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Abstract 
Polysurfacic tori or kideas are three-dimensional objects formed by rotating a 
regular polygon around a central axis. These toric shapes are referred to as 
“polysurfacic” because their characteristics, such as the number of sides or 
surfaces separated by edges, can vary in a non-trivial manner depending on 
the degree of twisting during the revolution. We use the term “Kideas” to 
specifically denote these polysurfacic tori, and we represent the number of 
sides (referred to as “facets”) of the original polygon followed by a point, 
while the number of facets from which the torus is twisted during its revolu-
tion is indicated. We then explore the use of concave regular polygons to 
generate Kideas. We finally give acceleration for the algorithm for calculating 
the set of prime numbers. 
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1. Introduction 

Polysurfacic tori or kideas are the solids generated by the circular revolution of a 
regular polygon [1]. We call these toric shapes “polysurfacic” because, depend-
ing on its torsion on its revolution of zero, one or more “facets”, its number of 
side(s), or surface(s) separated by an edge overall will vary from non-trivial way. 

We call these polysurfacic tori Kideas, and we make follow the number of 
sides of the generation polygon (called “facets”) by a point and the number of 
facet(s) from which the torus is twisted on his revolution. 

The direction of twisting doesn’t matter for the number of surface(s) as long 

How to cite this paper: Anaxhaoza, E. C. 
(2023) Polysurfacic Tori or Kideas Inspired 
by the Möbius Strip Topology. Advances in 
Pure Mathematics, 13, 543-551. 
https://doi.org/10.4236/apm.2023.139036 
 
Received: July 27, 2023 
Accepted: August 28, 2023 
Published: August 31, 2023 
 
Copyright © 2023 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution-NonCommercial 
International License (CC BY-NC 4.0). 
http://creativecommons.org/licenses/by-nc/4.0/ 

  
Open Access

https://www.scirp.org/journal/apm
https://doi.org/10.4236/apm.2023.139036
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/apm.2023.139036
http://creativecommons.org/licenses/by-nc/4.0/


E. C. Anaxhaoza 
 

 

DOI: 10.4236/apm.2023.139036 544 Advances in Pure Mathematics 
 

as we keep twisting on that direction, but it can mean on the chirality of the ob-
ject (it means that two different kideas could then be equivalent). 

2. Description of Polysurfacic Tori or Kideas 

So the Kidea 2.0 is going from the section of cylinder to the strip in circle and all 
the shapes in between, taken in any proportion; and Kidea 2.1 is the Möbius 
strip [2], which is, as we know, globally only one side. 

Kidea 3.2 is described in the drawing Figure 1, and Kidea 3.1 is the one that is 
less twisted in one facet. These two Kideas have only one side. The Kidea 3.0 and 
3.3 have three sides, like the Kidea 3.6 and 3.9. 

Kidea 4.0 and Kidea 4.4 have 4 sides (Figure 2). Kideas 4.1 and 4.3 are only 
one-sided (Figure 3 and Figure 4). The Kidea 4.2 (Figure 5) has, as we notice, 2 
sides. This can be seen by numbering the facets from 0 to 3. Thus facet n˚ 0 joins 
facet n˚ 2 during the first revolution, which joins facet n˚ 0 from the second rev-
olution. Facet n˚ 1 will never be joined by facet n˚ 0, whatever the number of 
revolutions; one says that facet n˚ 1 is on another “side” than facet n˚ 0. This ob-
viously does not depend on the numbering, and we prefer to number from 0 to 3 
because this simplifies the counting of “sides” or different surfaces. 

 

 
Figure 1. View in diametrical section of the Kidea 3.2. 

 

 
Figure 2. Kidea 4.0. 
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Figure 3. Kidea 4.1. 

 

 
Figure 4. Kidea 4.3. 

 

 
Figure 5. Kidea 4.2. 
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We say 0 on 2 on 0 
And the 1 on 3 on 1  either globally 2 sides. 
Kideas 5.0 and 5.5 have 5 sides. And Kideas 5.1, 5.2, 5.3 and 5.4 have only one 

side; and each time we join facet n˚ 0, from facet n˚ 0, in 5 revolutions. 
Kideas 6.0 and 6.6 have 6 sides. Kideas 6.1 and 6.5 have only one side; and we 

reach facet n˚ 0 in 6 revolutions. 
For the Kidea 6.2 we say: the 0 on 2 on 4 on 0 
And the 1 on 3 on 5 on 1 All the facets are reached in 2 surfaces; Kidea 6.2 has 

2 sides. 
The Kidea 6.3: The 0 on 3 on 0 
The 1 on 4 on 1 
The 2 on 5 on 2   Either Kidea 6.3 has 3 sides. 
The Kidea 6.4: The 0 on 4 on 2 on 0 
The 1 on 5 on 3 on 1  Either Kidea 6.4 has 2 sides. 
One notices here that the result is symmetrical with Kidea 6.3 for middle. 
Let   be the set of prime numbers, if p belongs to   we have, with n be-

longs to  , 0n ≠ , n p≠  et n pα≠ ∗  with α ∈ : 
Kidea p.n has 1 side 

And for any n:  
Kidea n.0 has n sides as well as Kidea n.n and Kidea n.αn; we call those Ki-

deas, canonical Kideas of n. 
Thus the Kideas 7.1, 7.2, 7.3, 7.4, 7.5 and 7.6 have only one side, and the ca-

nonical Kideas of 7 have 7 sides. 
Kidea 8.1 has 1 side and we reach facet n˚ 0 in 8 revolutions. 
The Kidea 8.2: The 0 on 2 on 4 on 6 on 0 
The 1 on 3 on 5 on 7 on 1 Either Kidea 8.2 has 2 sides. 
The Kidea 8.3 has 1 side and we reach the facet n˚ 0 in 8 revolutions. 
The Kidea 8.4: The 0 on 4 on 0 
   The 1 on 5 on 1 
   The 2 on 6 on 2 
   The 3 on 7 on 3   Either Kidea 8.4 has 4 sides. 
The Kidea 8.5 has 1 side and we reach the facet n˚ 0 in 8 revolutions. 
The Kidea 8.6: The 0 on 6 on 4 on 2 on 0 
The 1 on 7 on 5 on 3 on 1    Either Kidea 8.6 has 2 sides. 
The Kidea 8.7 has 1 side and we join the facet n˚ 0 in 8 revolutions. 
We notice that the result is symmetrical with Kidea 8.4 for middle. 
The Kidea 9.1 has 1 side and we join the facet n˚ 0 in 9 revolutions. 
The Kidea 9.2 has 1 side and we join the facet n˚ 0 in 9 revolutions. 
The Kidea 9.3: The 0 on 3 on 6 on 0 
The 1 on 4 on 7 on 1 
The 2 on 5 on 8 on 2     Either Kidea 9.3 has 3 sides. 
The Kidea 9.4 has 1 side and we join the facet n˚ 0 in 9 revolutions. 
The Kidea 9.5 has 1 side and we join the facet n˚ 0 in 9 revolutions. 
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The Kidea 9.6: The 0 on 6 on 3 on 0 
   The 1 on 7 on 4 on 1 
   The 2 on 8 on 5 on 2  Either Kidea 9.6 has 3 sides. 
The Kidea 9.7 has 1 side and we join the facet n˚ 0 in 9 revolutions. 
The Kidea 9.8 has 1 face and we reach the facet n˚ 0 in 9 revolutions. 
We notice that the result is symmetrical with Kideas 9.4 and 9.5 for middle. 
We use here the base A (ten) = 10. A by convention without specifying the 

base. 
The Kidea 10.1 has 1 side and we reach facet n˚ 0 in ten revolutions. 
The Kidea 10.2: The 0 on 2 on 4 on 6 on 8 on 0 

The 1 on 3 on 5 on 7 on 9 on 1 
Either Kidea 10.2 has 2 sides. 
The Kidea 10.3 has 1 side and we reach facet n˚ 0 in ten revolutions. 
The Kidea 10.4: The 0 on 4 on 8 on 2 on 6 on 0 

The 1 on 5 on 9 on 3 on 7 on 1 
Either Kidea 10.4 has 2 sides. 
The Kidea 10.5: The 0 on 5 on 0 

The 1 on 6 on 1 
The 2 on 7 on 2 
The 3 on 8 on 3 
The 4 on 9 on 4 

Either Kidea 10.5 has 5 sides.  
The Kidea 10.6: The 0 on 6 on 2 on 8 on 4 on 0 

The 1 on 7 on 3 on 9 on 5 on 1 
Either Kidea 10.6 has 2 sides. 
The Kidea 10.7 has 1 side and we reach facet n˚ 0 in ten revolutions. 
The Kidea 10.8: The 0 on 8 on 6 on 4 on 2 on 0 
The 1 on 9 on 7 on 5 on 3 on 1 
Either Kidea 10.8 has 2 sides. 
The Kidea 10.9 has 1 side and we reach facet n˚ 0 in ten revolutions. 
We notice that the result is symmetrical with Kidea 10.5 for middle. 
11.A (eleven) is a prime number so the Kideas 11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 

11.7, 11.8, 11.9 and 11.10 (or B.A in hexadecimal notation) have 1 faces and we 
join facet n˚ 0 in eleven revolutions, and the canonical Kideas of 11 have 11 
sides. 

The Kidea 12.1 has 1 side and we reach facet n˚ 0 in twelve revolutions. 
The Kidea 12.2: The 0 on 2 on 4 on 6 on 8 on 10 on 0 
      The 1 on 3 on 5 on 7 on 9 on 11 on 1 
Either Kidea 12.2 has 2 sides. 
The Kidea 12.3 has 1 side and we reach facet n˚ 0 in twelve revolutions. 
The Kidea 12.4: The 0 on 4 on 8 on 0 

The 1 on 5 on 9 on 1 
The 2 on 6 on 10 on 2 
The 3 on 7 on 11 on 3 
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Either Kidea 12.4 has 4 sides. 
The Kidea 12.5 has 1 side and we reach facet n˚ 0 in twelve revolutions. 
The Kidea 12.6: The 0 on 6 on 0 

The 1 on 7 on 1 
The 2 on 8 on 2 
The 3 on 9 on 3 

The 4 on 10 on 4 
The 5 on 11 on 5 

Either Kidea 12.6 has 6 sides. 
The Kidea 12.7 has 1 face and we join the facet n˚ 0 in twelve revolutions. 
The Kidea 12.8 has probably 4 faces by induction of the symmetry of the result 

with respect to the middle (facet/2 for even numbers); 
Let’s check: The 0 on 8 on 4 on 0 
      The 1 on 9 on 5 on 1 
The 2 on 10 on 6 on 2 
   The 3 on 11 on 7 on 3  Or indeed the expected result. 
The Kidea 12.9 has 1 side and we reach facet n˚ 0 in twelve revolutions. 
The Kidea 12.10 has probably 2 sides by recurrence of symmetry, 
Let’s check: The 0 on 10 on 8 on 6 on 4 on 2 on 0 

The 1 on 11 on 9 on 7 on 5 on 3 on 1 
Either effectively the expected result. 
The Kidea 12.11 has 1 side and we reach facet n˚ 0 in twelve revolutions. 
The results therefore have the property of symmetry with respect to the mid-

dle; and we will notice that the Kidea n.1 and n.(n-1) have only one side for 
n∈ . 

13. A (thirteen) is a prime number, so its Kideas have only one side, and the 
canonical Kideas of 13 have 13 sides. 

2.1. Same Twisted Tori with Concave Regular Polygons and Less  
Regular Shapes for Generator 

We call concave regular polygons the star-shaped crosses and the stars as dis-
creet sided extremes of umbrellas. The concave regular polygons have the same 
branches length and have therefore their vertices on the same circumscribed cir-
cle. The angles between two adjacent branches are the same. The regular crosses 
are concave regular polygons because of the thickness of the stroke. There are 
three kind of regular stars (meaning for the branches of the same length and at 
the same angle). The “regular stars” in itself, whose inner vertices are of the same 
length and at the same angle, the “fake regular standard stars”, whose inner ver-
tices are of the same length but at different angles, and the “fake regular stars” 
whose inner vertices are of different length at different angles. The “irregular 
standard stars” have branches of the same length but at different angles and the 
“irregular stars” that have different branches length at different angles. Those 
last two kinds of irregular stars can have “standard inner vertices” (of the same 
length) or/and “regular inner vertices” (at the bisector of the angle between two 
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adjacent branches). 
Concave regular polygons generate Kideas the same way as convex regular 

polygons. We denote the number of branches followed by the number of 
branch(es) of which it’s twisted on the revolution. Figures 6-9 illustrate the po-
lygons generators for KideaCross, KideaStar, and KideaUmbrella. We count the 
number of distinct branches globally in the same way as we did for the globally 
distinct surfaces of regular Kideas. 

We have Kideas even for irregular concave polygons as generators that may 
vary on the revolution with continuous surfaces and with even accidental points 
as long as we keep a constant number of branches. 

Figure 10 illustrate a cross together with a star-shaped generator of any kind. 
In the same way we can solve the Kideas generated by irregular standard con-

vex polygons (whose vertices are on the same circle), or irregular convex poly-
gons, as long as we keep constant the number of “facets” on the revolution for 
the generator. 

 

 
Figure 6. Generators for KideaCross 3.n and 
KideaStar 3.n. 

 

 
Figure 7. Generators for KideaCross 4.n and KideaStar 4.n. 
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Figure 8. Generators for KideaCross 5.n and 
KideaStar 5.n. 

 

 
Figure 9. Generators for KideaCross 6.n and 
KideaStar 6.n. 

 

 
Figure 10. Cut out/add a triangle in the ear. 
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2.2. Algorithm for Calculating the Set of Prime Numbers   

The method of programming the elements of   {set of prime numbers} is ac-
celerated by applying the algorithm “+2+4” to the starting set from of 5; or base 
ten numbers: 5 7 11 13 17 19 23 25 etc. Indeed the divisible by 2 and by 3 are 
thus removed from the outset.  

3. Conclusions 

Kideas are hidden figures of the Euclidean geometry that may let think of hea-
venly things. 

Hoping these and their topology will increase the mathematical, artistic and 
physicist worlds. 

Acknowledgements 

Photo credit goes to the talented photographer Patrick Cadier. Figure 10 is a 
graphic creation of the mathematician Khvicha Matkava. 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this 
paper. 

References 
[1] Euclid (around 300 B.C.) Στοιχεῖα [The Elements]. 

[2] Möbius, A.F. (1865) Der bänderige Flächenkörper. Die Monatsberichte der Königlichen 
Preussischen Akademie der Wissenschaften zu Berlin. 

 
 
 

https://doi.org/10.4236/apm.2023.139036

	Polysurfacic Tori or Kideas Inspired by the Möbius Strip Topology
	Abstract
	Keywords
	1. Introduction
	2. Description of Polysurfacic Tori or Kideas
	2.1. Same Twisted Tori with Concave Regular Polygons and Less Regular Shapes for Generator
	2.2. Algorithm for Calculating the Set of Prime Numbers 

	3. Conclusions
	Acknowledgements
	Conflicts of Interest
	References

