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Abstract 
A novel method of renormalization called Pacman renormalization allows us 
to study (unicritical) Siegel functions through Pacman-type functions. It has 
been used to investigate the Siegel parameters with combinatorially periodic 
rotation number in the main cardioid of the Mandelbrot set. It is already 
known that it can be defined a Pacman renormalization operator such that 
for Siegel pacmen, with combinatorially periodic rotation numbers, the oper-
ator is compact, analytic and has a unique fixed point, at which it is hyper-
bolic with one-dimensional unstable manifold. In this paper we observe that 
this Pacman renormalization operator is compact and analytic at any Siegel 
Pacman or Siegel map with combinatorially bounded rotation number. This 
allows us to define a renormalization operator on the hybrid classes of the 
standard Siegel pacmen to which we built its horseshoe where the operator is 
topologically semiconjugated to the left shift on the space of bi-infinite se-
quences of natural numbers bounded by some constant.  
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1. Introduction 

Renormalization theory is related to some unsolved problems about the Man-
delbrot set  , such as the self-similarity and the local connectedness conjec-
ture [1]. Some of the most important renormalization theories are: quadrat-
ic-like (or Douady-Hubbard) [2] [3], parabolic [4], and Siegel [5] [6]. 

Our work focuses on the renormalization of Siegel-type functions, that is, ho-
lomorphic functions ( ) ( ): , ,ff U α α→   with an indifferent fixed point α, 
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which has a neighborhood where it is linearizable, it means that is conjugated to 
a rotation, of an irrational angle [ ]0,1θ ∈ , on the unit disk. Its maximal domain 
of linearization Zf is called the Siegel disk of f. We are assuming f has a unique 
critical point which is located in the quasicircle fZ∂ , so by ([7], Theorem 3.2), θ 
has a (simple) continued fraction, where all the elements of the continued frac-
tion are bounded. 

One of the most important works about the renormalization of Siegel-type 
functions is that of McMullen [5] where he works with holomorphic pairs which 
are intended to complexify analytic commuting pairs, that is, the dynamic beha-
vior on the boundary of the Siegel disk near the critical point. This renormaliza-
tion relates the approximation in continued fraction of a number θ with the first 
return maps of the rotation by an angle θ at intervals on the boundary of the unit 
disk. When he applies these tools to a quadratic polynomial with rotation num-
ber with periodic continued fraction, he showed that the renormalizations con-
verge to a fixed point geometrically fast, leading to an insight of the hyperbolici-
ty for these parameters. 

Later, Yampolsky [6] introduced the cylindrical renormalization and using the 
results of the McMullen Siegel renormalization, constructs hyperbolic fixed 
points for this operator and proves that the dimension of its unstable manifold is 
exactly one. 

On the other hand in [8], Branner and Douady defined a type of surgery that 
embeds the basilica limb-1/2 onto the rabbit limb-1/3, which consists of remov-
ing certain sectors of the Julia sets of parameters in the limb-1/3 to obtain Julia 
sets of parameters in the limb-1/2, and vice versa, for the parameters in the 
limb-1/2 they add the copy of certain sectors of their Julia set to obtain Julia sets 
of parameters in the limb-1/3. 

Using the previous concepts in [7] they defined a new type of renormalization, 
called the Pacman renormalization. For this, Pacman-type functions are intro-
duced (Definition 1), which are holomorphic functions ( ) ( ), ,f U Vα α→  be-
tween two nested domains such that 0 1: \ \f U Vγ γ→  is a double-branched 
covering where 1γ  is an arc connecting α with V∂  (Figure 1). 
 

 

Figure 1. On the left side we see a full-Pacman :f U V→ , which is a two-to-one analyt-
ic function from 0\U γ  to 1\V γ  and such that ( )1

1 0f γ γ γ γ−
− += ∪ ∪ . A Pacman 

( ) ( )0 0: \ , ,f U O O V O′ →  which is the truncated version of a full Pacman with 

( ) 1f U V Oγ∂ = ∂ ∪ ∪∂  is shown on the right. 
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To define the general Pacman renormalization they first define the prime 
Pacman renormalization of a full Pacman f ([7], p.11). In a few words the sector 
S1, bounded by a curve 1γ  and its image 2γ , its removed by gluing 1γ  and 

2γ  along 1 2:f γ γ→ , and then taking the first return map to the complement 
of the sector S1, so we get a new full-Pacman. 

They define a pre-renormalization as a prepacman (Definition 3), which is a 
piecewise holomorphic function defined on a sector with two branches; one 
branch is univalent while the other branch has a single critical point and a small 
sector anchored to the other preimage of the fixed point α. Thus the prepacman 
is obtained as the first return maps to a sector S anchored to the fixed point. 
Then the sector S is glued properly and with it we obtain an abstract Pacman 
that finally embeds to the complex plane. 

The general Pacman renormalization of a Pacman f exists if there is a prepac-
man defined in a sector S anchored to the fixed point α and such that the func-
tions of the prepacman are iterates of f realizing the first return map to S (Defi-
nition 4). The Pacman renormalization is combinatorially some iteration of the 
prime Pacman renormalization. This type of renormalization is mainly used in 
Siegel pacmen (Definition 8), which are pacmen functions that have a neigh-
borhood centered on the fixed point α where they are Siegel maps. Although to 
apply this operator it is not necessary for the function to be a Pacman, it is 
enough that exists a prepacman in the dynamic plane of an analytic function 
with distinguished fixed point α, so that a compact and analytic Pacman renor-
malization operator can be defined near it (Remark 1). 

In ([7], Theorem 1.1), they proved that for any rotation number θ with peri-
odic continued fraction expansion (Definition 6), the Pacman renormalization 
operator has a unique periodic point f∗  which is a Siegel Pacman with rotation 
number θ. Furthermore this periodic point is hyperbolic with one-dimensional 
unstable manifold and the stable manifold consist of all Siegel Pacman with the 
same rotation number. By applying the Pacman renormalization operator to the 
quadratic Siegel polynomials on the main cardioid of the Mandelbrot set, with 
periodic rotation number, they were able to get rescaling coefficients for the 
centers of the small satellite copies of the Mandelbrot set close to these Siegel 
parameters of periodic type. 

The main motivation of this work was to extend the previous result ([7], 
Theorem 1.1) to Siegel parameters of bounded type but to achieve this it is ne-
cessary to build a renormalization horseshoe for this Pacman renormalization 
operator. In the first Theorem of this article we prove that, due to the results in 
[7], for any Siegel Pacman (or Siegel map), with combinatorially bounded rota-
tion number (Definition 6), there is some neighborhood where the Pacman re-
normalization operator is compact and analytic, in addition it acts on the rota-
tion number as some iteration of the function Rprm (Lemma 4).  

Theorem 1. For any Siegel Pacman (or Siegel map) : ff U V→  with rota-
tion number bndθ ∈Θ , there exists a Siegel prepacman ( ), ,k kF S f f− +=  
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around any point fx Z∈∂ , different from the critical point or any of his ite-
rated preimges, and a gluing function : S Vψ ′→  that projects F to the Siegel 
Pacman :f U V′ ′→  with rotation number ( )t

prmR θ , for some t∈ . Also 
there exists small Banach neighborhoods ( ),WN f ε  and ( ),UN f δ′   and a 
Pacman renormalization operator  

( ) ( ): , ,W UN f N fε δ′→   

such that   is compact and analytic.  
It is worth mentioning that when the rotation number is combinatorially pe-

riodic (Definition 6) the Pacman renormalization operator is not necessarily the 
same as ([7], Theorem 3.16), because they build a very specific sector of renor-
malization that they need for the operator to fix a Siegel Pacman with periodic 
rotation number. 

Due to Theorem 1 we were able to define a Pacman renormalization operator 

M  for which we built a horseshoe, for this we need to focus on a specific type 
of Siegel pacmen, the standard Siegel pacmen (Definition 10), because we can 
work with their hybrid classes (Remark 2). First given a fixed 0M > , we define 
the set of irrational rotation numbers ( )bnd MΘ  (Definition 11), such that their 
continued fraction (Definition 5) satisfies that all their elements are bounded by 
M. With this we can define the horseshoe or the non-escape set M  (Defini-
tion 11), which will be the set of hybrid classes of standard Siegel pacmen with 
rotation numbers in ( )bnd MΘ , these classes are infinitely renormalizable 
backwards and forwards under the renormalization operator M  (Definition 
11), where renormalizing a hybrid class means to apply the Pacman renormali-
zation operator M  to one representative of the hybrid class, this is well de-
fined because of Theorem 1. The operator M  acts on the rotation numbers as 
the function Rprm iterated a number of times such that it eliminates the first ele-
ment of the continued fraction of the angle. For the conjugation we consider the 
space ( )MΣ  of bi-infinite sequences of natural numbers bounded by the con-
stant M, with the weak topology (Definition 12). The left shift ( ) ( ): M Mω Σ →Σ  
move each element of the sequence one space to the left (Definition 12). We 
prove the following theorem in a similar way as Lyubich proves ([3], Lemma 8.1), 
but instead of asking the a priori bounds condition, we used that the set 

( )bnd MΘ  is closed (Remark 4).  
Theorem 2. For any 0M >  the set M  is a horseshoe for the renormaliza-

tion operator :M M M→    which acts on the standard Siegel pacmen 
classes with rotation number in ( )bnd MΘ . The natural extension 

ˆˆ : :M M M→    is a homeomorphism topologically conjugated to the left shift 
( ) ( ): M Mω Σ →Σ  while M  is semiconjugate to ω.  

To show that the set M  is a horseshoe for the renormalization operator 

M  we need to prove that any element of the set M  has bi-infinite and pre-
compact orbits with respect to the Pacman renormalization operator M  and 
also that this renormalization operator is topologically semiconjugate to the left 
shift in the space ( )MΣ  with the weak topology. 
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The contribution of this work is bring us a few steps closer to the Lyubich 
conjecture ([7], Appendix C) that it can be defined a global Pacman renormali-
zation operator on the main molecule of the Mandelbrot set which will be 
hyperbolic with one dimensional unstable manifold such that its renormaliza-
tion horseshoe is compact and combinatorially related with Rprm, which would 
imply MLC for any parameter in the main molecule. 

2. Preliminaries 

Most of the definitions in this section are due to [7]. For technical reasons in the 
Pacman renormalization theory, two types of pacmen functions are used: 
full-pacmen and truncated pacmen or simply pacmen. A Pacman is obtained 
from a full-Pacman by removing a small neighborhood of the pre-fixed point α’ 
(the other perimage of the fixed point α). On the other hand we can get a 
full-Pacman from a truncated Pacman by extending it topologically. 

Definition 1. Consider a closed topological disk V  with a simple arc 1γ , 
connecting a boundary point of V to a point α in the interior. A full-Pacman is a 
map :f U V→  such that:  
 α is a fixed point of f: ( )f α α= .  
 U V⊂  is a closed topological disk.  
 The critical arc 1γ  has exactly three lifts: 0 Uγ ⊂  and , Uγ γ+ − ⊂ ∂ , such 

that 0γ  starts at the fixed point α while ,γ γ+ −  start at the pre-fixed point 
α’; we assume that 1γ  only intersect 0 , ,γ γ γ+ −  in α.  

 :f U V→  is analytic and 0 1: \ \f U Vγ γ→  is a two-to-one branched 
covering. Whence f has only one critical point ( )0 0\c f U γ∈ . We denote 
by ( )1c f  the critical value of f.  

 f admits a locally conformal extension through { }\U α′∂ .  
Let O be a small closed topological disk around α such that ( ) ( )1c f int O∉  

and suppose that 1γ  cross-intersects O∂  at a single point. There are two con-
nected components 0O α  and 0O α′ ′  of ( )1f O− . Removing 0O′  from 
the domain U, we get a truncated Pacman or simply Pacman  

( ) ( )0 0: \ , , .f U O O V O′ →  

This truncated Pacman is an analytic function admitting a locally conformal 
extension through U∂  such that it can be topologically extended to a full Pac-
man. 

We consider two subsets of U∂ : the external boundary ( )1:extU f V−∂ = ∂  
and the forbidden part of the boundary : \frb extU U U∂ = ∂ ∂  (Figure 1).  

Note that full-pacmen functions are almost quadratic-like functions [2], the 
problem is the curve 1γ  since it has three preimages and also makes that 
( )f U V∂ ∂ . 
We can get some examples of full Pacman and Pacman functions applying the 

Pacman renormalization to any Siegel function like a Siegel polynomial ([7], 
Lemma 3.4). 

For a Pacman :f U V→ , the non-escaping set fR  can be defined in a 
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similar way as it defined for quadratic like functions ([3], p. 332), as the intersec-
tion of all preimages of f, and the escaping set is the complement \ fV R . 

External rays of a Pacman can be defined embedding a rectangle R  in 
\V U  so that the base B  of the rectangle is extU∂  and the top horizontal 

side T  is a subset of V∂ . The images of the vertical lines whithin R  form a 
lamination of \V U . We pullback this lamination to all iterated preimages 

( )nf − R . The leaves of this lamination that begins at V∂  are called external 
rays segments; an infinite ray segment is called external ray. We can also define 
the angle ( ) 1aθ ∈  of the external ray segment passing through a point a in 
a subset ⊂A B  ([7], pp. 10-11). 

The objects required to accomplish Pacman renormalization are then defined. 
This process takes place in a sector, which is a subset of the Pacman domain, and 
is pasted topologically with a function to produce another Pacman. 

Definition 2. A sector S is a closed topological disk with two distinguished 
arcs , Sβ β− + ⊂ ∂  meeting at a single point, called the vertex of S. A gluing is a 
map : S Vψ →  from a closed sector ( ), ,S β β− +  onto a closed topological 
disk V ⊂  in such a way that the function ψ  is conformal in the interior of 
S, ( ) ( )ψ β ψ β− +=  and ψ  can be conformally extended to a neighborhood of 
any point in β β− +∪  except at the vertex of S.  

The following definition of prepacman is the analogue of McMullen’s holo-
morphic pairs ([6], Definition 2.3). 

Definition 3. Consider a closed sector ( ), ,S β β− +  divided in two subsectors 
,T T− +  by the interior ray 0β . Let :f U S− − → , :f U S+ + →  be a pair of ho-

lomorphic maps, defined on U T− −⊂ , U T+ +⊂ . We say that  

( ), ,F S f f− +=  

is a prepacman if there exists a gluing ψ  on S which projects ( ),f f− +  onto a 
(full)-Pacman :f U V→  where ,β β− +  are mapped to the critical arc 1γ  and 

0β  is mapped to 0γ  (Figure 2). The map ψ  is called a renormalization 
change of variables. The dynamical objects like the non-escaping set of a pre-
pacman F are preimages contained in S of the corresponding dynamical objects 
of f under ψ . 

Since each of β−  and β+  has two preimages, one of which is 0β , then the 
gluing makes 1γ  to have exactly three preimages. Also the definition implies 
that ,f f− +  commute in a neighborhood of 0β . 

We will see later that the following Pacman renormalization definition can be 
extended to any function :f U V→  with a distinguished fixed point ( )fα , 
that is, the Pacman renormalization is not only defined for Pacman functions 
but for any function that has a prepacman, such as any Siegel function ([7], Co-
rollary 3.7).  

Definition 4. A (full)-Pacman :f U V→  is renormalizable if there exist a 
prepacman 

( ): , : ,F f f U S f f U S− − + += = → = →a b  
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Figure 2. In a (full)-prepacman ( :f U S− − → , :f U S+ + → ) we have U− − += ϒ ∪ϒ , 
where the critical point of f−  belongs to −ϒ  so f−  maps −ϒ  two-to-one to S−  
and +ϒ  one-to-one to S+ . The function f+  maps U+  univalently onto S+ . After 
gluing the sector with ψ , ( ) ( ) 1ψ β ψ β γ+ −= = , ( )0 0ψ β γ= , ( ) 2ψ β γ= , we obtain a 

full-Pacman. 
 
defined on a sector S V⊂  with vertex at α, such that ,f f− +  are iterates of f 
realizing the first return map to S and such that the f-orbits of ,U U− + , before 
they return to S, cover a neighborhood of α compactly contained in U. We said 
that F is the pre-renormalization of f and the Pacman  

ˆ ˆ ˆ:f U V→  

the renormalization of f.  
Note that by ([7], Lemma A.2), the Pacman renormalization comes from a 

sector renormalization on the closed unit disk, then combinatorially any Pacman 
renormalization is some iteration of the prime Pacman renormalization. 

To give a Banach space structure to the space of pacmen functions they use 
the uniform norm in the space of analytic functions. So if : ff U V→  is a 
Pacman with a truncation disk O ≠ ∅  and assuming that there is a topological 
disk fW U  with a piecewise smooth boundary such that f extends analytical-
ly to W and continuously to its closure. For any small 0ε > , a Banach ball 

( ),WN f ε  is the set of analytic maps :g W →  with continuous extensions to 
W∂  such that  

( ) ( )sup .
z W

f z g z ε
∈

− <  

Next it is shown that the Pacman renormalization operator is analytic in a 
Banach ball, which means that it is Frechet differentiable on these Banach spaces, 
and the differential is linear with respect to the complex numbers. 

We say that a curve γ lands at α, at a well-defined angle, if there exists a 
tangent line to γ at α. Due to ([7], Lemma 2.5) we know that given a Pacman 
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: ff U V→ , it is enough that the curves 1γ  and 0γ  land at well-defined an-
gles for the existance of a small Banach neighborhood ( ),WN f ε  of f where all 
the maps ( ),Wg N f ε∈  have a domain gU W⊂ , such that : gg U V→  is a 
Pacman with the same 1, ,O Vγ  but translated to the point ( )gα , the fixed 
point of g. Furthermore, periodic rays are also stable, that is, if a periodic ray 
( )R f  of f lands at a repelling periodic point ( ) fx f U∈ , then the periodic ray 
( )R g  of g lands at ( ) gx g U∈  and ( )R g  is contained in a small neighbor-

hood of ( )R f . 
Now suppose that f has a renormalization sector Sf, using the above and solv-

ing the Beltrami equation for the push forward of the Beltrami differential gen-
erated by a holomorphic movement of the sector Sf (the prepacman of f), re-
normalization sectors Sg and gluing functions gψ  are obtained that depend 
analytically of g in a small enough Banach neighborhood of f. That is, once we 
know that there is a renormalization sector Sf for f whose curves 0, ,β β β+ −  land 
in α with a well-defined angle, then there is also a prepacman for the functions g 
in a sufficiently small neighborhood of f and therefore they will also be Pacman 
renormalizable. That is how they get the following result ([7], Theorem 2.7), 
which states that in order to obtain a compact and analytic Pacman renormali-
zation operator, it is sufficient for a prepacman of f to exist with curves landing 
at well-defined angles on ( )fα . 

Theorem 3 Set : ff U V→  a Pacman and ˆ ˆ ˆ:f U V→  its renormalization. 
Suppose that the curves 0 , ,β β β+ −  land at α at pairwise distinct well-defined 
angles. Then for every sufficiently small ε, it is defined in the neighborhood 

( ),WN f ε  a compact analytic Pacman renormalization operator ˆ: g g  
such that ˆf f= .  

Remark 1. It is important to note that the proof of the previously stated theo-
rem does not require that the function f be a Pacman, rather it only requires that 
a prepacman can be defined in the dynamic plane of an analytic map f with a 
fixed point α. This allows us to define a compact analytic Pacman renormaliza-
tion operator near f.  

Now we are going to define the continued fraction representation of a number 
[5] [9], it is related with the approximation of irrational numbers ([10], Appen-
dix C), the linealization of Siegel maps ([10], Chapter 11) and to know how the 
rotation number changes when the Pacman renormalization is applied ([7], 
Lemma 3.4). 

Definition 5. A (simple) continued fraction is an expression of the form: 

[ ]0 1 2 3 0

1

2
3

1; , , , : 1
1

a a a a a
a

a
a

= +
+

+
+





 

where 0a ∈  and ia ∈ , for all i∈ , are called coefficients or terms of the 
continued fraction.  

Due to a result of Euler ([9], p. 177), every real number α can be represented 
uniquely by a (simple) continued fraction, this continued fraction is finite if α is 
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rational and infinite if α is irrational (the rational numbers may have two repre-
sentations because [ ] [ ]0 1 2 0 1 2; , , , ; , , , 1,1n na a a a a a a a= −  ). 

Definition 6. Denote perΘ  the set of combinatorially periodic rotation 
numbers, that is, the numbers [ ] ( )1 2 30; ; , , 0,1a a a ∈ ∩   with periodic con-
tinued fraction (with periodicity begining at a1), so it has a block of elements 

1, , ka a  that are repeated periodically and written:  

[ ]1 2 1 2 3 1 2 3 10; , , , 0; ; , , , , , , , , , , .k k ka a a a a a a a a a a a  =      

Denote bndΘ  the set of combinatorially bounded rotation numbers, that is, 
the numbers [ ] ( )1 2 30; ; , , 0,1a a a ∈ ∩   with the elements of its continued frac-
tion bounded by the same constant:  

, for all .ia M i≤ ∈  

Observe that ( )0,1per bndΘ Θ ⊂ ∩  .  
Next we define a Siegel map with only one critical point, these are the func-

tion where we are interested in applying the Pacman renormalization. 
Definition 7. Set a holomorphic map ( ) ( ): , ,ff U α α→   which has an in-

different fixed point α with multiplier ( ) 2e if θα π′ =  and rotation number 
\θ ∈   that is locally linearizable in a neighborhood of α, it means that is to-

pologically conjugated to the rotation ( )e θ  in the unit disk. Its maximal com-
pletely invariant linearization domain fZ  is called the Siegel disk of f. If 

f fZ U  is a quasidisk whose boundary contains exactly one critical point 

0 fc Z∈∂ , then f is called a (unicritical) Siegel map. There is a foliation of the 
Siegel disk fZ  of f by equipotentials that come from the linearization, parame-
trized by their heights ranging from 0 (the height of α) to 1 (the height of fZ∂ ).  

For example if a quadratic polynomial of the form ( ) 2
cp z z c= +  has an in-

different fixed point on 
1 1 4

2
cα − −

=  with multiplier 2e iθπ  and rotation  

number bndθ ∈Θ , then by ([7], Theorem 3.2), it is a Siegel map and c∈∂  is 
located in the main cardioid of the Mandelbrot set. 

Definition 8. A Pacman :f U V→  is Siegel if: 
1) f is a Siegel map with Siegel disk fZ  centered at α.  
2) The critical arc 1γ  is the concatenation of an external ray R1 with an inner 

ray I1, such that the unique point in the intersection 1 fZγ ∩  is not precritical.  
3) The truncated Pacman is ( ) ( )0 0: \ , ,f U O O V O′ → , where fO Z⊂ .  
The rotation number and multiplier of a Siegel Pacman are identical to those 

of a Siegel map (Definition 7). By ([7], Theorem 3.2), it follows that the rotation 
number of a Siegel map is in bndΘ . The level of truncation of f is the height of 

O∂ . The Julia set of the Siegel Pacman f is:  

( )
0

: n
f f

n
f Z−

≥

= ∂


 . 

Since 1γ  is a concatenation of rays, then 0γ  is a concatenation of an exter-
nal ray R0 and an internal ray I0 with ( )0 0 1 1f R I R I∪ = ∪ . We said that two 

https://doi.org/10.4236/apm.2023.1310047


C. A. Marin-Mendoza, R. Valdez-Delgado 
 

 

DOI: 10.4236/apm.2023.1310047 683 Advances in Pure Mathematics 
 

Siegel pacmen f and g are combinatorially equivalent if they have the same ro-
tation number and if ( )0R f  and ( )0R g  have the same external angles. 

The prime Pacman renormalization ([7], p.11) is a suitable extension of the 
prime renormalization of a rotation on the closed unit disk 1  ([7], Appendix 
A). It involves the removing of a sector 1⊂   based on the fisrt return map 
to the complement 1 \  . We get a new rotation on the closed unit disk by 
gluing this complement by a function that depends on the rotation number, so it 
is enough to know how this gluing function acts on the rotation numbers to 
know how the prime Pacman renormalization change the rotation number of a 
Siegel Pacman ([7], Lemma A.1). 

Lemma 4. The rotation number of the prime renormalization of a rotation 
1 1:f →   by an angle θ is:  

( )
if 0 ;

1:
2

1 2

1 21 if 1.
prmR

θ θ
θθ

θ θ
θ

 ≤ ≤ −=  − ≤ ≤


 

If the continued fraction of θ is  

[ ] [ ]1 2 1 20; , , 1 0; , ,a a b bθ = = −   

with { }, \ 0i ia b ∈ , then  

[ ]( ) [ ]
[ ]

1 2 1
1 2

2 3 1

0; 1, , if 1;
0; , , :

1 0; , , if 1.prm

a a a
R a a

a a a
 − >=  − =







 

[ ]( ) [ ]
[ ]

1 2 1
1 2

2 3 1

1 0; 1, , if 1;
1 0; , , :

0; , , if 1.prm

b b b
R b b

b b b
 − − >− =  =







 

Observe that perθ ∈Θ  if and only if there exists t∈  such that ( )t
prmR θ θ= . 

Since the Pacman renormalization is an extension of the sector renormaliza-
tion on the unit disk which in turn is some iteration of the prime renormaliza-
tion of a rotation on the unit disk ([7], Lemma A.2), then the Pacman renorma-
lization also acts on the rotation numbers as some iteration of the above func-
tion Rprm ([7], Lemma 3.4). 

Definition 9. A hybrid conjugacy between Siegel maps 1 1 1:f U V→  and 

2 2 2:f U V→  is a quasiconformal conjugacy 1 1 2 2:h U V U V∪ → ∪  that is con-
formal on the Siegel disks. A hybrid conjugacy between Siegel pacmen is defined 
analogously.  

The hybrid conjugacy relation between Siegel maps (pacmen) on their Siegel 
disk, tells us that these functions have essentially the same dynamics on their Ju-
lia sets, because we can get all the Julia set by just taking the preimages of the 
Siegel disk. The hybrid conjugacy is an equivalence relation so we can work with 
hybrid classes. 

Now we mention some of the results in ([7], pp. 16-29), that we are going to 
use in the proof of the Theorem 1. 

According to ([7], Theorem 3.6), a Siegel map’s rotation number determines 
its hybrid class on a neighborhood of the Siegel disk. However, for two Siegel 
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pacmen, which are combinatorially equivalent, to be hybrid equivalent on their 
respective domains, they must also have the same truncation level ([7], Theorem 
3.11). 

A Siegel prepacman F is just a prepacman of a Siegel Pacman f (Definition 3), 
but now to work with hybrid classes we are also going to care about the point at 
which the curve 0β  of the sector of the prepacman intersects with the Siegel 
disc of f. We say that f has a prepacman F around fx Z∈∂  if 0β  intersects 

fZ∂  at x. 
One of the first important results in [7] is the Lemma 3.4, it tell us that given 

any Siegel quadratic polynomial with rotation number of bounded type, there 
exists a prepacman around any point fx Z∈∂  which is neither the critical 
point nor its iterated preimage, that makes it Pacman renormalizable. Also the 
rotation number changes as some iteration of the function Rprm and the spread-
ing of ,U U+ −  around α stays as close as we want to the Siegel disk. Using this 
and ([7], Theorem 3.6), we can send a prepacman of any Siegel quadratic poly-
nomial to a prepacman of any Siegel function with the same rotation number as 
the polynomial, so every Siegel map is Pacman renormalizable ([7], Corollary 
3.7). 

Definition 10. A standard Siegel Pacman ([7], p. 26), is just a Siegel Pacman 
with 0γ  passing through the critical value and a standard prepacman is just a 
prepacman around the critical value in the dynamical plane of a Siegel map.  

The next remark tell us that, after setting a level of truncation, we can work 
with the hybrid Siegel pacmen classes, which are determined by their rotation 
number. 

Remark 2. By ([7], Theorem 3.11), we know that two standard Siegel Pacman 
(with the same truncation level) are hybrid equivalent if and only if they have 
the same rotation number.  

3. Main Results 

In this section we are going to prove Therorem 1 and Therorem 2 from the in-
troduction. 

Theorem 1 follows from the results in [7] and tells us that for any Siegel Pac-
man (or Siegel map), with combinatorially bounded rotation number, there is 
some neighborhood where the Pacman renormalization operator is analytic and 
compact. 

Theorem 5. For any Siegel Pacman (or Siegel map) : ff U V→  with rota-
tion number bndθ ∈Θ , there exists a Siegel prepacman ( ), ,k kF S f f− +=  
around any point fx Z∈∂ , different from the critical point or any of his ite-
rated preimges, and a gluing function : S Vψ ′→  that projects F to the Siegel 
Pacman :f U V′ ′→  with rotation number ( )t

prmR θ , for some t∈ . Also 
there exists small Banach neighborhoods ( ),WN f ε  and ( ),UN f δ′   and a 
Pacman renormalization operator  

( ) ( ): , ,W UN f N fε δ′→   
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such that   is compact and analytic.  
Proof. We know that every Siegel map is Pacman renormalizable ([7], Corol-

lary 3.7), in particular if the rotation number θ of f is of bounded type ([7], 
Lemma 3.4). Then we can use Theorem 3, so there is a neighborhood of f small 
enough where we can define a Pacman renormalization operator that is compact 
and analytic.  

Note that the renormalization sector of f in the last theorem when x is the 
critical value ( )0f c  and the rotation number of f is of periodic type, it is not 
necessarily the same renormalization sector of ([7], Lemma 3.15), because they 
needed a very specific renormalization sector that comes from the results of 
McMullen [5], which projects the prepacman to the same Siegel Pacman. 

The definition of the set M  is analogous to the definition of the horseshoe 

  in ([3], p.389-390), but instead of the a priori bounds condition ([3], p. 367), 
we ask that the rotation number be in the set ( )bnd MΘ  so the elements of the 
continued fraction are bounded by the constant M. 

Definition 11. Let us define the set ( )bnd bndMΘ ⊂Θ  as the subset of angles 
such that the elements of its continued fraction are bounded by the constant M, 
that is, if [ ]0 10; , ,a aθ =   or [ ]0 11 0; , ,a aθ = −   then ( )bnd Mθ ∈Θ  if and 
only if ia M≤ , for all { }0i∈ ∪ . 

The set of completely non-escaping points M  is the set of hybrid classes 
[ ]f  of standard Siegel Pacman, with a fixed truncation level, with their rotation 
number ( )bnd Mθ ∈Θ . To θ we can assign the infinite sequence { } 0n n

a
≥

 which 
depends on the elements of its continued fraction. Then we can take any se-
quence { } 0n n

a
<
⊂   such that na M≤ , with which we obtain a bi-infinite se-

quence { }n n
a

∈  related with θ. So we will have that [ ]f  is infinitely Pacman 
renormalizable backwards and forwards, which means that for all n∈  there 
are hybrid classes [ ]nf  and [ ]1nf +  defined by their rotation number  

[ ]( ) [ ]10; , ,n n nf a aρ +=   (or [ ]11 0; , ,n na a +−   depending on if [ ]0 1, ,a aθ =   
or [ ]0 11 , ,a aθ = −   and if n is odd or even) such that [ ] [ ]1M n nf f += , where 
[ ] [ ]0f f=  and renormalizing a hybrid class means doing the Pacman renorma-
lization on some representative [ ]f̂ f∈  in such a way that ˆ

M f  acts on the 
rotation number [ ]0 1 20; , , ,a a aθ =   as  

( ) [ ]( ) [ ]0
0 1 2 1 2: 0; , , , 1 0; , , ;a

M prmR R a a a a aθ = = −   

analogously in the case [ ]0 1 21 0; , , ,a a aθ = −   the operator M  acts as  

( ) [ ]( ) [ ]0
0 1 2 1 2: 1 0; , , , 0; , , .a

M prmR R a a a a aθ = − =   

Note that due to Theorem 5, the Pacman renormalization operator M  on 

M  is always well defined. Also this set is not empty because at least there are 
the classes [ ]f  such that its rotation number 0 10; , , , na a aθ  =    is periodic 
with ia M≤ , and we can associate the bi-infinite sequence:  

{ }0 1 0 1 0, , , , , , , , , , , .n n na a a a a a a a     

Remark 3. By the last definition given [ ] Mf ∈ , automatically we have a 
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sequence of classes [ ]{ }n Mn
f

∈
⊂


  such that [ ] [ ]1M n nf f += , which in turn 

generates a sequence of angles { }n n
θ

∈  defined by the rotation number of each 
class [ ]( ):n nfθ ρ= . Due to the condition [ ] [ ]1M n nf f +=  and how MR  acts 
on the rotation number, we can get a bi-infinite sequence  

[ ]( ) ( )2 1 0 1 2: , , , , , ,f a a a a aτ − −=    whose elements are the natural numbers that 
define the rotation numbers of the classes [ ]nf .  

The following definitions for the conjugation construction are analogous to 
([3], p.389-391). 

Definition 12. The natural extension ˆ ˆˆ :M M M→    of the map  
:M M M→    is defined as the lift of M  to the space of two-sided orbits 
[ ]{ }n n

f
∈

=


 , where ( ) [ ]{ }ˆ
M M n n

f
∈

=


   , then ˆ
M  is a homeomorphism 

with respect to the weak topology on ˆ
M . Which means that { },m m n n

g
∈

 =   
  

converges to [ ]{ }n n
f

∈
=


  when m →∞  if and only if given n∈  the 

coordinate ,m ng    is well defined as long as the coordinate [ ]nf  is well de-
fined and when this happens [ ],m n ng f  →   when m →∞ , that is, for each m 
there is a representavive of ,m ng    such that they converge to a representative 
of [ ]nf  in the space of analytic functions with the supreme norm. 

We also consider the space ( )MΣ  of bi-infinite sequences  
( )2 1 0 1 2, , , , , ,a a a a aτ − −=    of natural numbers bounded by the constant M 

with the weak topology (i.e. pointwise convergence as above). Let  
( ) ( ): M Mω Σ →Σ  stand for the left shift in this space, sometimes called the 

Bernoulli shift, so that a1 is the zero coordinate of ( )ω τ .  
The next remark tell us that ( )bnd MΘ  is a closed subset of bndΘ , it will al-

low us to define the renormalization horseshoe of the Pacman renormalization 
operator on the hybrid classes of standard Siegel pacmen. By renormalization 
horseshoe we mean a set that is invariant under the operator RM, sequentially 
compact and RM is topologically semi conjugated to the Bernoulli shift operator 
in the space of symbols ( )MΣ .  

Remark 4. Given any M ∈ , the set ( ) [ ]0,1bnd bndMΘ ⊂Θ ⊂  of irrational 
numbers [ ]0 1 20; , , ,a a aθ =   (the case [ ]0 1 21 0; , , ,a a aθ = −   is analogous) 
such that ia M≤ , for all 0,1,2,i =  , is a closed set. Indeed let  
{ } ( )n bndn

Mθ
∈

⊂ Θ , where ( ) ( ) ( )
0 1 20; , , ,n n n

n a a aθ  =    and suppose that there is 
a [ ]0 1 20; , , ,a a aθ =   such that nθ θ→  when n →∞ . Therefore θ is also ir-
rational and since the continued fraction expansion is unique, for all 0ε >  
there are ( ),N m N ∈  such that if for all n N≥ , nθ θ ε− < , then ( )n

i ia a= , 
for all i m≤ . So for all i∈ , ( )lim n

n i ia a→∞ = . And since for all ,i n∈ , 
( )n
ia M≤ , then its limit is also bounded by M, that is, ia M≤  for all i∈ . 

Thus [ ] ( )0 1 20; , , , bnda a a Mθ = ∈Θ .  
Now we are ready to prove the main theorem of this article.  
Theorem 6. For any 0M > , the set M  is a horseshoe for the renormaliza-

tion operator :M M M→    which acts on the hybrid classes of standard 
Siegel pacmen with rotation number in ( )bnd MΘ . The natural extension 

ˆ ˆˆ :M M M→    is a homeomorphism topologically conjugated to the left shift 
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( ) ( ): M Mω Σ →Σ  while M  is semiconjugate to ω.  
In summary we are going to prove that the following diagram is commutative 

and that the functions in it are continuous. 
 

 
 

We will divide the proof of the theorem into the following lemmas. 
Lemma 7. The set M  is precompact with respect to orbit renormalization.  
Proof. Let’s see that given [ ]0 Mf ∈ , which by remark 3 has a sequence of 

classes associated [ ]{ }n Mn
f

∈
⊂


  such that [ ] [ ]0

n
n Mf f=  and  

[ ] [ ]1M n nf f += , then we must find a subsequence { }kn k
f

∈
   

 and a class 
[ ] MF ∈  with [ ]lim

kk nf F→∞   =  , so we need to find representatives of these 
classes that converges to a representative of [ ]F  in the space of analytic func-
tions with the uniform norm. 

As we already said in Remark 3, for any [ ] Mf ∈  we can associate a se-
quence of angles { }n n

θ
∈  defined by the rotation number of each class  

[ ]( ):n nfθ ρ= , so given any N ∈  we can take the sequence { } ( )n bndn N
Mθ

≥
⊂ Θ  

of rotation numbers associated to each [ ]nf . Now by Remark 4, ( )bnd MΘ  is a 
closed subset of [ ]0,1 , then { }n n N

θ
≥

 must have a subsequence { }kn k
θ

∈
 con-

verging to a ( )bnd Mθ+ ∈Θ . Since every irrational number has a unique expres-
sion in continued fraction, the last convergence says that eventually the first 
elements kn

ia  of each 
knθ  must be equal to the first elements ia+  of the con-

tinued fraction of θ+ , that is kn
i ia a+=  for 00, ,i k=   where 0k →∞  if 

0
knθ θ+− → . 
Now to each 

knθ  we associate the standard Siegel Pacman class 
knf    so it 

has the rotation number 
knθ  and in the same way to θ+  associate its class 

[ ]F . To prove that [ ]
knf F  →   we need to find representatives where there is 

convergence. 
Define the angle θ+′  such that if 0 1 20; , , ,a a aθ + + +

+  =    (analogous if  

0 1 21 0; , , ,a a aθ + + +
+  = −   ), then 0 1 2: 0; 1, , ,a a aθ + + +

+  ′ = +  ; and in the same way 
for each 

knθ  we associate 
knθ ′  which consists of adding one to the first element 

of the continued fraction of 
knθ . So we have that ( )prmR θ θ+ +′ = , ( )k kprm n nR θ θ′ =  

and 
knθ θ+′ ′→ . 

Now consider the quadratic polynomials ( ) ( )2
cf z cθ θ= +  of Siegel type in 

the main cardioid of  , which have rotation number θ, that is,  

( ) ( )( ) 2e i
c cf θ
θ θα π′ = , where ( )c θα  is the α-fixed point of ( )cf θ . Let [ ]: 0,1g →∂   

be the function that to each [ ]0,1θ ∈  assigns the point 
( )221 1 e

4

i

c
θπ− −

=  in 
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the boundary of the main cardioid (this is because the α-fixed point of cf  satis-

fies that ( ) 2e i
cf

θα π′ =  and 
1 1 4

2
cα − −

= ). Therefore g is continuous in its 

domain. 
Set A∞  as the Banach space of analytic functions with the uniform norm. 

Now define the function :h A∞∂ → , such that ( ) ch c f=  is the polynomial 
( ) 2

cf z z c= + . Then the map g is continuous because if 1 2 0c c− → , then 
( ) ( ) ( )2 2

1 2 1 2 1 2 0h c h c z c z c c c
∞ ∞

− = + − + = − → . 
When we take the composition of functions [ ]: 0,1h g A∞→  we get a con-

tinuous function that to each [ ]0,1θ ∈  assigns the polynomial ( )cf θ . Then as 

knθ θ+′ ′→ , we have that ( ) ( )nk
cc

f f θθ +′′
→ . 

If we consider the Pacman renormalization operator applied on ( )cf θ+′
 with 

( )0x f=  ([7], Lemma 3.4), we can get a standard Siegel Pacman, in such a way 
that it acts as only one iteration of prmR  on the angle θ+′ , that is, subtracting 
one in the first coefficient of the continued fraction thus ( )prmR θ θ+ +′ = . Then by 
Theorem 5, there is a neighborhood ( )( ),U cN f θ ε

+′
, where the Pacman renorma-

lization operator   is compact and analytic. 
If we consider the standard Siegel Pacman ( )cf θ+′

 , by construction, we have a 
standard Siegel Pacman with rotation number θ+  therefore it is a representa-
tive of the class [ ]F  (Remark 2). In the same way if k∈  is big enough we 
have that ( ) ( )( ),

nk
U cc

f N f θθ
ε

+′′
∈  and if we consider ( )nkc

f
θ ′

  we will have a 
standard Siegel Pacman which has rotation number 

knθ , so it is a representative 
of the class 

knf   . Therefore as ( ) ( )nk
cc

f f θθ +′′
→  and given that the Pacman re-

normalization operator   is continuous in ( )( ),U cN f θ ε
+′

, we can conclude 
that ( ) ( )nk

cc
f f θθ +′′

→   on some neighborhood of ( )cf θ+′
 , that is to say, we 

have found representatives of the classes where convergence occurs. 
Finally let’s see that [ ] MF ∈ . By construction we know that its rotation 

number θ+  belongs to ( )bnd MΘ  so [ ]F  is infinitely forward renormalizable, 
but it remains to see that it is infinitely renormalizable backwards, for this we 
can just add any infinite sequence { }

0n n
a+

<
 bounded by M, in such a way that 

when combined with the sequence generated by θ+  we get a bi-infinite se-
quence { } ( )1 0 1, , , ,a a a M+ + +

− ∈Σ   which we can associate a sequence of hybrid 
classes of standard Siegel Pacman [ ]{ }n n

f
∈

 where the rotation number of 
[ ]nf  is given by 10; , ,n n na aθ + +

+ =    if n∈  is even and  

11 0; , ,n n na aθ + +
+ = −    if n∈  is odd. So [ ] [ ]0f F=  and therefore  

[ ] [ ]1M n nf f +=  for all n∈ .  
Lemma 8. The operator ˆ

M  in ˆ
M  is conjugated to the left shift operator 

ω in ( )MΣ  while M  is semiconjugated to ω.  
Proof. We define the conjugation function ( ) ˆ: MMΦ Σ →  such that for 

each { } ( )n n
a Mτ

∈
= ∈Σ  assigns [ ]{ }n n

f
∈

=


  in such a way that the rota-
tion number ρ of each standard Siegel Pacman class is given by:  

[ ]( ) [ ]
[ ]

1

1

0; , , if is even;
1 0; , , if is odd.

n n
n

n n

a a n
f

a a n
ρ +

+

=  −




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The function Φ is well defined because by Remark 2 each rotation number 
determines a unique standard Siegel Pacman class. 

Let’s prove that Φ is injective. Indeed if we take two distinct sequences 
{ }n n
aτ

∈
=  , { } ( )n n

a Mτ
∈

′ ′= ∈Σ  with ( ) [ ]{ }n n
fτ

∈
Φ =


 and ( ) [ ]{ }n n

fτ
∈

′ ′Φ =


, 
then there must be at least one 0n ∈  such that 

0 0n na a′≠ . Thus 

0 0n nf f   ′≠    , because they have different rotation numbers, so ( ) ( )τ τ ′Φ ≠ Φ . 
On the other hand Φ is surjective. Set [ ]{ } ˆ

n Mn
f

∈
∈


 , assuming n∈  is 

even (the odd case is analogous), set [ ]( ) ( ) ( ) ( )
1 20; , , ,n n n

n n n n nf a a aθ ρ + +
 = =    and 

[ ]( ) ( ) ( )1 1
1 1 1 21 0; , ,n n

n n n nf a aθ ρ + +
+ + + +

 = = −   . Due to [ ] [ ]1M n nf f +=  for all n∈ ,  

this implies [ ]( ) [ ]( )1M n nf fρ ρ += , so ( ) ( )1n n
i ia a +=  for all 1i n≥ +  and be-

cause this happens to every n∈  we have a single sequence of elements 
{ }i n
a

∈  that defines the rotation numbers of [ ]{ }n n
f

∈
. Therefore is enough to 

take { } ( )i n
a Mτ

∈
= ∈Σ  so that ( ) [ ]{ }n n

fτ
∈

Φ =


. 
Let’s see that Φ is continuous. Given a sequence { } ( )k k

Mτ
∈

⊂ Σ  with 
( ){ }k

k n
n

aτ
∈

=


 and { } ( )n n
a Mτ

∈
= ∈Σ  such that kτ τ→  when k →∞ , we  

have to prove that if ( ) ( ){ }k
k k n

n
fτ

∈
 Φ = =  



  and ( ) [ ]{ }n n
fτ

∈
Φ = =



 , then 

k →   when k →∞ , that is, for all n∈ , ( ) [ ]lim k
k n nf f→∞

  =  . So we set  

an entry, say 0n =  for example, and find representatives of the classes ( )
0

kf 
   

and [ ]0f  in the space A∞  where the convergence occurs. 
Let ( )M+Σ  be the space of infinite sequences to the right with elements in 

the natural numbers, bounded by the constant M, and with the weak topology, 
we are going to see that the function ( ) ( ): bndg M M+Σ →Θ  such that  

{ }( ) [ ]0 1 20
0; , , ,n n

g a a a a
≥

=                     (1) 

is continuous. For each k∈  we take the sequence ( ){ } ( )
0

k
k n

n
a Mτ +

≥
′ = ∈Σ , 

as by hypothesis kτ τ→  when k →∞ , then kτ ′  converges to  
{ } ( )0n n
a Mτ +

≥
′ = ∈Σ  when k →∞ , thus for each n∈  we have that 

( )lim k
k n na a→∞ = . Due to ( ) ,k

n na a ∈ , then for each n∈ , there is a ( )K n ∈  
such that for all k K≥  it is fulfilled that ( )k

n na a= . 
Note that ( )K n  is not necessarily the same for each n, but what we can as-

sure is that given an m∈ , there is an ( ) ( ) ( ) ( ){ }max 0 , 1 , ,N m K K K m=   
such that for all ( )k N m≥ , ( )k

i ia a=  for 0,1, ,i m=  . 
If we prove that any two continued fraction expansions  

[ ] [ ] ( )0 1 1 1 0 1 1 10; , , , , , , , 0; , , , , , ,n n n n n n bnda a a a a a a a b b M− + − + ∈Θ     

where the first n-elements are equal, then they must satisfy that  

[ ] [ ]0 1 1 1 0 1 1 1 20; , , , , , , 0; , , , , , , ,n n n n n n n
Ma a a a a a a a b b
B− + − +− ≤         (2) 

where 1: 1
1

B
M

= +
+

. 

Then, since we already know that ( ){ } { } 00
lim k

k n n nn
a a→∞ ≥≥

= , we can conclude 
that for all 0ε > , there are ,n N ∈  big enough such that if k N≥  and 
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( )k
i ia a= , for 0,1, ,i n=  , then  

( ) ( ) ( ) [ ]0 1 2 0 1 20; , , , 0; , , , .k k ka a a a a a ε  − <    

Therefore ( ) ( )limk kg gτ τ→∞ ′ ′=  and so g is continuous. 
First let’s see that (2) is true for finite expressions where the first n-elements 

are equal, that is of the form [ ] [ ]0 1 1 0 1 10; , , , , , 0; , , , ,n n n na a a a a a a b− −   which 
elements are bounded by M. Doing the subtraction of fractions we get  

[ ] [ ]
[ ] [ ]

0 1 2 0 1 2

1 2 3 1 2 3

0 0

0; , , , , 0; , , , ,

0; , , , , 0; , , , ,
n n

n n

a a a a a a a b

a a a b a a a a
A A

−

−
=

′

 

 

 

where [ ]0 0 1 2 3: 0; , , , , nA a a a a a= +  , [ ]0 0 1 2 3: 0; , , , , nA a a a a b′ = +  . 
In the same way when we do the substraction  

[ ] [ ]1 2 3 1 2 30; , , , , 0; , , , ,n na a a b a a a b−  , we get  

[ ] [ ]
[ ] [ ]

0 1 2 0 1 2

2 3 4 2 3 4

0 0 1 1

0; , , , , 0; , , , ,

0; , , , , 0; , , , ,
n n

n n

a a a a a a a b

a a a b a a a b
A A A A

−

−
=

′ ′

 

 

 

where [ ]1 1 2 3: 0; , , , nA a a a a= +  , [ ]1 1 2 3: 0; , , , nA a a a b′ = +  . 
Proceeding in an analogous way doing all the subtraction of fractions we ob-

tain that  

[ ] [ ]0 1 2 0 1 2
0 0 1 1 1 1

0; , , , , 0; , , , , n n
n n

n n n n

a b
a a a a a a a b

A A A A A A A A− −

−
− =

′ ′ ′ ′
 



 

where [ ]1 2: 0; , , ,i i i i nA a a a a+ += +  , [ ]1 20; , , ,i i i i nA a a a b+ +′ = +   for  
0,1, ,i n=  . 

By hypothesis it is fulfilled that 1 ,k na b M≤ ≤  for 0, ,k n=  , so for  
0,1, , 1i n= −  we have  

[ ]1 20; , , , ;i i i i nA a a a a B+ += + ≥  

also 1n nA a= ≥  implies 1 1nA ≤  and the same happens for iA′ . Therefore we 
can conclude that (2) is true for the finite case. 

Now let’s see that the above is still true when we have infinite continued frac-
tions with the first n-elements are equal, so we take two elements of the form 
[ ]0 1 1 10; , , , , , ,n n na a a a a− +  , [ ] ( )0 1 1 10; , , , , , ,n n n bnda a a b b M− + ∈Θ  . Indeed, for 
all i∈  it continuous to be true that  

[ ]1 2 1 1: 0; , , , , , ,i i i i n n nA a a a a a a B+ + − += + ≥   

[ ]1 2 1 1: 0; , , , , , , .i i i i n n nA a a a a b b B+ + − +′ = + ≥   

Therefore in the n-th substraction we have:  

[ ] [ ]
[ ] ( )( )

0 1 1 0 1 1

1 2 1 2
2

0 0 1 1 1 1

0; , , , , , 0; , , , , ,

0; , , 0; , ,
.

n n n n

n n n n n n
n

n n n n

a a a a a a b b

a a a b b b M
A A A A A A A A B

+ +

+ + + +

− −

−

+ − +
= ≤

′ ′ ′ ′

   

 



 

Now with all the above let’s prove that the function Φ is continuous at the en-
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try 0n = . Since to for each k∈ , ( ) ( ) ( )( ) ( )1 0 1, , , ,k k k
k a a a Mτ −= ∈Σ  , we con-

sider the sequence { }k k
τ

∈
′

  with elements  
( ) ( ) ( ){ } ( )0 1 2: 1 , , , 1k k k

k a a a Mτ +′ = + ∈Σ +  and a point  

{ } ( )0 1 2: 1 , , , 1a a a Mτ +′ = + ∈Σ + . Due to limk kτ τ→∞ = , then limk kτ τ→∞ ′ ′= . 
Consider the sequence of angles given by ( ) ( ) ( )

0 1 20;1 , , ,k k k
k a a aθ  ′ = +  , which 

is the rotation number of ( )
0

kf 
   but adding one to the first element of its con-

tinued fraction. Since the function ( ) ( ): 1 1bndg M M+Σ + →Θ +  defined ana-
logously to (1) is also continuous, then  

( ) ( ) [ ]0 1 20;1 , , ,k kg g a a aθ τ τ θ′ ′ ′ ′= → = = +  , when k →∞ . 
Now we proceed in the same way as we proved the compactness of sequences 

in M  with respect to the renormalization orbits. That is, to each kθ ′  we sent  

it to ∂  with ( )
( )221 1 e

4

ki

kc
θ

θ
π ′− −

′ =  that we already saw is continuous,  

therefore ( ) ( )kc cθ θ′ ′→ . Then to each ( )kc θ ′  we assign the polynomial ( )kcf θ ′  
in A∞ , which we also saw is continuous, thus ( ) ( )kc cf fθ θ′ ′→ . And finally we ap-
ply the Pacman renormalization operator  , which by the Theorem 5 is con-
tinuous in a small enough neighborhood of ( )cf θ ′ , in such a way that it acts on  
the rotation number as prmR , therefore ( ) ( )kc cf fθ θ′ ′→  . This is how we get the 

representatives ( )kcf θ ′  of the classes ( )
0

kf 
  , because they have the same rota-

tion number, which converge to ( )cf θ ′  a representative of [ ]0f . The same can  

be done for each [ ]nf , with n∈ , which belongs to [ ]{ }n n
f

∈
=


 . Therefore 

Φ is a homeomorphism. 
Finally the operator :M M M→    is semiconjugated to ( ) ( ): M Mω Σ →Σ  

because the projection on the zero coordinate 0
ˆ: M MΠ →   is not injective. 

 

4. Conclusion 

With the previous results, we have built a renormalization horseshoe for the 
Pacman renormalization operator M  for Siegel Pacman functions with 
bounded rotation number. Due to its conjugation with the left shift operator in 
the space of bi-infinite sequences of natural numbers bounded by a constant (M) 
we can perfectly know how the rotation number changes each time the Pacman 
renormalization operator is applied. The above can be used to construct a stable 
and unstable manifold for this operator and finally arrive at the result that this is 
a hyperbolic operator, with which we would have a generalization of ([7], Theo-
rem 1.1) and a better understanding of the parameters on the boundary of the 
main molecule of the Mandelbrot set. 
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Nomenclature/Notation 

X —The closure of set X. 
( )int X —The interior of set X. 

X∂ —The boundary of the set X. 
\X A —The set difference of X and A. 

A X —The set A is compactly embedded in the set X. 
1 —The unit disk. 
—The Mandelbrot set. 
—The set of natural numbers. 
 —The set of integers numbers. 
—The set of rational numbers. 
 —The set of irrational numbers. 
—The set of real numbers. 
 —The set of complex numbers. 
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