functions on a closed interval [ ]0,1=J , 
( ), f J  the graph of ( )f x  on J. Obviously ( ) 2, ⊂ f J R . The lower box 

dimension and upper box dimension and Box dimension of the graph of ( )f x  
on J denoted by  

( ) ( ) ( )dim , and dim , and dim , ,  B B Bf J f J f J  

respectively, which can be defined by Definition 2.1 with ( ),Ω = f J . 
Write [ ], ,f a bR  for the maximum range of ( )f x  over [ ],a b ,  

[ ] [ ] ( ) ( ), , sup .
≤ < ≤

= = −ff a b
a x y b

R R a b f x f y  

Assume that m is the least integer greater than or equal to 1δ − , ,δfN  
represents the size of δ-mesh squares intersecting ( ), f J . Note that the inter-
val [ ]0,1=J  is divided into m subintervals with equal width δ. Write  

( ), 1 , 0,1,2, , 1.δ δ ∆ = + = −  i i i i m  

The following conclusion about ,δfN  is directly deduced from Definition 2.1 
(or see books [5] [13]). 

Lemma 2.2. [5] [13] Assume ( )∈ Jf x C , then  

( ) ( )1 1

,
0 0

, 1 , 1
max ,1 2 .δ

δ δ δ δ
δ δ

− −

= =

      + +      ≤ ≤ +   
      

∑ ∑
m m

f f
f

i i

R i i R i i
N  

For box dimension of fractal continuous function, some fundamental conclu-
sions are listed in the following Lemma, interested readers can refer to [3] [5] 
[13] [16]. 

Lemma 2.3. Let ( ) ( ), ∈ Jf x g x C  be a continuous function with box dimen-
sion ( )1 2< <s s , the following statements obviously hold. 

1) If ( ) ( )dim , dim ,> B Bf J g J , then ( ) ( )dim , dim ,+ = B Bf g J f J . 
2) For a constant function ( ) =f x c , ( )dim , 1=B c J . 
3) ( ) ( )dim , dim ,+ = B Bf c J f J , where ( ) =f x c  is a constant function. 
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4) ( )1 dim , 2≤ ≤B f J , or ( ) ( )1 dim , dim , 2≤ ≤ ≤ B Bf J f J .  
Since ( ) ( )dim , dim ,+ = B Bf c J f J  by Lemma 2.3, it is reasonable to as-

sume ( )0 0=f  without losing generality. Note that C represents an absolute 
constant and are possibly different values even at the same line in this paper. 

Lemma 2.4. Assume that ( ) ( ), , 1 1δ δ ∈∆ = + ≥ ix y i i i , then for any  
1 1≤ ≤ −k i ,  

( ) ( ) ( ) ( ) ( )1

1 1

,
sup d .ν ννδ

−

− −
∆ ∆∆∈∆

− − − + ≤ − +∫ k kki
f f

x y
y t f t f x y t t C i k R R

 
 

Proof: Since ( )1δ δ≤ ≤ +k t k  and ( )1δ δ≤ ≤ ≤ +i x y i , so  
( ) ( )1 1δ δ− ≤ − + ≤ +k x y t k . Denote ( ){ } 2, | ,Λ = ∈∆ ⊂ix y x y R . Now Λ and 
∆k  are split into two parts as  

( ) ( ){ }1
1 , | 1 , for some , , ,δ δΛ = − ≤ − + ≤ ∈∆ ⊂ ∆ ∈∆k k ix y k x y t k t x y

 
 

( ) ( ){ }2
2 , | 1 , for some , , ,δ δΛ = ≤ − + ≤ + ∈∆ ⊂ ∆ ∈∆k k ix y k x y t k t x y

 
 

Apparently,  
1 2

1 2 , and .Λ ∪Λ ⊆ Λ ∆ ∪∆ ⊆ ∆k k k   

Hence, we arrive at  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1
1

2
2

1
1

2
2

1

,

1

,

1

,

1

,

1

,

sup d

sup d

sup d

sup d

sup d

ν

ν

ν

ν

ν

δ δ

−

∆∈∆

−

∆∈Λ

−

∆∈Λ

−

∆∈∆

−

∆∈Λ

− − − +

≤ − − − +

+ − − − +

≤ − − + − − +

+ − − − +

∫

∫

∫

∫

∫

i

k

k

k

k

kx y

x y

x y

x y

x y

y t f t f x y t t

y t f t f x y t t

y t f t f x y t t

y t f t f k f k f x y t t

y t f t f x y t t
 

 

( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )

( ) ( )

( ) ( )

1

1

1

1

1

1
, , ,

, ,

, ,

1
, ,

1
, ,

d

2 1

2 1 1

2 where 1 1 by mean value theorem

.

ν

ννν

ν νν

ν ν

νν

δ δ δ
ν

δ
ν

δ ξ ξ

δ

−

−

−

−

−

−
∆ ∆ ∆ ∆

∆ ∆

∆ ∆

−
∆ ∆

−
∆ ∆

≤ + + −

 ≤ + − − − +  

 ≤ + − + − − − 

≤ + − − ≤ ≤ − +

≤ + −

∫k k k k

k k

k k

k k

k k

f f f

f f

f f

f f

f f

R R R y t t

R R y k y k

R R i k i k

R R i k i k

C R R i k
 

 

Lemma 2.4 is done. 
Remarks to Lemma 2.4: This lemma plays key role for the later proof of 

Theorem 3.1. The technique for treating this kind of integration is possibly of 
general methodology, which is why we claim that our paper is a new general 
method to deal with other similar fractional integrals. 

3. On All Fractal Continuous Functions 

It has been studied in the past days that Box counting dimension of fractional 
integral on only particular fractal functions such as Weierstrass type, Besicovitch 
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type, and Hlder continuous functions (see references and there in, or our intro-
duction). This paper takes an attempt to estimate the fractal dimension of frac-
tional integral on all fractal continuous functions and arrives at a weaker answer 
for conjecture 1.1. 

Theorem 3.1. Let ( )∈ Jf x C  with ( )0 0=f , then  

( ) ( )dim , dim , .ν− ≤ B BD f J f J  

Proof: If we try to estimate 
,ν δ−D f

N  of Riemann-Liouville fractional integral 
(1.1), by Lemma 2.2, we need calculate the oscillation of ( )ν−D f x  on all sub-
interval ( ) ( ), 1 0,1,2, , 1δ δ ∆ = + = −  i i i i m . For any , ∈∆ix y , suppose that 
≤x y  without loss generality. For convenience to deal with the difference  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1

0 0

1 1d d ,ν νν ν τ τ τ τ τ τ
ν ν

− −− −− = − − −
Γ Γ∫ ∫

y x
D f y D f x y f x f  

Let τ− = −x y t  for the second term above to obtain that  

( ) ( ) ( ) ( ) ( ) ( )1 1

0

1 1d d .ν ντ τ τ
ν ν

− −

−
− = − − +

Γ Γ∫ ∫
x y

y x
x f y t f x y t t  

Note that , ∈∆ix y  and ≤x y , so 0 δ≤ − ≤y x . We have  

   

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

, ,

1 1

0 0,

1 1

0,

1 1

0,

sup

1 sup d d

1 sup d d

1 sup d d

ν
ν ν

ν ν

ν ν

ν ν

τ τ τ τ τ τ
ν

ν

ν

−
− −

∆
∈∆

− −

∈∆

− −

−∈∆

−− −

−∈∆

= −

= − − −
Γ

= − − − − +
Γ

≤ − − − + + −
Γ

∫ ∫

∫ ∫

∫ ∫

i
i

i

i

i

D f x y

y x

x y

y y

y xx y

y y x

y xx y

R D f y D f x

y f x f

y t f t t y t f x y t t

y t f t f x y t t y t f t t

 

( ) ( ) ( ) ( )(
( ) ( ) ( ) ( ) ( ) )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

1

,

1 1

0

1

,

1 1

0,

1 2 3

1 sup d

d d

1 sup d

sup d sup d

1: .

δ ν

δ

ν ν

δ

δ ν

δ

δν ν

δ

ν

ν

ν

−

∈∆

−− −

−

∈∆

− −

∈∆ ∈∆

≤ − − − +
Γ

+ − − − + + −


≤ − − − +Γ 


+ − − − + + − 



= + +
Γ

∫

∫ ∫

∫

∫ ∫

i

i

i i

i

x y

y y x

i

i

x y

y

ix y y

y t f t f x y t t

y t f t f x y t t y t f t t

y t f t f x y t t

y t f t f x y t t y t f t t

I I I

 

From Lemma 2.4,  

( ) ( ) ( )

( ) ( ) ( )( )

( ) ( )1

1
1

,

1 1

,0

1 1

0

sup d

sup d

.

δ ν

δ

ν

ννδ
−

−

∈∆

−
−

∆∈∆=

−
−

∆ ∆
=

= − − − +

= − − − +

≤ − +

∫

∑ ∫

∑

i

ki

k k

i

x y

i

x yk

i

f f
k

I y t f t f x y t t

y t f t f x y t t

C i k R R

 

For the calculation 2I , take a substitution δ− =t i u , and note that  
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( )1δ δ≤ ≤ ≤ +x y i , then  

( ) ( ) ( )

( ) ( ) ( )

( )

( )

1
2

,

1

0,

1
, 0

,

,

sup d

sup d

d

1

1 .

ν

δ

δ ν

δ ν

ν

ν

δ δ δ

δ

δ
ν

δ
ν

−

∈∆

− −

∈∆

− −
∆

∆

∆

= − − − +

= − − + − − + +

≤ − −

= −

≤

∫

∫

∫

i

i

i

i

i

y

ix y

y i

x y

y i
f

f

f

I y t f t f x y t t

y i u f i u f x y i u u

R y i u u

R y i

R

 

Take direct calculations for 3I ,  

( ) ( )

( ) ( ) ( )

( )( )0

0

1
3 0

1

0

,

1
,

sup d

sup 0 d

1

.

δ ν

δ ν

νν

ν ν

δ
ν
δ

−

∈∆

−

∈∆

∆

−
∆

= −

= − −

≤ − −

≤

∫

∫
i

i

y

y

f

f

I y t f t t

y t f t f t

R y y

C i R

 

Combination of 1I , 2I , and 3I  leads to  

( ) 1
,,

0
1 .ν

ννδ−

−
∆∆

=

≤ +∑ ki

i

fD f
k

R C k R  

Finally, we focus on the estimation of 
,ν δ−D f

N , the size of δ-mesh squares in-
tersecting ( ),ν− D f J . Note 

0,ν− ∆D f
R  can be estimated like 3I . At last, from 

Lemma 2.2, we obtain that  

( )
( )

1
1

, ,
0

1 11
,

0 0
11

1
,

0 1

1 11 1
, 0

0
1

1
,

0

,

2

1

1

d

.

ν νδ

νν

ν
ν ν

ν ν ν

δ

δ

δ

δ

δ δ

δ

− −

−
−

∆
=

−
−−

∆
= =

−−
−

∆
= =

−
− − −

∆
=

−
−

∆
=

≤ +

≤ +

 ≤  
 

≤

≤

≤

∑

∑∑

∑ ∑

∑ ∫

∑

i

k

i

i

i

m

D f D f
i

m i

f
i k

m m

f
i k

m

f
i

m

f
i

f

N R

C k R

kC m R
m m

C R x x

C R

CN

 

By Definition 2.1, we reach that  

( ) ( )

( )

,,

0 0

,

0

log log
dim , lim lim

log log
log

lim dim , ,
log

ν δδν

δ δ

δ

δ

δ δ

δ

−−

→ →

→

= ≤
− −

= =
−





fD f
B

f
B

N CN
D f J

N
f J

 

which completes the proof of Theorem 3.1.  
Remarks: Some more statements are listed as follows. 
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1) Theorem 3.1 makes a positive answer to Conjecture 2.1 in [16] for Rie-
mann-Liouville fractional integral and partly answers to the smoothness of frac-
tional calculus like [4] [7]. 

2) After our discussion on smoothness of fractional calculus, we insist on the 
strong relationship of box dimension of fractal continuous function with its 
Riemann-Liouville fractional integral (this is part of Conjecture 1.1):  

[ ]( ) [ ]( )dim , 0,1 dim , 0,1 .ν ν− ≤ − B BD f f  

Furthermore,  

[ ]( ) [ ]( )dim , 0,1 dim , 0,1 .ν ν− = − B BD f f  

However, it is beyond our abilities to solve these problems. 
For an arbitrary fractal continuous function, Theorem 3.1 shows that a weaker 

estimation (2) in Conjecture 1.1 reaches. Can the exact quality estimation (3) in 
Conjecture 1.1 arrive at? We discuss this problem through 1-dimensional fractal 
continuous function in the sequent section. 

4. On All 1-Dimensional Fractal Continuous Functions 

There are many works to construct a curve of 1-dimensional fractal continuous 
function, then to calculate its fractional integral dimension [2] [14] [16] [17] [24] 
[30] [31]. These works show that a plane curve with unbounded variations and 
(or) infinite lengths is a really fractals with one fractal dimension. However, De-
vil’s staircase [32] (see Figure 1) is regarded as 1-dimensional fracture though it 
is of bounded variation and finite length, and then is actually an “ordinary 
curve”. Here, we discuss “a real fractal continuous function” with unbounded 
variation and infinite length. 

For a 1-dimensional fractal function, what is its box dimension of the graph of 
fractional integral? Appeared papers discussed some examples such as Koch 
curve and constructed curves. Here study Riemann-Liouville fractional integral 
of all fractal functions with one box dimension. 

Theorem 4.2. Assume ( ) [ ]0,1∈f x C  and [ ]( )dim , 0,1 1=B f  such as fractal 
functions with unbounded variation and/or infinite lengths. Then we derive that 

[ ]( ) [ ]( )dim , 0,1 dim , 0,1 1.ν− = = B BD f f  

 

 
Figure 1. Devil’s staircase. 
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Proof: Combining with Theorem 3.1 and Lemma 2.3 leads to  

[ ]( ) [ ]( )
[ ]( ) [ ]( )

1 dim , 0,1 dim , 0,1

dim , 0,1 dim , 0,1 1,

ν ν− −≤ ≤

≤ = =

 

 

B B

B B

D f D f

f f
 

which means [ ]( )dim , 0,1 1ν− =B D f . The proof is completed. 
Remarks: Theorem 4.2 includes Theorem 3.1 in Rfs. [3], Theorem 1.2 and 

Theorem 2.2 in Rfs. [14]. Actually, these references discussed only some exam-
ples of 1-dimensional fractal functions such as Koch curve and constructing 
some particular unbounded functions. Theorem 4.2 answers (1) in Conjecture 
1.1 completely. The published papers tested only examples of 1-dimensional 
functions. 

5. Conclusions 

For a long time, the smoothness of integro-differentiation has been focused. The 
first idea checking the fractal dimension is to execute numerical simulation other 
than rigid proof by mathematical theory. Zähle [8] designed a method to calcu-
late the fractional derivative and believed (1.3) is true. And Tatom [4] made a 
systematic numerical calculation of fractal integration for many fractal Brownian 
motions and deterministic fractal functions like the Koch curve, and concluded 
that (1.3) is true. Mathematical proofs of (1.3) or weaker results (1.4) and (1.5) 
are believed sophisticatedly. Hence, this problem is considered in most cases by 
special functions like Weierstrass type functions or Besicovitch functions, and 
recently by Hlder continuous functions. We intend to claim that Conjecture 1.1 
holds. This paper considers arbitrary fractal functions to reach a weaker result in 
comparison to the conjectured results in Rfs [4] [16], which is 

( ) ( )dim , dim , .ν− ≤ B BD f J f J  

However, this estimation indicates at least that the fractional integration does 
not decrease the smoothness or not increase the fractal dimension for all conti-
nuous fractal functions. It is a very interesting conclusion that, for 1-dimensional 
fractal functions, we proved that [ ]( ) [ ]( )dim , 0,1 dim , 0,1 1ν− = = B BD f f , 
which answers completely the fractal calculus conjecture for one box dimension-
al fractals. We believe strongly that at least ( ) ( )dim , dim ,ν ν− ≤ − B BD f J f J . 
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