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Abstract 
The constrained motion of a particle on an elliptical path is studied using 
Hamiltonian mechanics through Poisson bracket and Lagrangian mechanics 
through Euler Lagrange equation using non-natural Lagrangian. We calculate 
the generalized momentum pθ  and we find that this quantity is not con-
served and the conjugate coordinate θ  is not a cyclic coordinate. 
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1. Introduction 

In classical mechanics, the Hamilton Jacobi equation used to integrate a Hamil-
tonian system of differential equations using canonical method [1] [2] [3] [4]. 

The Hamilton Jacobi formalism has been developed by [5] [6], through this 
formalism, the action function was formulated using Hamilton Jacobi equation, 
then the equations of motion were obtained, this function helps one to obtain 
the conjugate momentum. 

The Hamilton Jacobi formalism with the canonical method for second order 
singular Lagrangians was developed using Caratheodory’s equivalence Lagran-
gian method by Pimentel and Teixeira [7]. In this approach, the equations of 
motion for the canonical variables of singular second order systems were ob-
tained as total differential equations in many variables, and the Hamilton Jacobi 
partial differential equations for second order singular systems were investigated. 
The Hamilton Jacobi equation to higher order singular Lagrangians was pre-
sented by [8]. 

Recently, the Hamilton Jacobi partial differential equations have been studied 
for systems containing fractional derivatives using the canonical method [9] [10]. 
More recently, a powerful approach, the canonical method, has been developed 
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for dissipative systems [11]. In this approach, the equations of motion are writ-
ten as total differential equations and the formulation leads to a set of Hamilton 
Jacobi partial differential equations which are familiar to regular systems.  

An elliptical orbit can be defined as the oval shaped. For example, the planets 
revolving around the sun in the solar system follow elliptical orbits [12] [13]. 
Thus, most of the objects in outer space follow elliptical orbit. The size of an el-
lipse is measured by the major and minor axis. The major axis measures the 
longest distance across the ellipse while the minor axis measures the shortest. 
The point at which the planet is closest to the earth in an elliptical orbit is called 
the perigee. The point at which the planet is furthest from the earth in an ellip-
tical orbit is called the apogee. 

Then the particle moving on an ellipse as a constrained system is presented by 
[14], where the motion is analyzed using Hamilton Jacobi equation using natural 
Lagrangian and Dirac’s approach. In this work we will study the motion of a 
particle on an elliptical path using non-natural Lagrangian.  

The paper is organized as. In Section 2, we discuss the motion of a constrained 
particle on an ellipse within the framework of the Hamiltonian mechanic and 
Lagrangian mechanics treatment. In Section 3, we present a conclusion. 

2. Hamiltonian Treatment for the Motion of a Particle on an  
Elliptical Path 

In this section we will present a particle moving on an ellipse as a constrained 
system by considering the motion in the horizontal xy-plane, the Lagrangian 
that describes the motion of a particle on an ellipse is expressed as [14]: 

( )2 21
2

L m x y= +                          (1) 

using the non-natural Lagrangian Equation (1) becomes: 

( )2 21 e
2

tL m x y λ= +                         (2) 

The constraint equation is: 
2 2

2 2 1x y
a b

+ =                           (3) 

using the parametric equations, 

cosx a θ=  
siny b θ=  

Substituting these parametric equations into Equation (2) we have: 

( )2 2 2 2 21 sin cos e
2

tL m a b λθ θ θ= +                 (4) 

- The Hamiltonian Mechanics: 
In this section we will use Hamilton Jacobi equation. 
From the Lagrangian that formulated in Equation (4), we can find the genera-

lized momentum as follows: 
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( )2 2 2 2sin cos e tLp m a b λ
θ θ θ θ

θ
∂

= = +
∂





               (5) 

Then, 

( )2 2 2 2

e
sin cos

t p
m a b

λ
θθ

θ θ

−

=
+

                    (6) 

Squaring of Equation (6) 

( )
2 2

2
22 2 2 2 2

e

sin cos

t p

m a b

λ
θθ

θ θ

−

=
+

                   (7) 

Using the standard form of the Hamiltonian: 

0H p Lθ= −                          (8) 

Inserting Equation (4) and Equation (6) into Equation (8), our Hamiltonian 
is: 

( ) ( )
2 2

2 2 2 2 2 2 2 2

e e1
2sin cos sin cos

t tp pH
mm a b a b

λ λ
θ θ

θ θ θ θ

− −

= −
+ +

         (9) 

Finally, 

( )
2

2 2 2 2

e
2 sin cos

t pH
m a b

λ
θ

θ θ

−

=
+

                 (10) 

The Poisson bracket of two functions, ,A B , with respect to the canonical va-
riables ,q p  is written as [3]: 

[ ] ,
1

,
N

q p
i i i i i

A B A BA B
q p p q=

∂ ∂ ∂ ∂
= −

∂ ∂ ∂ ∂∑                 (11) 

where A and B are functions of the generalized coordinates iq  and the genera-
lized momenta ip . The total time derivative of some function of the canonical 
variables and time, ( ), ,A q p t , using Poisson bracket and Hamilton’s equations 
of motion is written as: 

1 1

d dd
d d d

N N
i i

i ii i i i i i

q pA A A A H A H
t q t p t q p p q= =

   ∂ ∂ ∂ ∂ ∂ ∂
= + = −   ∂ ∂ ∂ ∂ ∂ ∂   
∑ ∑         (12) 

[ ]d ,
d
A A H A
t
= =  .                      (13) 

So that, 

[ ] ( )2 2 21, e sin 2
2

tp p H m a bλ
θ θ θ θ= = −

               (14) 

This means that; pθ  is not a constant of motion (is not conserved) and θ  
is not a cyclic coordinate. 

- Lagrangian mechanics: 
In this section we will use Euler Lagrange equation in the following form [3]: 

d 0
d

L L
q t q

 ∂ ∂
− = ∂ ∂ 

                      (15) 

https://doi.org/10.4236/apm.2023.139041


O. A. Jarab’ah 
 

 

DOI: 10.4236/apm.2023.139041 623 Advances in Pure Mathematics 
 

Then using θ  coordinate, Euler Lagrange equation becomes: 

d 0
d

L L
tθ θ

∂ ∂ − = ∂ ∂ 
                        (16) 

Remembering that, 

Lpθ θ
∂

=
∂ 

                           (17) 

Substituting of Equation (17) into Equation (16) we find; 

( )d 0
d

L p
t θθ

∂
− =

∂
                       (18) 

Thus,  

0L pθθ
∂

− =
∂

                          (19) 

which means; 

L pθθ
∂

=
∂

                           (20) 

Makin use of Equation (4) we get, 

( )2 2 21 e sin 2
2

tL m a b pλ
θθ θ

θ
∂

= − =
∂



                 (21) 

Thus,  

( )2 2 21 e sin 2
2

tm a b pλ
θθ θ− =

                    (22) 

This result obtained from Equation (22) using Euler Lagrange equation is in 
exact agreement with the result that obtained from Equation (14) using Poisson 
bracket then, we find that; 0pθ ≠ . 

So that we can say; for non-natural Lagrangian the generalized momentum 
pθ  conjugate to the coordinate θ  is not conserved (is not a constant of mo-

tion); because θ  is not a cyclic coordinate.  

3. Conclusion 

In this paper the constrained motion of a particle on an elliptical path is studied 
using Lagrangian mechanics through Euler Lagrange mechanics, using non-natural 
Lagrangian. Then, we calculate the generalized momentum pθ  and we find that 
this quantity is not conserved and the conjugate coordinate θ  is not a cyclic 
coordinate. For natural Lagrangian which means at the limits 0λ → , the same 
result is obtained using Hamiltonian mechanics in Ref. [14] using Poisson 
bracket. 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this 
paper. 

https://doi.org/10.4236/apm.2023.139041


O. A. Jarab’ah 
 

 

DOI: 10.4236/apm.2023.139041 624 Advances in Pure Mathematics 
 

References 
[1] Arnold, I.V. (1989) Mathematical Methods of Classical Mechanics. 2nd Edition, 

Springer-Verlag, Berlin. https://doi.org/10.1007/978-1-4757-2063-1 

[2] Bates, L. and Sniatycki, J. (1993) Nonholonomic Reduction. Mathematical Physics, 
32, 99-115. https://doi.org/10.1016/0034-4877(93)90073-N 

[3] Goldstein, H. (1980) Classical Mechanics. 2nd Edition, Addison-Wesley, Boston. 

[4] Jaroszkiewicz, G. and Norton, K. (1997) Principles of Discrete Time Mechanics II: 
Classical Field Theory. Journal of Physics A, 30, 3145-3163.  
https://doi.org/10.1088/0305-4470/30/9/023 

[5] Nawafleh, K., Rabei, E.M. and Ghassib, H. (2004) Hamilton-Jacobi Treatment of 
Constrained Systems. International Journal of Modern Physics A, 19, 347-354.  
https://doi.org/10.1142/S0217751X04017719 

[6] Nawafleh, K., Rabei, E.M. and Ghassib, H. (2005) Quantization of Reparametrized 
Systems Using the WKB Method. Turkish Journal of Physics, 29, 151-162. 

[7] Pimentel, R.G. and Teixeira (1996) Hamilton-Jacobi Formulation for Singular Sys-
tems with Second-Order Lagrangians. Il Nuovo Ciemento B, 111, 841-854.  
https://doi.org/10.1007/BF02749015 

[8] Pimentel, R.G. and Teixeira (1998) Generalization of the Hamilton-Jacobi Ap-
proach for Higher-Order Singular Systems. Il Nuovo Ciemento B, 113, 805-820. 

[9] Rabei, E.M., Altarazi, I.M.A., Muslih, S.I. and Baleanu, D. (2009) Fractional WKB 
Approximation. Nonlinear Dynamics, 57, 171-175.  
https://doi.org/10.1007/s11071-008-9430-7 

[10] Rabei, E.M., Muslih, S.I. and Baleanu, D. (2010) Quantization of Fractional Systems 
Using WKB Approximation. Communication in Nonlinear Science and Numerical 
Simulation, 15, 807-811. https://doi.org/10.1016/j.cnsns.2009.05.022 

[11] Jarab’ah, O., Nawafleh, K. and Ghassib, H. (2013) Canonical Quantization of Dis-
sipative Systems. European Scientific Journal, 9, 132-154. 

[12] Qian, W. (2023) A Tidal Theory Based on the Inertial Motion of the Matter in the 
Universe. Journal of Modern Physics, 14, 1252-1271.  
https://doi.org/10.4236/jmp.2023.148071 

[13] Klauder, J. (2021) Let Loop Quantum Gravity and Affine Quantum Gravity Ex-
amine Each Other. Journal of High Energy Physics, Gravitation and Cosmology, 7, 
1027-1036. https://doi.org/10.4236/jhepgc.2021.73061 

[14] Nawafleh, K. and Hijjawi, R. (2013) Constrained Motion of a Particle on an Elliptic-
al Path. Journal of the Association of Arab Universities for Basic and Applied 
Sciences, 14, 28-31. https://doi.org/10.1016/j.jaubas.2012.11.002 

 
 
 

https://doi.org/10.4236/apm.2023.139041
https://doi.org/10.1007/978-1-4757-2063-1
https://doi.org/10.1016/0034-4877(93)90073-N
https://doi.org/10.1088/0305-4470/30/9/023
https://doi.org/10.1142/S0217751X04017719
https://doi.org/10.1007/BF02749015
https://doi.org/10.1007/s11071-008-9430-7
https://doi.org/10.1016/j.cnsns.2009.05.022
https://doi.org/10.4236/jmp.2023.148071
https://doi.org/10.4236/jhepgc.2021.73061
https://doi.org/10.1016/j.jaubas.2012.11.002

	Canonical Treatment of Elliptical Motion
	Abstract
	Keywords
	1. Introduction
	2. Hamiltonian Treatment for the Motion of a Particle on an Elliptical Path
	3. Conclusion
	Conflicts of Interest
	References

