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Abstract 
Fractional Euler Lagrange equations for fractional nonholonomic constrained 
damping systems have been presented. The equations of motion are obtained 
using fractional Euler Lagrange equations in a similar manner to the usual 
technique. The results of fractional method reduce to those obtained from 
classical method when 0µ →  and , 1α β →  are equal unity only. This 
work is discussed using illustrative example. 
 

Keywords 
Euler-Lagrange Equations, Nonholonomic Constraints, Generalized  
Momenta 

 

1. Introduction 

Nonholonomic mechanics refers to the mechanical systems that are subject to 
constraints on the velocities. This mechanics is very active area in classical me-
chanics. 

The studying of mechanical systems with nonholonomic constraints has a 
long history in classical mechanics [1] [2] [3]. In these references nonholonomic 
mechanical systems are described within the variational framework by Euler La-
grange equations with extra terms corresponding to the constraint forces. Also 
nonholonomic constraints have been intensively presented by researchers 
[4]-[14]. 

The Euler Lagrange formulates the basis of Lagrangian or Hamiltonian me-
chanics [15]. The main role of Lagrangian mechanics is that the given equations 
are characterized with only one scalar function the Lagrangian L, or the Hamil-
tonian H [16], but in classical mechanics there are some methods that describe 
nonconservative systems in such formalism. The method presented by Rayleigh, 
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he introduces a function R (called Rayleigh’s dissipation function). 
The role of fractional derivative has been growing rapidly during the last few 

years because of its active area in science and engineering [17] [18] [19]. Riewe 
has used the fractional derivatives to develop a formalism which can be used for 
both conservative and nonconservative systems [20] [21].  

The classical calculus of variations was extended by Agrawal [22] for systems 
containing Riemann-Liouville fractional derivatives. The resulting equations are 
found to be similar to those for variational problems containing integral order 
derivatives. In other words, the results of fractional calculus of variations reduce 
to those obtained from traditional fractional calculus of variations when the de-
rivative of fractional order replaced by integral order. Recently, Euler Lagrange 
equations for holonomic constrained systems with regular Lagrangian have been 
presented by Hasan [23] using the fractional variationl problems. More recently, 
the fractional Euler Lagrange equations are used by Jarab’ah [24] [25] to obtain 
the equations of motion for first order irregular Lagrangian with holonomic 
constraints and second order Lagrangian for nonconservative systems. In this 
paper, damping systems with fractional nonholonomic constraints will discuss 
as a continuation of the previous work [26]. 

This paper is organized as follows: In Section 2, fractional derivatives formu-
lation is discussed. In Section 3, formulation of fractional lagrangian for nonho-
lonomic constraints is explained. In Section 4, one illustrative example is studied 
in detail. The work closes with some concluding remarks in Section 5. 

2. Fractional Derivatives Formulation 

The left Riemann-Liouville fractional derivative written as [27] [28]: 

( ) ( ) ( ) ( )11 d d
d

n x
n

a x
a

D f x x f
n x

αα τ τ τ
α

− − = − Γ −   ∫
            (1) 

Which is defined as the LRLFD, and the right Riemann-Liouville fractional 
derivative written as: 
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           (2) 

Which is defined as the RRLFD. 
Where Γ represents the Euler’s gamma function and α  is the order of the 

derivative such that 1n nα− ≤ < , and is not equal to zero. If α  is an integer, 
these derivatives are written as: 

( ) ( )d
da xD f x f x

x

α
α  =  

 
                     (3) 

and 

( ) ( )d
dx bD f x f x
x

α
α  = − 

 
                    (4) 

The fractional operator, ( )a xD f xα  can be written as [29]. 
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where, 

1,2,α =   

Using that 

1 d
dtD
t

=                            (6) 

0 1tD =                             (7) 

Thus, if 1α β= = , we find that: 
d
dt bD
t

α = −                          (8) 

and  
d
da tD
t

α =                           (9) 

Theorem: Let f and g be two continuous functions on [ ],a b . Then, for all 
[ ],x a b∈ , the following properties hold: 
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0m > , ( ) ( ) ( ) ( )m m m
a x a x a xD f x g x D f x D g x = + = +         (10) 
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3. Formulation of Fractional Lagrangian for Nonholonomic  
Constraints 

The nonholonomic constraints are time independent and linear in the velocities: 

( ), 0i i j jf f q q= =                       (14) 

And the Lagrangian containing a fractional derivative takes the following 
form: 

( )1 1
0 0 , , , ,a t t b a t t bL L D q D q D q D q tα β α β− −=              (15) 

The motion of a nonholonomic system will be determined by using of the Eu-
ler Lagrange equation and constraints. The fractional Euler Lagrange equation in 
fractional form is given by:  

0t b a t
a t t b a t t b

L L L f fD D
q D q D q D q D q

α β
α β α βλ λ∂ ∂ ∂ ∂ ∂

+ + + + =
∂ ∂ ∂ ∂ ∂

      (16) 
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where ( )1 1
0 , , , e t

a t t b a t t bL L D q D q D q D qα β α β µ− −= , which represents the damping 
case through the e tµ  factor and µ  is called the damping factor and λ  is called 
Lagrange multiplier. 

The generalized momenta can be obtained from: 

a t

Lp
D qα α

∂
=
∂

                         (17) 

and 

t b

Lp
D qβ β

∂
=
∂

                         (18) 

4. Illustrative Example 

-The Sliding of a Balanced Skate. 
Let us consider as an illustrating example the problem of a balanced skate on 

horizontal ice. We assume that length, time and mass are equal to one, so that 
the Lagrangian would take the following form [30]: 

( )2 2 2
0

1
2

L x y z= + +                         (19) 

In the presence of damping process e tµ , and using fractional derivatives the 
Lagrangian in Equation (19) becomes. 

( ) ( ) ( )2 2 2

0 0 0
1 e
2

t
t t tL D x D y D zα α α µ = + +  

              (20) 

The nonholonomic constraint equation is: 

sin cos 0f x z y z= − =                       (21) 

In fractional form Equation (21) takes this form: 

( ) ( )0 0sin cos 0t tf D x z D y zα α= − =                 (22) 

using the following Euler Lagrange equation 

0t b a t
a t t b a t t b

L L L f fD D
q D q D q D q D q

α β
α β α βλ λ∂ ∂ ∂ ∂ ∂

+ + + + =
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       (23) 

The corresponding Euler Lagrange equations are 

( ) ( )0e sin 0t
t b tD D x zα µ α λ+ =                    (24) 

and 

( ) ( )0e cos 0t
t b tD D y zα µ α λ+ − =                   (25) 

also 

( )0e 0t
t b tD D zα µ α =                        (26) 

Using Equation (24) and Equation (25), the Lagrange multiplier is  

( ) ( )0 0e e
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t t
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From Equation (17), the conjugate momenta are: 
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( )0
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                   (30) 

If 0µ →  and 1α → .  
The acceleration takes the following form  

sinx zλ=                         (31) 

cosy zλ= −                        (32) 

0z =                           (33) 

And the Lagrange multiplier becomes 

sin cos
x y
z z

λ +
=

−
 

                     (34) 

Finally, the conjugate momenta are 

( )0x tp D x xα= =                       (35) 

( )0y tp D y yα= =                       (36) 

( )0z tp D z zα= =                       (37) 

which are in exact agreement with that obtained by classical method. 

5. Conclusion 

In this work nonholonomic constraints are studied for damping systems using 
fractional Lagrangian. From this Lagrangian we can find the equations of motion, 
the Lagrange multiplier λ  and the generalized momenta. The results of fraction-
al technique reduce to those obtained from classical technique when 0µ →  and 

, 1α β →  are equal unity. 
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