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Abstract 
In this paper, we study the Dirichlet boundary value problem involving the 
highly degenerate and h-homogeneous quasilinear operator associated with 
the infinity Laplacian, where the right hand side term is  

( ) ( ), , nF x t p C∈ Ω× ×   and the boundary value is ( )Cϕ∈ ∂Ω . First, we 

establish the comparison principle by the double variables method based on 
the viscosity solutions theory for the general equation ( ), ,h u F x u Du∞∆ =  in 

Ω . We propose two different conditions for the right hand side ( ), ,F x u Du  
and get the comparison principle results under different conditions by mak-
ing different perturbations. Then, we obtain the uniqueness of the viscosity 
solution to the Dirichlet boundary value problem by the comparison prin-
ciple. Moreover, we establish the local Lipschitz continuity of the viscosity 
solution.  
 

Keywords 
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1. Introduction 

In this paper, we study the following Dirichlet boundary value problem  

( ), , , in ,
, on ,

h u F x u Du
u ϕ

∞∆ = Ω


= ∂Ω
                   (1) 

where the domain nΩ⊆  , the function ( )Cϕ∈ ∂Ω  and  

3 32

, 1
: , , 1

i j i j

nh hh
x x x x

i j
u Du D uDu Du Du u u u h− −

∞
=

∆ = = >∑         (2) 

is the h-homogeneous quasilinear operator related to the infinity Laplacian. 
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The choice 1h =  reduces the operator (2) to the normalized infinity Lapla-
cian  

2 22

, 1
: , .

i j i j

n
N

x x x x
i j

u Du D uDu Du Du u u u− −
∞

=

∆ = = ∑            (3) 

The operator (3) has been investigated extensively, see for papers [1] [2] [3] [4] 
[5] and the references therein. Peres et al. [5] obtained the uniqueness of the 
viscosity solutions of the following Dirichlet problem corresponding to the nor-
malized infinity Laplacian by a “tug-of-war” game theory  

( ) , in ,
, on ,

Nu f x
u g

∞∆ = Ω


= ∂Ω
                      (4) 

where ( )0f f >  and g are continuous functions. In [3], Lu and Wang estab-
lished the existence and uniqueness results of the solution to the problem (4) 
based on the partial differential equation’s methods. The normalized infinity 
Laplacian equations associated with some “tug-of-war” game have attracted 
much attention. One can see López-Soriano et al. [6] and Peres et al. [7]. 

Another operator is the infinity Laplacian  

2

, 1
: , ,

i j i j

n

x x x x
i j

u D uDu Du u u u∞
=

∆ = = ∑  

which is the case of 3h = . The operator ∞∆  first appeared in Aronsson’s stu-
dies of the absolutely minimizing Lipschitz extension (AMLE) [8] [9] [10] [11] 
in the 1960s. For a bounded domain Ω, a function ( )u C∈ Ω  is said to be an 
AMLE function in Ω if for any ′Ω ⊂⊂ Ω  and any ( )v C ′∈ Ω  with u v=  on 

′∂Ω , there holds  

( ) ( )Lip Lip .u v′ ′Ω Ω
≤  

For more details on AMLE, one can refer to Aronsson et al. [12]. 
The infinity Laplacian is quasilinear and highly degenerate, and we usually 

consider the viscosity solutions of the infinity Laplacian equation which defined 
by Crandall and Lions [13]. The viscosity solutions to the homogeneous infinity 
Laplacian equation 0u∞∆ =  is said to be the infinity harmonic functions. Jen-
sen [14] proved that the AMLE functions are equivalent to the infinity harmonic 
functions and proved the existence and uniqueness of AMLE. Crandall et al. [15] 
showed that the infinity harmonic functions, the AMLE functions and the prop-
erty comparison with cones are equivalent. The property comparison with cones 
from above (below) is as follows: For any ′Ω ⊂ Ω , 0x ∈Ω  and any ,a b∈ , if  

( ) ( ) { }( )0 0, for \ ,u x a b x x x x′≤ ≥ + − ∈∂ Ω  

then  

( ) ( ) 0 , for .u x a b x x x ′≤ ≥ + − ∈Ω  

A function u enjoys comparison with cones in ′Ω  if u enjoys comparison 
with cones both from above and below. For more results on the infinity Lapla-
cian, one can see [15]-[22] etc. 
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We also mention that the Dirichlet boundary value problems involving the in-
finity Laplacian have been studied extensively and the comparison principles 
have proved to be useful tools in the investigation of existence and uniqueness of 
solutions to the Dirichlet boundary value problems. 

In [23], Lu and Wang proved the comparison principle of the equation  

( )u f x∞∆ =                           (5) 

if the continuous function ( )f x  has one sign. They also showed the existence 
and uniqueness of viscosity solutions for (5) under the Dirichlet boundary con-
dition. Bhattacharya and Mohammed [24] proved the comparison principle of 
the equation  

( ),u f x u∞∆ =  

when the continuous function ( ),f x t  has one sign and is non-decreasing in t. 
They also established the local Lipschitz continuity, existence and nonexistence 
of viscosity solutions to the corresponding Dirichlet boundary value problem. 
For the local Lipschitz continuity results, one can also see [25]. Liu and Yang [26] 
gave the comparison principle of the equation  

( ) , 1 3h u f x h∞∆ = ≤ ≤                      (6) 

and established the existence and uniqueness results of viscosity solutions of (6) 
under the Dirichlet boundary condition u ϕ=  on ∂Ω , where ( )Cϕ∈ Ω . In 
[27], Li and Liu established the comparison principle of the equation  

( ), , 1h u f x u h∞∆ = >  

when the right hand side ( ),f x t  is non-decreasing in t and has one sign. In 
addition, it is also necessary to prove the comparison principle during the stu-
dies of the Dirichlet eigenvalue problem related to the infinity Laplacian, see for 
example [28] [29] [30]. 

In this paper, we study the Dirichlet boundary value problem (1) involving the 
strongly degenerate operator h

∞∆ . 
Now we state the comparison principle for the equation  

( ), , , in ,h u F x u Du∞∆ = Ω                     (7) 

where : nF Ω× × →    is continuous. We propose some basic hypothetical 
conditions for the right hand side ( ), ,F x t p . 

(F-1): ( ), ,F x t p  is positive and the map ( ), ,F x t pτ τ  is non-increasing 
in [ )1,ρ  for each ( ), , nx t p ∈Ω× ×  , where 1ρ > . 

(F-2): ( ), ,F x t p  is negative and the map ( ), ,F x t pτ τ  is non-decreasing 
in ( ],1ρ  for each ( ), , nx t p ∈Ω× ×  , where 0 1ρ< < .  

Theorem 1. Let nΩ⊆   be a bounded domain. Suppose that the function 
( ) ( ), , nF x t p C∈ Ω× ×   is non-decreasing in t and satisfies the condition 

(F-1) or (F-2). Assume that ( )u C∈ Ω  and ( )v C∈ Ω  satisfy  

( ), , ,h u F x u Du x∞∆ ≥ ∈Ω  

and 
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( ), , ,h v F x v Dv x∞∆ ≤ ∈Ω  

in the viscosity sense, respectively. If u v≤  on ∂Ω , then u v≤  in Ω.  
We prove the comparison principle Theorem 1 based on the double variables 

method in the viscosity solution theory. Clearly, the result reduces to Li and Liu 
[27] if the nonhomogeneous term ( ), ,F x u Du  is independent of the gradient 
Du. It is worth pointing out that, unlike the case 1h = , the operator h

∞∆  is qu-
asilinear even in 1-dimension. Thus, we must make more subtle analysis. Due to 
the strong degeneracy of the operator h

∞∆  and the dependence of the nonlinear 
term ( ), ,F x t p  on p, we have to perturb twice to make the Jensen’s method 
useful [14] and consider the monotonicity of F with respect to the variable p. 

Our work is divided as follows: In Section 2, we recall the definition of the 
viscosity solutions. In Section 3, we establish the local Lipschitz continuity of the 
viscosity solution. Then, we present a proof of the comparison principle for the 
Equation (7) by the double variables method based on the viscosity solutions 
theory. Based on the comparison principle, we give the uniqueness theorem of 
the corresponding Dirichlet problem. 

2. Definition of Viscosity Solutions 

In this section, we first list some notations that appear in the paper. 
( )rB x : the ball of radius r  centered at the point x . 

x : the Euclidean norm of x . 
( )diam Ω : the diameter of the domain Ω, that is, the maximum of the distance 

between all two points in Ω. 
( )d x : the distance from the point ∈Ωx  to the boundary ∂Ω , that is, the 

minimum of the distance between x  and the all points on ∂Ω . 
( )USC Ω  and ( )LSC Ω : for any Ω⊂ n ,  

( ) { }
( ) { }

USC : is upper semi-continuous ,

LSC : is lower semi-continuous .

Ω = Ω→

Ω = Ω→




u

u
 

I: the ×n n  identity matrix. 
Now we introduce the definition of viscosity solutions to the Equation (7). 
It is worth noting that the operator ∞∆

h  is highly degenerate and singular at 
the points where the gradient vanishes, one should give a reasonable explanation 
at these points. Here we adopt the definition of viscosity solutions based on the 
semi-continuous extension [13] [29] [31]. Hence, one can rewrite the Equation 
(7) as  

( ) ( )2 , , , , ,= ∈ΩhG D u Du F x u Du x  

where { }( ): \ 0× →  n
hG , ( ) ( )3, : −= ⋅h

hG X p p Xp p  and   is the set of 
all ×n n  real symmetric matrices. When 1>h , we have ( )

0
lim , 0
→

=hp
G X p  for 

any ∈X . Thus, we can define the following continuous extension of hG :  

( ) ( ), , if 0,
,

0, if 0.
 ≠

= 
=

h
h

G X p p
G X p

p
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Now we give the definition of viscosity solutions to the Equation (7). 
Definition 1. Let Ω⊆ n  be a bounded domain. We say that ( )USC∈ Ωu  

is a viscosity subsolution of (7) if and only if for any 0 ∈Ωx  and ( )2ϕ∈ ΩC  
such that ( ) ( )0 0ϕ=u x x  and ( ) ( )ϕ≤u x x  for all ∈Ωx  near 0x , there holds  

( ) ( )( ) ( ) ( )( )2
0 0 0 0 0, , , .ϕ ϕ ϕ ϕ≥hG D x D x F x x D x  

Similarly, we say that ( )LSC∈ Ωu  is a viscosity supersolution of (7) if and 
only if for any 0 ∈Ωx  and ( )2ϕ∈ ΩC  such that ( ) ( )0 0ϕ=u x x  and  
( ) ( )ϕ≥u x x  for all ∈Ωx  near 0x , there holds  

( ) ( )( ) ( ) ( )( )2
0 0 0 0 0, , , .ϕ ϕ ϕ ϕ≤hG D x D x F x x D x  

If a continuous function u  is both a viscosity supersolution and viscosity 
subsolution of (7), then we say that u  is a viscosity solution of (7).  

We can define the viscosity subsolutions and viscosity supersolutions equiva-
lently by super-jets and sub-jets [13].  

Definition 2. The second-order super-jet of ( )USC∈ Ωu  at 0 ∈Ωx  is the 
set  

( ) ( ) ( )( ) ( ){
}

2, 2 2
0 0 0

0

, :

and has a local maximum at ,

ϕ ϕ ϕ

ϕ

+ = ∈ Ω

−

 u x D x D x C

u x
 

and the closure of ( )2,
0

+ u x  is  

( ) ( ) ( ){
( ) ( )
( )( ) ( )( )}

2,
0

2,
0

0 0

: , : , ,

such that ,

and , , , , , , .

+

+

= ∈ × ∃ ∈Ω× ×

∈

→

   



n n
n n n

n n

n n n n

u x p X x p X

p X u x

x u x p X x u x p X

 

Similarly, the second-order sub-jet of ( )LSC∈ Ωu  at 0 ∈Ωx  is the set  

( ) ( ) ( )( ) ( ){
}

2, 2 2
0 0 0

0

, :

and has a local minimum at ,

ϕ ϕ ϕ

ϕ

− = ∈ Ω

−

 u x D x D x C

u x
 

and the closure of ( )2,
0

− u x  is  

( ) ( ) ( ){
( ) ( )
( )( ) ( )( )}

2,
0

2,
0

0 0

: , : , ,

such that ,

and , , , , , , .

−

−

= ∈ × ∃ ∈Ω× ×

∈

→

   



n n
n n n

n n

n n n n

u x p X x p X

p X u x

x u x p X x u x p X

 

Definition 3. We say that ( )USC∈ Ωu  is a viscosity subsolution of (7) if  

( ) ( )( ) ( ) ( )2,
0 0 0 0, , , , , , .+≥ ∀ ∈Ω ∀ ∈hG X p F x u x p x p X u x  

Similarly, we say that ( )LSC∈ Ωu  is a viscosity supersolution of (7) if  

( ) ( )( ) ( ) ( )2,
0 0 0 0, , , , , , .−≤ ∀ ∈Ω ∀ ∈hG X p F x u x p x p X u x  

A function ( )∈ Ωu C  is a viscosity solution of the Equation (7) if u  is both 
a viscosity supersolution and viscosity subsolution of (7). 
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3. Comparison Principle 

In this section, we mainly prove the comparison principle of the Equation (7), 
which immediately implies the uniqueness theorem. 

First, we establish the local Lipschitz continuity of a viscosity solution to 

∞∆ =h u C , where C is a constant. One can refer to [23] [25] etc. for more regular-
ity results of the infinity Laplacian.  

Lemma 2. Let C be a constant. If ( ) ( )∞∈ Ω Ωu C L  satisfies ∞∆ ≥h u C  in 
the viscosity sense, then u  is locally Lipschitz continuous in Ω. Moreover, for 
any given 0 ∈Ωx , there exists a constant L such that  

( ) ( ) ( ) ( )
0 0

4

, , ,− ≤ − ∀ ∈ d xu x u y L x y x y B x  

where L depends on ( )0 ,diam ,Ωx C  and ( )∞ ΩLu . 
Proof. Set  

( ) ( )
( ) ( )0

0

4
: diam 1,

3
−

= + Ω +
M m

k x C
d x

                (8) 

where : max
Ω

=M u  and : min
Ω

=m u . For any ( ) ( )
0 0

4

∈ d xy B x , we consider the 

function  

( ) ( ) 2: , ,
2

ψ = + − − − ∀ ∈Ω
C

w u y k w y w y w  

where ( )0:=k k x  is defined in (8). It is clear that { }( )ψ ∞∈ −nC y . For ≠w y , 
it is easy to check that  

( ) ( ) 1
.ψ

−

∞∆ = − − −
hh w C k C w y  

Since ( )1 diam≥ + Ωk C , we have ψ∞∆ ≤h C  in { }\Ω y . 

Obviously, we have ( ) ( )03
4

≥
d x

d y  for any ( ) ( )
0 0

4

∈ d xy B x . For any  

( ) ( )∈∂ d yw B y , one can verify that  

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

2

0

0

2
3

4 2

3
diam ,

4 2

ψ = + −

 
≥ + − 

 
 

≥ + − Ω ≥ ≥ 
 

C
w u y kd y d y

d x
m k d y

d x
m k M

C

u w
C

 

where we have used (8). Thus, ψ≤u  on ( ) ( ) { }( )\∂ d yB y y . Since ψ∞∆ ≤h C  
and ∞∆ ≥h u C  in ( ) ( ) { }\d yB y y , we have ψ≤u  in ( ) ( )d yB y  by the comparison  
principle in [27]. Therefore, for any ( ) ( )

0 0
4

∈ d xy B x  and any ( ) ( )∈ d yz B y , we 

get  

( ) ( ) 2 .
2

≤ + − − −
C

u z u y k z y z y                  (9) 
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Note that ( ) ( ) ( ) ( )
0 0

4

⊆d x d pB x B p  for any ( ) ( )
0 0

4

∈ d xp B x . According to (9), 

for any ( ) ( )
0 0

4

, ∈ d xx y B x , we have  

( ) ( ) 2

2
≤ + − − −

C
u y u x k x y x y  

and 

( ) ( ) 2 .
2

≤ + − − −
C

u x u y k x y x y  

That is, 

( ) ( ) ( ) ( )
0 0

4

, , .
2

 
− ≤ − − − ≤ − ∀ ∈ 

 
d x

C
u x u y k x y x y k x y x y B x  

Therefore, for any 0 ∈Ωx , we have  

( ) ( ) ( ) ( )
0 0

4

, , ,− ≤ − ∀ ∈ d xu x u y L x y x y B x  

where L depends on ( )0 ,diam ,Ωx C  and ( )∞ ΩLu .  
Remark. Let C be a constant. If ( ) ( )∞∈ Ω Ωu C L  satisfies ∞∆ ≤h u C  in the 

viscosity sense, then the similar result is also valid.  
Next we give the proof of the comparison principle by the double variables 

method based on the viscosity solutions theory. 
Proof of Theorem 1. Suppose that ( ), ,F x t p  satisfies the condition (F-1). 

Define 

( ): 1 sup , 0 1.ε ε ε ε ρ
Ω

= + − < < −u u u  

Since ( ), ,F x t p  is non-decreasing in t and satisfies the condition (F-1), we 
have  

( )
( ) ( )
( ) ( )
( )

1

1 , ,

1 , ,

, ,

ε

ε ε

ε ε

ε

ε

ε

∞ ∞∆ = + ∆

≥ +

≥ +

>

hh h

h

h

u u

F x u Du

F x u Du

F x u Du

  

in the viscosity sense. That is, εu  is a viscosity subsolution of the Equation (7). 
Next we want to show ε ≤u v  in Ω  when 0>F . Instead, suppose that 

ε >u v  at some point 0 ∈Ωx  and  

( ) ( ) ( )0 0sup 0.ε ε
Ω

= − = − >M u v u x v x  

According to [13], we double the variables  

( ) ( ) ( ) ( )4, : , , , 1,2, .
4ε= − − − ∈Ω×Ω = j
jz x y u x v y x y x y j  

Let jz  attain its maximum at ( ), ∈Ω×Ωj jx y . According to ([13], Proposi-
tion 3.7), we obtain 
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( ) ( )
4

lim lim
4ε→∞ →∞

 − = − − =
 
 

j j
j j jj j

j x y
M u x v y M  

and  
4

lim 0.
4→∞

−
=j j

j

j x y
 

Clearly, we have 0→jx x , 0→jy x  as →∞j . Due to ( )0 sup ε
∂Ω

> ≥ −M u v , 
there exists an open set 0Ω  such that 0 , jx x  and 0∈Ω ⊆Ωjy  as →∞j . 

Set  

( ) ( )
4 4

and .
4 4

ϕ ψ
− −

= = −j jj x y j x y
x y  

Note that the function ε ϕ−u  has a local maximum at jx  and ψ−v  has a 
local minimum at jy . 

We discuss the following two cases: either =j jx y  or ≠j jx y  for j large 
enough. 

Case 1: When =j jx y , we have ( ) 0ϕ =jD x  and ( )2 0ϕ =jD x . Since εu  is 
a viscosity subsolution, we get  

( ) ( )( ) ( ) ( )( ), , , , 0.εϕ ϕ ϕ= ≤j j j j j jF x x D x F x u x D x  

It is contrary to 0>F . 
Case 2: When ≠j jx y , we apply the jets and maximum principle for 

semi-continuous functions ([13], Theorem 3.2). There exist ×n n  symmetric 
matrices jX  and jY  such that  

( ) ( ) ( ) ( )2, 2,, , ,ε
+ −∈ ∈ j j j j j jp X u x p Y v y  

and  

003 3 ,
00ε ε

  −   
− ≤ ≤    − −    

j

j

XI I I
YI I I

             (10) 

where ( )2
= − −j j j j jp j x y x y . Following from the inequality (10), we have 

≤j jX Y . Since ( ) ( )1 , ,ε ε εε∞∆ ≥ + hh u F x u Du  and ( ), ,∞∆ ≤h v F x v Dv  in the 
viscosity sense, by the definition of the viscosity subsolution and supersolution, 
we obtain  

( ) ( )( )
( ) ( )( )

( )( ) ( ) ( )( )

3

3

0 , 1 , ,

, 1 , ,

, , 1 , , ,

ε

ε

ε

ε

ε

ε

−

−

≤ − +

≤ − +

≤ − +

h h
j j j j j j j

h h
j j j j j j j

h
j j j j j j

p X p p F x u x p

p Y p p F x u x p

F y v y p F x u x p

          (11) 

where we have used ≤j jX Y . Due to jz  attains its maximum at ( ), ∈Ω×Ωj jx y , 
we get  

( ) ( ) ( ) ( )
4

4 , , .
4 4ε ε

−
− − − ≤ − − ∀ ∈Ωj j

j j

j x yju x v y x y u x v y x y   (12) 
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Since εu  is a viscosity subsolution, we see that εu  is locally Lipschitz conti-
nuous according to Lemma 2. We take = = jx y y  in (12) and obtain  

( ) ( )
4

,
4 ε ε

−
≤ − ≤ −j j

j j j j

j x y
u x u y L x y  

where L is the Lipschitz constant of εu . Then we have  
3

.
4
−

≤j jj x y
L  

Therefore, upon taking a subsequence if necessary, we can assume →jp p . 
Taking the limit in (11), we get  

( )( ) ( ) ( )( )0 0 0 0, , 1 , , 0.εε− + ≥hF x v x p F x u x p  

Thus,  

( )( ) ( ) ( )( ) ( )( )0 0 0 0 0 0, , 1 , , , , .ε εε≥ + >hF x v x p F x u x p F x u x p     (13) 

Since ( ), ,F x t p  is non-decreasing in t  and ( ) ( )0 0ε >u x v x , we obtain  

( )( ) ( )( )0 0 0 0, , , , .ε ≥F x u x p F x v x p  

It is a contradiction to (13). 
Thus, we have ε ≤u v  in Ω when 0>F . Letting 0ε → , we have ≤u v  in 

Ω. 
Now suppose that ( ), ,F x t p  satisfies the condition (F-2). Define  

( ): 1 inf , 0 1 .ε ε ε ε ρ
Ω

= − + < < −u u u  

Since ( ), ,F x t p  is non-decreasing in t  and satisfies the condition (F-2), 
one has  

( )
( ) ( )
( ) ( )
( )

1

1 , ,

1 , ,

, ,

ε

ε ε

ε ε

ε

ε

ε

∞ ∞∆ = − ∆

≥ −

≥ −

≥

hh h

h

h

u u

F x u Du

F x u Du

F x u Du

 

in the viscosity sense. Thus, εu  is a viscosity subsolution of the Equation (7). 
Then one can prove that ε ≤u v  in Ω by the similar procedure. We leave it to 
the reader.  

With the comparison principle in hand, the uniqueness theorem of the cor-
responding Dirichlet problem follows immediately. 

Theorem 3. Let Ω⊆ n  be a bounded domain. If the function  
( ) ( ), , ∈ Ω× × nF x t p C  is non-decreasing in t  and satisfies the condition 

(F-1) or (F-2), then there exists at most one viscosity solution to the Dirichlet 
problem (1).  

When the right side hand ( ), ,F x t p  is independent of the variables t  and 
p , Lu and Wang [23] constructed a counterexample to show that the unique-

ness is invalid if F  changes its sign. And the case 0=F  is covered by Jensen’s 
theorem [14]. But for the case ( )0≥ ≤F , the uniqueness is open. 
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Remark. If 0ϕ =  and 0<F  in the problem (1), then the viscosity solution 
to the problem (1) is positive. Similarly, if 0ϕ =  and 0>F  in the problem (1), 
then the viscosity solution to the problem (1) is negative.  
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