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Abstract 

In this paper, we study the relationship between the convergence of the sinu-

soidal series sin
p
n

n

α

∑  and the infinity integrals 
1

sin dp
x x

x

α
+∞

∫  (any real 

number [ ]0,1α ∈ , parameter 0p > ). First of all, we study the convergence 

of the series sin
p
n

n

α

∑  (any real number [ ]0,1α ∈ , parameter 0p > ), 

mainly using the estimation property of the order to obtain that the series di-
verges when 0 1p α< ≤ − , the series converges conditionally when 
1 1pα− < ≤ , and the series converges absolutely when 1p > . In the next 

part, we study the convergence state of the infinite integral 
1

sin dp
x x

x

α
+∞

∫  

(any real number [ ]0,1α ∈ , parameter 0p > ), and get that when  
0 1p α< ≤ − , the infinite integral diverges; when 1 1pα− < ≤ , the infinite 
integral conditionally converges; when 1p > , the infinite integral absolutely 
converges. Comparison of the conclusions of the above theorem, it is not dif-

ficult to derive the theorem: the level of sin
p
n

n

α

∑  and the infinity integral 

1

sin dp
x x

x

α
+∞

∫  with the convergence of the state (any real number [ ]0,1α ∈ , 

the parameter 0p > ), thus promoting the textbook of the two with the con-
vergence of the state requires the function of the general term or the product 
of the function must be monotonically decreasing conditions.  
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1. Introduction 

Usually there is no necessary connection between the convergence of series and 
infinite integrals [1], but when the product function has certain characteristics, 
the two are in the same convergence state, for example, the infinite integral of a 
monotonically decreasing function has the same convergence as its correspond-
ing series [2]. In the fourth edition of the eight cups competition, held on 1 Au-
gust 2022, the eighth question of the mathematical group B appeared the prob-
lem of determining the convergence of a sinusoidal series: given the parameter  

0p > , try to discuss the convergence of the series 
1

sin
p

n

n
n

∞

=
∑  with respect to the 

value of the parameter p (when converging, it should be determined whether it is 

absolutely convergent). We find that the level when 
10
2

p< ≤ , the level of dis-

persion; when 
1 1
2

p< ≤ , the level of conditional convergence; when 1p > , the 

level of absolute convergence, and the infinite integral 
1

sin dp
x x

x
+∞

∫  has the 

same convergence. It can be seen that the class of non-monotonic functions has 
the same convergence of the series and the corresponding infinite integral under 

certain conditions. The above shows that the sinusoidal series sin
p
n

n

α

∑  has the 

same convergence as the infinite integral 
1

sin dp
x x

x

α
+∞

∫  when 
1
2

α = . In the 

following, we try to extend this conclusion to the general [ ]0,1α ∈  case, to be-

gin with we study the convergence of the series sin
p
n

n

α

∑ , then we discuss the 

convergence of the infinite integrals 
1

sin dp
x x

x

α
+∞

∫ , and by comparing the two, 

we conclude that the series sin
p
n

n

α

∑  and the infinite integrals 
1

sin dp
x x

x

α
+∞

∫  

have the same convergence in this paper. 

2. Convergence States of Sinusoidal Term Levels 

Proposition: For the sinusoidal series sin
p

n
n∑  (parameter 0p > ), the series 

diverges when 
10
2

p< ≤ , converges conditionally when 
1 1
2

p< ≤ , and con-

verges absolutely when 1p > . 
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Corollary: Let any real number [ ]0,1α ∈  and parameter 0p >  be the con-

vergence state of the sinusoidal series sin
p
n

n

α

∑ : when 0 1p α< ≤ − , the series  

diverges; when 1 1pα− < ≤ , the series converges conditionally; when 1p > , 
the series converges absolutely (provided that { },p m p m m R< ≤ ∈ =∅ ). 

Proof: 
Using the sum and difference product formula, express sin nα  as 

( )

( )
( ) ( )

1
cos cos cos 1 sin sin 12sin

2 21
sin

2

n n
n n n n

n
n n

α α

α αα α
α

α α

+ −
− + − +

= +
+ −

    (1) 

According to Taylor’s formula, it is possible to obtain 

( )cos 1 , 0
sin

x o x x
x x
= + →                     (2) 

( )
2 1

1 1 1 11 1 1 1 1
2 2 2 2

n n n n o o
n n nn n

α αα α α

α

α α
−

 + −         = + − = + + − = +                    
(3) 

The association of (1), (2) and (3) yields 

( ) ( )
1 1

cos cos 1 sin sin 1sin 1
2p p p p

n n n nn o
n n n n

α αα αα

αα + − +

− + − +  = + +  
 

      (4) 

Therefore, when 1p α= −  is found 

( ) ( )
1 1 2

cos cos 1 sin sin 1sin 1
2

n n n nn o
n n n

α αα αα

α α αα− − −

− + − +  = + +  
 

      (5) 

According to by the Cauchy criterion lim cos
n

nα

→∞
 does not exist, so the level 

( )cos cos 1n n αα

α
− +

∑  diverges, and by the A-D discriminant, the levels 

( )
1

sin sin 1
2

n n
n

αα

α−

− +
∑  all converge, and the p-levels also converge, so the level 

sin
p
n

n

α

∑  diverges. 

When 1p > , the level sin 1
p p
n

n n

α

≤∑ ∑ , it is easy to know that the p level 

converges, there is a comparative discriminant method to get the level sin
p
n

n

α

∑  

absolute convergence. 

When 1 1pα− < ≤ , by the A-D discriminant, the level sin
p
n

n

α

∑  converges, 

the following consider the convergence of the level sin
p
n

n

α

∑ , for n N+∀ ∈ , 

there is 
2sin sin 1 cos2

2p p p
n n n

n n n

α α α−
≥ = , it is not difficult to see that the p level 
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1
pn∑  diverges, and cos2

2 p
n

n

α

∑  converges, so sin
p
n

n

α

∑  diverges, so 

sin
p
n

n

α

∑  conditional convergence. 

When 0 1p α< < − , the level sin
p
n

n

α

∑  is divergent, also use the inverse 

method to prove that the level is divergent. First of all, assume that there is a 

point 0
10,
2

p  ∈ 
 

, so that the level of sin
p
n

n

α

∑  convergence, to find out the 

level of n before the part of the term and 
0

1

sinn

n p
k

kS
k

α

=

= ∑  is bounded on n, ac-

cording to the A-D method of discrimination can be 
0 01 1

sin sin 1
p p

n n
n n n

α α

α α− − −= ⋅∑ ∑  

convergence, which is contradictory to the 1
sin n
n

α

α−∑  divergence, so when 

10
2

p< < , the level of sin
p
n

n

α

∑  divergence. 

In summary, the sinusoidal series sin
p
n

n

α

∑  ( ( )0,1α ∈ , 0p > ), when  

0 1p α< ≤ − , the series diverges; when 1 1pα− < ≤ , the series converges condi-
tionally; when 1p > , the series converges absolutely.                  (a)  

Consider below the case where α  takes values at the endpoints 0α =  and 
1α = : 

When 0α =  is the level sin1
pn∑ , sin1  is a constant, so it is in the same  

convergence state as the level p. That is, when is the level converges and is abso-
lutely convergent; when is the level diverges. That is, when 1p > , the level  

sin1
pn∑  converges and absolutely converges; when 1p ≤ , the level sin1

pn∑  

diverges.                                                        (b)  

When 1α = , the convergence state of the level sin
p
n

n∑  is discussed below: 

When 1p > , the p-series converges due to sin 1
p p
n

n n
≤ , and the series 

sin
p
n

n∑  converges absolutely by the comparative discriminant; 

When 1p =  is used, by the product to sum formula, we know that 

1

1 1

1 1 1 2 1cos cos cos cos2 21 1 2 2sin 2sin sin
1 1 122sin 2sin 2sin
2 2 2

n

n n
k

k k

nk k
k k =

= =

     ++ − −    −     = = − =
∑

∑ ∑  (6) 

Using the A-D discriminant method, sin n∑  part of the sum series is 

bounded, and 1
n

 
 
 

 monotonically decreasing and tends to 0, so 
sin n

n∑  
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convergence, the following proof of 
sin n

n∑  conditional convergence, because 

2sin sin 1 cos2 1 cos2
2 2 2

n n n n
n n n n n

−
≥ = = − , and by the A-D discriminant method 

of the series 
cos2

2
n

n∑  convergence, but the sum series 
1
n∑  divergence, so 

sin n
n∑  conditional convergence. 

When 0 1p< < , by the A-D discriminant method, the part of the series 

sin n∑  and the series is bounded, and 1
pn

 
 
 

 monotonically decreasing and 

tends to 0, so 
sin n

n∑  convergence. And 
2sin sin 1 cos2 1

2 2p p p p
n n n

n n n n
−

≥ = = −  

cos2
2 p

n
n

, by the product and difference formula to get 

( ) ( ) ( )1 1

1

2sin1cos2 sin 2 1 sin 2 1 sin 2 1 sin1
cos2

2sin1 2sin1 2sin1

n n

n
k k

k

k k k n
k = =

=

+ − − + −
= = =
∑ ∑

∑  (7) 

Therefore, the part of cos2n∑  and the series are bounded, and 1
pn

 is 

monotonically decreasing and tends to 0, so the series cos2
2 p

n
n∑  converges, but 

the series 1
pn∑  diverges, so the series sin

p
n

n∑  converges conditionally. 

In summary, when 1α = , the level sin
p
n

n

α

∑  When 1p > , the level con-

verges absolutely; when 0 1p< ≤ , the level converges conditionally.       (c) 

Summing up at (a), (b) and (c), we have that the series diverges when 
0 1p α< ≤ − ; the series converges conditionally when 1 1pα− < ≤ ; and the se-
ries converges absolutely when 1p > . The corollary is proved.          QED  

3. Convergence States of Infinite Integrals 

Lemma: Infinite integrals 
1

sin dp
x x

x

α
+∞

∫ , for any real number [ ]0,1α ∈ ,  

parameter 0p > , at that time 0 1p α< ≤ − , the infinite integrals diverge; at 
that time 1 1pα− < ≤ , the infinite integrals converge conditionally; at that time 

1p > , the infinite integrals converge absolutely. 
Proof. 
Consider first the case of 0α = . The infinite integral is transformed into 

1

sin1dp x
x

+∞

∫ , and sin1  is a positive constant, so the level is in the same conver-

gence state as 
1

1 dp x
x

+∞

∫ . So when 1p > , the series converges and converges 

absolutely; when 1p ≤ , the series diverges. 

Next consider 1α = . The infinite integral is transformed to 
1

sin dp
x x

x
+∞

∫ . 
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When 1p >  is sin 1
p p
x

x x
≤ , while 

1

1 dp x
x

+∞

∫  converges, by the comparative 

discriminant, we know that 
1

sin dp
x x

x
+∞

∫  converges and is absolutely convergent. 

Consider 1p =  when ( ) ( )
1

sin d cos cos1
A

F A x x A= = − −∫  is bounded on  

[ )1,+∞  and ( ) 1g x
x

=  is monotone on [ )1,+∞  and 
1lim 0

x x→+∞
= , so 

1

sin dx x
x

+∞

∫  

converges. Since 
2sin sin 1 cos2

2 2
x x x

x x x x
≥ = − , combined with the A-D discri-

minant, we know that 
1

cos2 d
2

x x
x

+∞

∫  converges and 
1

1 d
2

x
x

+∞

∫  diverges. So 

1

sin dx x
x

+∞

∫  converges conditionally. 

When 0 1p< < , the same process as above, consider that ( )
1

sin d
A

F A x x= ∫  

is bounded on [ )1,+∞  and ( ) 1
pg x

x
=  is monotone on [ )1,+∞  and  

( )lim 0
x

g x
→+∞

= , so 
1

sin dp
x x

x
+∞

∫  converges. But 
2sin sin 1 cos2

2 2p p p p
x x x

x x x x
≥ = − , 

combined with the A-D discriminant, we know that 
1

cos2 d
2 p

x x
x

+∞

∫  converges 

while 
1

1 d
2 p x

x
+∞

∫  diverges. So 
1

sin dp
x x

x
+∞

∫  converges conditionally. 

Finally, consider the case of ( )0,1α ∈ . Let t xα= , then 
1

x tα= , 
1

d dx tα= =  
1 11 dt tα

α
−

, so that 

1 1

11 1 1 1

sin 1 sin 1 sind d dp p p
x t tx t t t

x
t t

α
α

α α
α α

−+∞ +∞ +∞

−
+

= =∫ ∫ ∫              (8) 

When 
11 1p

α
−

< +  is 1p > , 1 11 1

sin 1
p p

t

t tα α
− −
+ +

≤ , [ )1,t∈ +∞ , we know that  

11 1

sin dp
t t

t α

+∞

−
+

∫  converges by the comparative discriminant, and thus 
1

sin dp
x x

x

α
+∞

∫  

converges absolutely. 

When 
10 1 1p

α
−

< + ≤  is 1 1pα− < ≤ . On the one hand, 1u∀ ≥ , has 

1
sin d cos1 cos 2

u
x x u= − ≤∫ , and 1 1

1
p

x α
−
+

 is monotonic and tends to 0 when 

1 1 0p
α
−

+ >  ( x →+∞ ). It can be deduced from the fact that 11 1

sin dp
x x

x α

+∞

−
+

∫  

converges according to the A-D discriminant. On the other hand, since  

2

1 1 1 11 1 1 1

sin sin 1 cos2

2 2
p p p p

x x x

x x x xα α α α
− − − −
+ + + +

≥ = − , [ )1,x∈ +∞               (9) 
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where 1 1 11 21 1

cos2 1 cosd d
2

2 2
p p p

x tx t
x tα α α

+∞ +∞

− − −
+ − +

=∫ ∫ . According to the A-D discriminant 

condition, it is known that 11 1

cos2 d
2

p
x x

x α

+∞

−
+

∫  is convergent and 11 1

d

2
p
x

x α

+∞

−
+

∫  is di-

vergent (1 1pα− < ≤ ), so the infinite integral 11 1

sin dp
x x

x α

+∞

−
+

∫  is divergent when  

10 1 1p
α
−

< + ≤  and thus 
1

sin dp
x x

x

α
+∞

∫  is conditionally convergent. 

When 
1 1 0p

α
−

+ =  is 1p α= − , substitution yields 

( )11 11

sin d sin d lim 1 cosp M

x x x x M
x α

+∞ +∞

− →+∞+
= = −∫ ∫              (10) 

It follows from the Cauchy convergence criterion that 0
1
2

ε∃ = , 2M k′∃ = π  

and 2
2

M k′ = π +
π′ , such that 

( ) 0cos cos cos 2 cos 2 1
2

M M k k ε ′ ′′− = − + = 
 

π
>π π         (11) 

Therefore lim cos
M

M
→+∞

 does not exist, so 
1

sin dx x
+∞

∫  diverges. 

When 
1 1 0p

α
−

+ <  is 1p α< − , the infinite integral 11 1

sin dp
x x

x α

+∞

−
+

∫  is diver-

gent. Using the converse method, suppose the infinite integral 11 1

sin dp
x x

x α

+∞

−
+

∫  

converges, then since 
1 1p

x α
−
+

 is bounded on [ )1,x∈ +∞ , according to the A-D 

discriminant, there should be 
1

sin dx x
+∞

∫  convergence, a contradiction. There-

fore, when 
1 1 0p

α
−

+ < , 11 1

sin dp
x x

x α

+∞

−
+

∫  is divergent. 

To sum up: the infinite integral 
1

sin dp
x x

x

α
+∞

∫ , for any real number [ ]0,1α ∈ ,  

parameter 0p > , when 0 1p α< ≤ − , the infinite integral diverges; when 
1 1pα− < ≤ , the infinite integral converges conditionally; when 1p > , the infi-
nite integral converges absolutely.                                  QED 

4. Theorem on the Convergence State of the Sine Term  
Hierarchy with the Infinite Integral Homology 

Theorem: Arbitrarily [ ]0,1α ∈ , with parameter 0p > , the level sin
p
n

n

α

∑  is 

convergent to the same state as the infinite integral 
1

sin dp
x x

x

α
+∞

∫ . 
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Proof: 

According to the above corollary, for a sinusoidal series sin
p
n

n

α

∑ , any real  

number [ ]0,1α ∈ , and the parameter 0p > , the series diverges when  
0 1p α< ≤ − , the series converges conditionally when 1 1pα− < ≤ , and the se-
ries converges absolutely when 1p > . 

According to the above lemma, for the infinite integral 
1

sin dp
x x

x

α
+∞

∫ , any real  

number [ ]0,1α ∈ , parameter 0p > , the infinite integral diverges when 
0 1p α< ≤ − , the infinite integral converges conditionally when 1 1pα− < ≤ , 
and the infinite integral converges absolutely when 1p > . 

Accordingly, we obtain that the level sin
p
n

n

α

∑  is homoconvergent with the 

infinite integral 
1

sin dp
x x

x

α
+∞

∫  (any [ ]0,1α ∈ , parameter 0p > ). The proof of 

the theorem is thus complete.                                     QED 

5. Conclusion 

Inspired by 
1
2

α =  when the sine series sin
p
n

n

α

∑  and the infinite integral 

1

sin dp
x x

x

α
+∞

∫  (parameter 0p > ) are in the same convergent state, we explore 

the convergence of the series sin
p
n

n

α

∑  and the infinite integral 
1

sin dp
x x

x

α
+∞

∫   

when [ ]0,1α ∈  is in the same convergent state, and we extend the conditions of 
the function class of the two in the same convergent state, expanding from mo-
notonically decreasing functions to the class of non-monotonous functions, and 
we will continue to explore the other classes of the two in the same convergent 
state in the future. 
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