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Abstract

Holder’s inequality, its refinement, and reverse have received considerable
attention in the theory of mathematical analysis and differential equations. In
this paper, we give some refinements of Holder’s inequality and its reverse
using a simple analytical technique of algebra and calculus. Our results show
many results related to holder’s inequality as special cases of the inequalities

presented.
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1. Introduction

Holder’s inequality is a fundamental inequality in mathematical analysis that
generalizes the Cauchy-Schwarz inequality to multiple sequences and different
exponents. It is used in many areas of mathematics such as probability theory,
functional analysis, and differential equations [1]. The inequality has been re-
fined and reversed in many ways over the years [2]. For example, the reverse
Holder inequality is used to deal with square (or higher-power) roots of expres-
sions in inequalities since those can be eliminated through successive multiplica-
tion [3]. Both the holder’s inequality and Cauchy play an important role in many
areas of mathematics [1]. Several authors have studied and obtained the genera-
lization, refinement, sharpening, variation, and application of this inequality in
the literature. A family of inequalities concerning inner products of vectors and

functions began with Cauchy [4]. The extension and generalizations later led to
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inequalities of Schwarz, Minkowski, and Holder. Inequalities appear frequently
in algebra, geometry, and analysis; they are powerful mathematical tools that
appear across different areas of mathematics, helping mathematicians and scien-
tists describe relationships, establish limits and bounds, and solve a wide variety
of problems [2]. Many researchers have worked on generalization of Holder, its

reverse, and refinement (see for example [1]-[19]).
At the heart of Holder’s inequality lies a remarkable mathematical relation-

1 1 1
ship. Given real number p, ¢, and r such that 1< p,q,r <o and E-i-a:?,
and measurable functions fand g defined on a measurable space, Holder’s in-
equality can be succinctly stated as follows:

1

It G0-g0ofae= ({1 (o o) (la o dx): M

Holder’s inequality has significant implications in various branches of ma-
thematics and analysis, including functional analysis, probability theory, and
partial differential equations [1]. It is particularly useful in proving convergence
properties of sequences of functions, estimating norms of integral operators, and
establishing relationships between different function spaces. Holder’s inequality
is a crucial concept in mathematics, providing a connection between norms, in-
tegrals, and inner products of functions and vectors. Refinements of Holder’s
inequality involve adjusting the exponents or introducing additional terms to
obtain more accurate upper bounds for specific situations [3] [5]. These refine-
ments are valuable when dealing with particular types of functions or when extra
information about the functions is available. By tailoring the inequality, refine-
ments yield sharper estimates and reveal nuanced relationships between func-
tions [5] [6] [7]. On the other hand, reverses of Holder’s inequality focus on es-
tablishing lower bounds for the given expression [1] [5] [8]. While the original
inequality provides an upper bound, a reverse inequality gives insight into the
minimum possible value. Reverses contribute to proving the optimality of Hold-
er’s inequality and understanding the tightness of the bounds it establishes.
They’re especially useful when trying to characterize scenarios in which functions
are interdependent in specific ways.

The aim of this paper is achieved through the following objectives: 1) to use
algebraic and calculus techniques to improve upper bounds by refining Holders
inequality; 2) to explore lower bounds through the reverse of Holders’ inequali-
ties refinement. The study is of great importance in Mathematical analysis, in-
formation theory, theory of elasticity, and others. In order to prove the main re-

sults, we need the following lemma.

2. Lemmas

The following two lemmas will be needed throughout the proof of our theorems.
Lemma 2.1 Let a,b>1 and 1e&(0,1) wehave
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s(ﬁ_ﬁ)ZA( )Iog( j</1a+(1 A)b-a'b
s(l_s)(Ja_JB) +B(/1)Iog2(%j,

A(1-4) s
2
Lemma 2.2 Let O<a,b<1,and 1e(0,1) we have

s(«/a—«/B)Z+A( )ablog? (bj</1a+(1 A)b—a’h*
s(l—s)(«/a—«/ﬁf+B(/1)ablogz(%j,

A(1-2) 1-s

where s=min{1,1-1}, A(1)= 5 T

and B(4)=

where s,A(1),B(A) are given in lemma 2.1.

3. Main Results

1 1 1
Theorem 2.1. Let 1< p<ow, 1<g<o, 1<r<ow, with —+—==.1If fand g
pq r

are two positive functions which admit integral on [a, 5] for which there exist

jfp x)dx and j g% (x)dx finite with j fP(x)dx>0, jg x)dx and

f o : Ig ))(() <M, Vxel[ab].
Then, we have
. L f(x)(g(x))q[lfﬂ dx
(17 0 (o () °
BRSPS ML O R COL : o

o
N
IS
=
=
—
ol
o
|
[y

Proof: From lemma 2.1, let b=1, lz%, l—lzl—%,wehave

1
la+[1—lj—ap
p p

(3)
1 2 |p-11 1
<1 a-1 - log° M
{1 p—l} (\F )+ 2p® 4 {1 p—1} J
max, —, max<{ —,——~
PP PP
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£(x) [, ()
P (x)dx  9°(x)

Substituting a= >1 into (3), we get

Lt [otm 1) (100 Lonloec)
Pt (g 9°(%) P [ (x)ax 9% (%)
o 1 - bfp(x) Lg‘ligdx_z fg(x) 1(.[:g“q(x)dx)szl "
max{p,pp} TP (x)dx O (j fp(x)dx)2 92(x)
-1 1 1 2
+ gpz— 1 max{llp—l} log®(M)
p P

Simplifying (4) completely, we have
L0 L 90 1 e f()
p_[: f P (x)dx I:gq(x)dx p.[:gq(x)dx (J~b . p(x)dx)l_’l’

o ORI R g (x)

e | P [T i e

a

N o

q
+p__21_1 1_; |ng(|\/|)bg¢
2p” 4 max{lyp—l} [ 9% (x)ax
p p

By integrating inequality (5), we obtain

1 1L
P P (:fp(x)dx)p( :gq(x)dx) P
RN
X X)ax
<|1- 11 2-2 o )1g ) (6)
1p b 2 (b
w2 (s (s
p-1 1 1 2
-—1- log®(M)
2
2p* 4 max{lyp—l}
p P
: 1 1 .
Using the fact that, 1- = , in (6) to get
p P p p
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L (a0 ax
IR I
< 12 1 17 (x)g? (x)x : 7)

2
2p 4m|n{1 p-1
PP

This completes the proof.

Theorem 2.2: Let 1< p<o, l<g<w, 1<r <o, with %+%=% If fand

g are two positive functions which admits integral on [a, 5] for which there exit
I fP(x)dx and '[ g%(x)dx finite with .f fP(x)dx>0, J g?(x)dx>0
and
b
£°(x) ], 0% (x)dx

<j:f”(x)dx (%) <1, vxelab].

Then we have

- (®)

" qz_zl_ 1 1 log’ (l)
g 4min{ q—} m
qa q

Proof: From lemma 2.2 let lz%, 1—l=1—% and a=1 we get
1

1+(1—ljb—bp

q q

1 2 |g-1 1 1 (1
<li-—— = _J(1-vb) +| = 1-——— | |log?| =
{1 q- 1} ( I) 29> 4 {1 q—1} g (m)
max< —,—— max|—,——
q q q q

)
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>1 into (9) we get

o |-

1+[1—1j[b”(x) ,Lﬁ’g“(x)dx}_{ £ (x) ng“(X)dx}

R

<|1- (%) .j‘:gq(x)dx 2
i max{l,q_l} ' (_[:f”(x)dx 9'(c) J (10)
g q

Simplifying Equation (10) to obtain
1

lbgq(x) ) bfp(x) —lbfp(x) (¥ . {Q(X)}'{lp]l
o LRI AL (1 (7ot e

<|1- : bgq(X) - ZfZ()l()gg(x) —+ bfp(x) (11)
max{:,qq_l} qu(x)dx (j:fp(X)dX)E(.f:gq(x)dx)E Iafp(x)dx
9'(x) |gq-1 1 1 (1

To (e w max{;qql} o'

On integrating inequality (11), then (11) becomes

L1 Prfe00T e

—+1l-==
[

L (j:fp(x)dx);(j:gq(x)dx) b

(12)

= } , in (12) we have
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T (13)

" 2_21 B i i (%)
9 4min { : q—}
q q
This completes the proof.

Theorem 2.3. Let 1< p<ow, l<g<ow, 1<r <o, with l+1=% If fand

g are two positive functions which admit integral on [a, 5] for which there exist

jfp x)dx and j g% (x)dx finite with j fP(x)dx>0, and j g%(x)dx>0

xjg

If"xdx qx)

T (14)

g 4m|n{,q_} m
qa q
o 1
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(I, g‘*(x)dx}z )

Simplifying (15) completely to have

L0 e 1 ot (st

Lo e [ (e [t (o 2700 ([ e

<1 11q_1 bg:(x) ~ 2f ();)g (x) " bfp(x) 16)
e e
9'(x) |g-1 1 1 o 1

On integrating Equation (16) with respect to x, we get

1 1 j: f(x)(g (x))q(lﬁ] dx

—+1-——

q q (.[:fp(x)dx);(j:gq(x)dx) p

1
= 1} , in (17) we have
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. 7 (00 () o

(1700 (1790

< 12 1- ng(x)lgg(x)dx : -
min( £ S (1 00 ([0t ]

+ 2_21 - i N log? (i)
9 4min { : q—} m
This completes the proof.

Theorem 2.4. Let 1< p<ow, 1<(q<w, 1<r<ow with £+—=£.Iffand
p g r

g are two positive functions which admit integral on [a, 5] for which there exist
j: fP(x)dx and j:gq (x)dx are finite with _[: f?(x)dx>0, J':gq (x)dx >0,
then

() [19" (x)ex

<k <1, xela,b],k>0
J':fp(x)dx 9‘(x) (2]

m

1 1
Proof: Taking lemma 2.1,let a=1, A=—, 1-A=1-— we have
q

q
1
1+(1—1]b—bp

q q
(19)
1 2 |g-1 1 1 (1
<j1-——————|(1-+b —=|1- log?| =
{1 q—l}( [) " 20° 4 {1 q—1} %9 m
maxq—,——— max{—,——
1 q q
b
fr 9(x)dx
Substituting b=— () qu( >1 into (19) we get
S (x)dx 9%(x)
1
L (1) Lo [ g Lot
a U aJfee(gax 9°(0 [ [re(x)ax 9'(%)
1 2
p "% (x)dx |
<|1- L 1- bkf () qu() (20)
max{lyq_l} Ja fp(X)dX g (X)
q q
q-1 1 1 (1
1= | all
29> 4 { —1} o9 [m}
max{—,——
qa q
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Simplifying Equation (20) completely to have

1

1 9%(x) . kf P (x) 1 f°(x) B Rt (x) (g(x))q[l_i]
ot [0 LEEOS (1o (gt oy

N o

- ) Mfg(x)l CHG R WO P
:ﬂ—l} [Pg7(x)dx (I:fp(x)dx)g(j:gq(x)dx)a g7 (x)dx

q —
+g—(X) q_zl_l 1_; |ng(ij
4 (1 q—1j m
a max| —,——
qa q

On integrating Equation (21) with respect to x;, we have

R SR (31 €)) (g(x))q[l_%]dx

Using the fact that 1—

= in Equation (22) we

have

(23)
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This completes the proof.

Theorem 2.5. Let 1< p<ow, 1<q<w, 1<r <o, with %+%=%.Iffand

g are two positive function feL”, gel® with |f ||p >0, |g||>0 for which
there exist

q
P MSM, vxe[a,b],M >0

115 9

1<

Proof: Taking in theorem 2.2, b=1, A :% , 1-4 =1—%, we will obtain

1
ia-ﬁ-[l—ij—ap
p p

S PR S S0 I S PR S| Y
2p® 4 max[l p—l]
p’p

q
L "g"q >1 we will have

L)

1.1’.%{1_1}_

pfl o p

©

e ol

L

N

1 i ol
max(l,p—l] Il o
p

-1 (25)

Simplifying (25) completely we get

1 f°P g 1 g° £ gq[lf%]
AT ' 1
Pty lali elaly 111, ("g"q)k;
q

P
p 2¢q2 q
1- 1 fP 2f?g g (26)

: e R
max{ 2,22 (I ol 1ok
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On Integrating both sides we have;

o1t
l+1_l_Llel

p p
i1, (Jol;) *
P g
202

2jfgdy
Q

<|1- 1- +
P
1ol

mw({p—j
p p

1 1

~l1-——=———1log? (M

2p* 4 max(l p—l] @ (M)
PP

1 (27)

Using the fact that 1- L = L in Equation (27) we
{1 p—l} .{1 p—l}
maxq—,—— mingy—,——
p P P p
have
e
1_—1,1
I, (ol ®
J_ L
f2g2du
< 12 N 1-2——— |+ 2_21— I log*(M)
min(,p_J I£1iz allz P 4min[,p_j
PP p P

This completes the proof.

The refinement of Hoders’ inequality explain the fact that 1/ec means zero. In
the above proof, if p=co, it means that ||f| is equivalent to essential supre-
mum of |f|; also, in the Holder’s inequality, Oxco and wx0 means 0. The
above mathematical analysis finds application in both algebra and calculus in the

area of mathematics.
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