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Abstract 
In expansions of arbitrary functions in Bessel functions or Spherical Bessel 
functions, a dual partner set of polynomials play a role. For the Bessel func-
tions, these are the Chebyshev polynomials of first kind and for the Spherical 
Bessel functions the Legendre polynomials. These two sets of functions ap-
pear in many formulas of the expansion and in the completeness and 
(bi)-orthogonality relations. The analogy to expansions of functions in Taylor 
series and in moment series and to expansions in Hermite functions is elabo-
rated. Besides other special expansion, we find the expansion of Bessel func-
tions in Spherical Bessel functions and their inversion and of Chebyshev po-
lynomials of first kind in Legendre polynomials and their inversion. For the 
operators which generate the Spherical Bessel functions from a basic Spheri-
cal Bessel function, the normally ordered (or disentangled) form is found. 
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1. Introduction 

Expansion of functions in complete sets of functions plays an outstanding role to 
find approximations of functions in physics and mathematics. The best known 
expansions of functions are surely the Taylor series and the Fourier series. The 
topics of present article are expansions in Bessel functions ( )Jn z  and in Spher-
ical Bessel functions ( )jn z  and problems connected with them. About the Bes-
sel (or Cylinder) functions very much is known, a huge number of series and in-
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tegrals and other relations and we have to say what is new in present paper. 
One basic idea was that for expansions in series of functions we have as a rule 

two sets of involved functions which satisfy a mutual orthogonality and a com-
pleteness relation. In case of Hermite polynomials and Hermite functions, these 
are the same sets of functions. For the Taylor series, these are the monomials 

( ), 0,1,nx n =   together with the n-th derivatives of the delta function  
( ) ( ) ( ), 0,1,n x nδ =   and we have a bi-orthogonality between them that is lesser 

known. In case of Bessel functions and modified Bessel functions, these are two 
known expansions. The first is a known formula for the expansion of an expo-
nential function ie xz  in a series of Bessel functions ( )Jn z  with the Chebyshev 
polynomials of first kind ( )Tn x  as coefficients that, in principle, is known but 
rarely represented in this way. The second concerns the known expansion of the 
same exponential function ie xz  in a series of Spherical Bessel functions  

( ) ( )1
2

j J
2n n

z z
z +

π
≡  with Legendre polynomials ( )Pn x  as coefficients. Thus  

the partner for bi-orthogonality in case of Bessel functions ( )Jn z  is the Che-
byshev polynomials of first kind ( )Tn x  and in case of Spherical Bessel func-
tions ( )jn z  the Legendre polynomials ( )Pn x  (or, more exactly, their Fourier 
transforms). This to elaborate was an aim of present article. Besides this we de-
rive some interesting relations between these two mentioned kinds of polyno-
mials and the representation of the monomials nz  as series in Bessel and Spheri-
cal Bessel functions, which seems to be new. Furthermore, we give a formula for  

the normal ordering of the operators 1 n

z z
∂ 

 ∂ 
 and 1 n

z z
∂ 

 ∂ 
 which are related 

to the Spherical Bessel functions. 
As main sources about the Bessel and modified Bessel functions, we used the 

monographs or corresponding chapters of Watson [1], Whittaker and Watson 
[2], Bateman and Erdélyi [3], Korenyev [4], Arfken [5], and the comprehensive 
lexicographic articles of Olver [6] (chap. 9) and of Antosiewicz [7] (chap. 10) in 
[8] and of Olver and Maximon [9] (chap. 10) in [10] and the tables of Gradsteyn 
and Ryzhik [11] and of Prudnikov, Brychkov and Marichev [12]. Partially, the 
same sources [3] and additionally the articles of Hochstrasser [13] and of 
Koornwinder, Wong, Koekoek and Swarttouw [14] we used for the Chebyshev 
and Legendre, Gegenbauer and Jacobi polynomials. 

The expansions which we consider are included in that which is called Neu-
mann expansions (e.g., [2] [4] [9]). There exist also other series of other kinds 
using Bessel functions. In the Schlömilch series, only one Bessel function is used 
but with arguments of this Bessel function in equal steps, in Fourier-Bessel series 
the zeros of only one Bessel function are used and, furthermore, Bessel-Dini ex-
pansions and Lommel expansions [4]. 

In Section 2, we discuss the mentioned bi-orthogonality (or duality) of power 
functions and derivatives of the Delta function. In Sections 3-6, we develop the 
duality between Bessel functions and Chebyshev polynomials of first kind and in 
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Sections 7-10, the duality between Spherical Bessel functions and Legendre po-
lynomials. In Section 11, we present in short form the analogies to expansion of 
functions in series of Hermite functions or Hermite polynomials where in this 
case we have a self-duality of the Hermite functions. 

2. Taylor Series as Example for a Bi-Orthonormal Expansion 

We illustrate in this Section for a known expansion (likely the best one) of a 
function into a Taylor series by manipulations of the representations what we 
intend to make in analogous form for some other less known series expansions. 
Therefore, it may be favorable to read this Section before studying the next Sec-
tions with the proper new approaches to the topics. 

The Taylor series of a continuous and infinitely continuously differentiable 
function ( )f x  defined on the whole real axis x−∞ < < +∞  is  

 ( ) ( ) ( )
0

0 .
!

n
n

n

xf x f
n

+∞

=

= ∑                       (2.1) 

Using the delta function ( )xδ  in the sense of the theory of generalized func-
tions (e.g., [15] [16]) Equation (2.1) can be written  

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

0 0

0

d d 1
! !

1
d d .

!

n n
nn n

n n

n
nn

n

x xf x y y f y y y f y
n n

y x y f y y x y f y
n

δ δ

δ δ

+∞ +∞+∞ +∞

−∞ −∞
= =

+∞+∞ +∞

−∞ −∞
=

= = −

 −
 = ≡ −
 
 

∑ ∑∫ ∫

∑∫ ∫
 (2.2) 

From this follows the operator identity applicable to functions with subsequent 
integration  

 ( ) ( ) ( ) ( ) ( )
0 0

11 .
! !

nn
nn n

n
n n

x y x y x y
n ny

δ δ δ
+∞ +∞

= =

−∂
= = −

∂∑ ∑         (2.3) 

If we apply this identity on both sides to a function ( )f y  on the right-hand 
side and integrate the expression over the whole real axis y we obtain the Taylor 
series (2.1). Relations of the kind (2.3) are called completeness relations, here for 
the space D of continuous and continuously differentiable functions. It states 
that the functions ( ), 0,1,2,nx n =   are complete for the expansion of arbitrary 
function in the spaces D and thus form a possible basis but leaves open whether 
or not this basis is over-complete. 

If we multiply (2.3) by the set of basis functions my  and integrate this then 
over y we find  

 

( ) ( ) ( ) ( )

( ) ( ) ( )

0

,
0 0

1
d d

!

1
d ,

!

n
nm m n m

n

n
nn m n

n m
n n

x y x y y y x y y
n

x y y y x
n

δ δ

δ δ

+∞+∞ +∞

−∞ −∞
=

+∞ +∞+∞

−∞
= =

 −
 = − =
 
 

 −
 = ≡
 
 

∑∫ ∫

∑ ∑∫

     (2.4) 

where we changed the order of integration and summation under the assump-
tion of absolute convergence of the series. From (2.4) we conclude  
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( ) ( ) ( ) ,

1
d .

!

n
n m

n my y y
n

δ δ
+∞

−∞

−
=∫                    (2.5) 

This is a mutual orthonormality relation of the set of functions ( ), 0,1,2,mx m =    

to the set of functions 
( ) ( ) ( ) ( )

1
, 0,1,2,

!

n
n x n

n
δ

−
=   where it does not play a role  

for our illustration that the second set of functions are Generalized functions. It 
is called a bi-orthonormality since both sets of functions are not identical. The de-
rivation is only true if the set of functions ( ), 0,1,2,nx n =   is not over-complete 
since in other case at least one the functions can be expressed by a superposition 
of the others. This can be shorter written with introduction of a scalar product 
definition ( ) ( ) ( ), df g x f x g x

+∞

−∞
≡ ∫ 1. 

Due to symmetry ( ) ( )x y y xδ δ− = −  one may derive from (2.3) also another 
interesting relation in the following way. We multiply both sides with a function 
( )f y  and integrate this then over y and find  

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

0

1
d d

!
1 d 1 .
!

n
nn

n

n nn

n

f x y f y y x y f y y x
n

y f y y x
n

δ δ

δ

+∞+∞ +∞

−∞ −∞
=

+∞ +∞

−∞
=

−
= − =

 = − 
 

∑∫ ∫

∑ ∫
    (2.6) 

This is an expansion of the functions ( )f x  into a series of the delta function 
( )xδ  and its derivatives which we write  

 ( ) ( ) ( ) ( ) ( )
0

1 0 ,n n
n

n
f x f xδ

+∞

=

= −∑                  (2.7) 

with the abbreviation  

 ( ) ( )10 d .
!

n
nf y f y y

n
+∞

−∞
≡ ∫                   (2.8) 

We call such expansions moment series and applied them already to the deriva-
tion of generalized boundary conditions in electrodynamics of continuous media 
[18] [19]. 

In generalization to an arbitrary fixed reference point 0x x=  of the expan-
sion the Taylor series (2.1) becomes  

 ( ) ( ) ( ) ( )0
0

0
.

!

n
n

n

x x
f x f x

n

+∞

=

−
= ∑                  (2.9) 

In these more general cases of the expansion (2.9) we find instead of (2.3) the 
more general completeness relation  

 ( ) ( ) ( ) ( ) ( )0 0
0

1
,

!

n
n n

n
x x y x x y

n
δ δ

+∞

=

−
− − = −∑          (2.10) 

and the bi-orthonormality  

 

 

1Quantum theory has solved this elegantly in form of Dirac’s notations by states and co-states (ket’s 
x  and bra’s y ) where y x  stands for the scalar product and x y  for a dyadic product. 

In form of the coherent states α  quantum mechanics provides at once a famous set of 
over-complete and not mutually orthogonal states [17]. 
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( ) ( ) ( )( )0 0 ,

1
d .

!

n
mn

n mx x x x x
n

δ δ
+∞

−∞

−
− − =∫             (2.11) 

The analogue to the moment series for a general reference point 0x x=  is  

 ( ) ( )( ) ( ) ( )0 0
0

1 ,n n
n

n
f x f x x xδ

∞

=

= − −∑               (2.12) 

with the moments  

 ( ) ( )( )0 0
1 d .
!

n
nf x x f x x x

n
+∞

−∞
≡ −∫                (2.13) 

3. Duality between Bessel Functions and Fourier Transforms  
of Chebyshev Polynomials of First Kind 

The starting point of the following considerations is the Generating function for 
Bessel functions of first kind ( )Jn z  with integer n (e.g., Watson [1] (II.2.1 (2.1) 
and Whittaker Watson [2]))  

 ( )1exp J .
2

n
n

n

z t t z
t

+∞

=−∞

  − =  
  

∑                  (3.1) 

This is a Laurent series and from substitution 1t
t

→  (or equivalently n n→−  

in nt ) follows  

 ( ) ( ) ( )J 1 J .n
n nz z− = −                     (3.2) 

Sometimes it is more convenient to use instead of ( )Jn z  the modified Bessel 
functions or Bessel functions of imaginary argument ( )In z  with the following 
connections to ( )Jn z   

 ( ) ( ) ( ) ( ) ( )I i J i , J i i I .n n
n n n nz z z z≡ − ⇔ ≡            (3.3) 

From the invariance of the left-hand side of (3.1) with respect to the simulta-
neous substitutions ,z z t t→− →−  follows  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )J 1 J J , I I 1 I .n n
n n n n n nz z z z z z− −− = − = − = = −    (3.4) 

The relation (3.1) together with (3.2) and (3.4) can be taken as basis for the con-
struction of the whole theory of Bessel functions of integer (and by interpolation 
of non-integer) indices that according to [1] [2] goes back to Schlömilch and 
such an approach is sometimes used as, for example, by the here cited authors 
also in more recent time. 

By the substitution  

 i 1 ie , e ,t tθ θ− −= ↔ =                    (3.5) 

relation (3.1) makes the transition into  

 ( )( ) ( ) ( ) ( ) ( )( )i i i
0

1
exp i sin J e J J e 1 e ,nn n n

n n
n n

z z z zθ θ θθ
+∞ +∞

−

=−∞ =

= = + + −∑ ∑  (3.6) 

and by the substitution  

 i 1 iie , ie ,t tθ θ− −≡ ↔ = −                  (3.7) 
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the transition into  

 ( )( ) ( ) ( ) ( )( )i i i
0

1
exp i cos i J e J i J e e .n n n n n

n n
n n

z z z zθ θ θθ
+∞ +∞

−

=−∞ =

= = + +∑ ∑   (3.8) 

Both relations (3.6) and (3.8) possess two aspects. First, the exponents on the 
left-hand side are periodic functions of the variable θ  and the right-hand sides 
are Fourier series of the periodic functions with the Bessel functions as coeffi-
cients. The other aspect is that they provide expansions for two special functions 
in series of Bessel functions ( )Jn z . 

Under the assumption that z and θ  are real variables and taking into ac-
count the symmetry relations (3.2) we find the following separation of (3.8) in 
Real and Imaginary part  

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

0 2
1

cos cos 1 J cos 2

J 2 1 J cos 2 ,

m
m

m

m
m

m

z z m

z z m

θ θ

θ

+∞

=−∞

+∞

=

= −

= + −

∑

∑
 

 
( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

2 1

2 1
0

sin cos 1 J cos 2 1

2 1 J cos 2 1 ,

m
m

m

m
m

m

z z m

z m

θ θ

θ

+∞

+
=−∞

+∞

+
=

= − +

= − +

∑

∑
         (3.9) 

and similar relations with ( )sin θ  in the argument by the substitution  

( ) ( )cos cos sin
2

θ θ θ → − = 
 

π  These formulae which are known as Jacobi ex-  

pansions (e.g., Korenyev [4]) played an important role in the physics of the radio 
for the spectrum of phase modulation of carrier signals and also for frequency 
modulation since the frequency is the derivative of the phase with respect to 
the time. In Appendix A we collect for convenience the cases of modulation of 
Trigonometric and Hyperbolic functions by Trigonometric or Hyperbolic func-
tions. 

The differential equation for general Bessel functions ( )J zν  with real or even 
complex ν  is  

 ( )
2 2

2 2
10 1 J .z
z zz z ν

ν ∂ ∂
= + + − ∂∂ 

               (3.10) 

A second linearly independent solution to the operator of this differential equa-
tion is for integer nν =  mostly denoted by ( )Yn z  but we do not need it in 
the following and do not discuss it. The essential part of the operator of this dif-
ferential equation appears if we write the two-dimensional Laplace operator  

2 2
2

2 2x y
∂ ∂

≡ +
∂ ∂

∇  in polar coordinates ( ),r ϕ  in combination with an angular  

part (see Appendix B, in particular, case 2N =  in (B.9)). Further terms to the 
operator of the differential equation for the Bessel functions result if we consider 
instead the more general wave equation (with Fourier-transformed time) which 
is the Helmholtz equation. In Appendix B we derive for the N-dimensional 
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Laplace operator the radial and the angular parts, the last in coordinate-invariant 
way and extend it to the N-dimensional wave-equation operator. 

In the following we use the Chebyshev polynomials of first kind ( )Tn x  and 
of second kind ( )Un x  with the explicit representations2  

( ) ( ) ( )
( ) ( )

2
2

0

1, 0,

T 1 1 !
2 , 0,

2 ! 2 !

n
k

n n k

k

n

x n kn x n
k n k

 
   −

=

=
=  − − −

≠
−

∑
 

 ( ) ( ) ( )
( ) ( )

2
2

0

1 !
U 2 ,

! 2 !

n
k

n k
n

k

n k
x x

k n k

 
   −

=

− −
=

−∑               (3.11) 

with the symmetries  

( ) ( ) ( ) ( )T 1 T T ,n
n n nx x x−= − − =  

 ( ) ( ) ( ) ( )2U 1 U U .n
n n nx x x− −= − − = −              (3.12) 

Thus the full sets of Chebyshev polynomials with non-negative and negative in-
dices are over-complete and can be reduced to a complete but not over-complete 
set. One of the basic possible representations of the Chebyshev polynomials by 
the Hypergeometric Function ( )2 1F , ; ;a b c z  and, more specially, by the Jacobi 
polynomials ( ) ( ),Pn xα β  is  

( ) ( ) ( )
1 12 2 ,
2 2

2 1
1 1 2 !T F , ; ; P ,
2 2 2 !

n

n n
x nx n n x

n

 − − 
 − = − = 

 
 

 ( ) ( ) ( )
( ) ( )

1 12 1 2 ,
2 2

2 1

2 1 !3 1U 1 F , 2; ; P ,
2 2 2 2 !

n

n n

nxx n n n x
n

 +
 
 

+− = + − + =  + 
  (3.13) 

whereas the Bessel functions ( )J zν  for arbitrary real and, moreover, complex 
ν  are special cases of the Degenerate (or Confluent) Hypergeometric function 

( )1 1F ; ;a c z  according to  

 
( )

( )
( )

i
1 1

2
i

1 1
0

1 1J e F ;1 2 ;i2
! 2 2

11 1e F ;1 2 ; i2 .
! 2 2 2 ! ! 2

z

k k
z

k

zz z

z z zz
k k

ν

ν

ν ν

ν ν
ν

ν ν
ν ν

−

∞

=

   = + +   
   

−       = + + − =       +       
∑

 (3.14) 

The well-known recurrence and differentiation relations are  

( ) ( ) ( )1 1J J 2 J ,z z z
zν ν ν
ν

+ −+ =  

 ( ) ( ) ( )1 1J J 2 J .z z z
zν ν ν+ −
∂

− = −
∂

               (3.15) 

The Taylor series in case of integer nν =  is  

 ( ) ( )
( )

2

0

1
J .

2 ! ! 2

kn k

n
k

z zz
k k n

∞

=

−   =    +   
∑               (3.16) 

 

 

2The general formula (3.11) for ( )Tn x  is undetermined for 0n =  of kind 0 ⋅∞  but, by common 

definition, ( )0T 1x ≡  is fixed. 
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As is well-known (e.g. [3]) the Chebyshev polynomials satisfy the identities  

 ( )( ) ( ) ( )( ) ( )( )
( )

sin 1
T cos cos , U cos ,

sinn n

n
n

θ
θ θ θ

θ
+

= =      (3.17) 

and similar relations by substitution ( ) ( )cos ch , it tθ θ→ → . Using now the 
identities (3.17) the expansions (3.9) can be written  

( )( ) ( ) ( )( ) ( ) ( ) ( )( )0 0 2 2
11

cos cos J T cos 2 1 J T cos ,m
m m

m
z z zθ θ θ

+∞

=
=

= + −∑


 

 ( )( ) ( ) ( ) ( )( )2 1 2 1
0

sin cos 2 1 J T cos .m
m m

m
z zθ θ

+∞

+ +
=

= −∑         (3.18) 

In particular, introducing the abbreviation  

 ( )cos ,x θ≡                         (3.19) 

relations (3.18) can be represented as follows (we change now the order of func-
tions with variables z and x)  

( ) ( ) ( ) ( ) ( )0 2 2
1

cos J 2 1 T J ,m
m m

m
xz z x z

+∞

=

= + −∑  

 ( ) ( ) ( ) ( )2 1 2 1
0

sin 2 1 T J .m
m m

m
xz x z

+∞

+ +
=

= −∑              (3.20) 

In the more compact form of (3.8) the expansions (3.20) can be written (observe: 
( ) ( ) ( )i T 1 i Tnn n

n nx x−
− = − )  

 ( ) ( ) ( ) ( ) ( )i
0

1
e i T J J 2 i T J .xz n n

n n n n
n n

x z z x z
+∞ +∞

=−∞ =

= = +∑ ∑       (3.21) 

Later, we use mainly the identities (3.20) and (3.21). 
It is well-known that the Chebyshev polynomials belong to the Classical Or-

thogonal Polynomials due to the orthogonality relations with weight functions  

2

2 1

1 xπ −
 and 22 1 x

π
− , respectively (e.g., [3])  

( ) ( ) ( )( ) ( )( )1 0 0

1 02

2 , 0,T T2 2d d T cos T cos
, 0,1

m nm n
m n

mn

nx x
x

nx

δ δ
θ θ θ

δ
π+

−

=
= =  ≠− π π∫ ∫  

( ) ( ) ( ) ( )( ) ( )( )1 2 2
1 0

2 2d 1 U U d sin U cos U cos .m n m n mnx x x x θ θ θ θ δ
+ π

−π
= =
π

−∫ ∫ (3.22) 

However, this is an orthogonality over the interval from −1 to +1 (or 0 to π in 
variable θ) but not over the whole real axis or semi-axis. In the identities (3.20) 
and (3.21) the Chebyshev polynomials of first kind ( )Tn u  play a fully other role 
and are in a certain sense dual to the Bessel functions ( )Jn z  over the whole real 
axis. Furthermore, the whole set of Bessel functions ( )Jn z  with non-negative 
and negative indices is also over-complete in the same way as the Chebyshev 
polynomials ( )Tn x . 

The identities (3.20) and (3.21) possess still another remarkable aspect. The 
multiplicative variables x and z on the right-hand sides are separated in different 
functions of the expansions on the right-hand sides. In this form it is simple to 
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generalize these expansions by an arbitrary real or even complex parameter α 
and obtains from (3.20)  

( ) ( ) ( )0 2 2
1

cos cos J 2 1 T J ,m
m m

m

z z zxz x xα α
α α α

+∞

=

     = = + −     
     

∑  

 ( ) ( ) ( )2 1 2 1
0

sin sin 2 1 T J ,m
m m

m

z zxz x xα α
α α

+∞

+ +
=

   = = −   
   

∑        (3.23) 

and from (3.21)  

 
( )

( ) ( )

i

0 0
11

e exp i i T J

T J 2 i T J .

xz n
n n

n

n
n n

n

z zx x

z zx x

α α
α α

α α
α α

+∞

=−∞

+∞

==

   = =   
   

   = +   
   

∑

∑


          (3.24) 

The expansions (3.23) and (3.24) and former analogous expansions converge for 
arbitrary real and complex variables x and z and therefore the free parameter α 
in its full generality can be also chosen as a complex number. 

It seems that the combination of Bessel functions and of Chebyshev polyno-
mials of first kind here still in the special expansions (3.24) is new and in the 
next two Sections we show how this can be used to derive more general expan-
sions with an arbitrary free parameter α into Bessel functions as well as into 
Fourier transforms of Chebyshev polynomials of first kind. 

4. Expansions of Functions into a Series of Bessel Functions  
of Integer Indices 

In this Section we derive an expansion of a general continuous function via its 
Fourier decomposition into a series of Bessel functions. We define the Fourier 
transform ( )f y  of a function ( )f x  as follows  

 ( ) ( ) ( ) ( )i i1d e , d e .
2

yx xyf y x f x f x y f y
+∞ +∞−

−∞ −∞
= =

π
⇔∫ ∫        (4.1) 

Then, if we apply the identities (3.23) or (3.24) we find  

 ( ) ( ) ( ) ( )( )i1 1d e i d T J ,
2 2

xy n
n n

n

xf x y f u y f y yα
α

+∞+∞ +∞

−∞ −∞
=−∞

 = = 
π π 


∑∫ ∫   (4.2) 

or split in real and imaginary part  

 
( ) ( ) ( ) ( )( )

( ) ( ) ( )( )
2 2

2 1 2 1

1 1 d T J
2

i 1 d T J .

m
m m

m

m
m m

m

xf x y f y y

xy f u y

α
α

α
α

+∞ +∞

−∞
=−∞

+∞ +∞

+ +−∞
=−∞

  = −  
 

 + − 

π

 
 

∑ ∫

∑ ∫





     (4.3) 

This is at once a decomposition of ( )f x  into an even and odd part. Expan-
sions of functions ( )f x  in series of Bessel functions become possible if the 
Fourier transform ( )f y  of the function ( )f x  is known. 

Using the symmetry of the Chebyshev polynomials of first kind and of the 
Bessel functions  

 ( ) ( ) ( ) ( ) ( )T T , J 1 J ,n
n n n nx x z z− −= = −              (4.4) 
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expansions (4.2) or (4.3) can be represented  

 

( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )( )

0 0

2 2
1

2 1 2 1
0

1 d T J
2

2 1 d T J

i2 1 d T J .

m
m m

m

m
m m

m

xf x y f u y

xy f y y

xy f u y

α
α

α
α

α
α

+∞

−∞

+∞ +∞

−∞
=

+∞ +∞

+ +−∞
=

  =   
 

 + −

π

 
 

 + −  
 

∫

∑ ∫

∑ ∫







      (4.5) 

Formulae (4.2), (4.3) and (4.5) are the expansion of a function ( )f x  into a se-
ries of Bessel functions of integer indices with a free parameter α of the following 
principal form  

 

( ) ( )

( ) ( ) ( )( )

( ) ( )( )

0 0 2 2 2
1

2 1 2 1 2 1
0

J

J J

J ,

n n
n

m m m
n

m m m
m

xf x c

x xc c c

xc c

α
α

α α α
α α

α α
α

+∞

=−∞

+∞

−
=

+∞

+ − − +
=

 =  
 

   = + +   
   

 + −  
 

∑

∑

∑

       (4.6) 

that means with relations for the coefficients in front of the Bessel functions with 
negative and positive indices  

 
( ) ( ) ( )

( ) ( ) ( ) ( )( )
0 0 2 2

1

2 1 2 1
0

J 2 J

2 J , 1 ,

m m
n

n
m m n n

m

x xf x c c

xc c c

α α
α α

α α α
α

+∞

=

+∞

+ + −
=

   ≡ +   
   

 + ≡ − 
 

∑

∑
     (4.7) 

with the coefficients which can be represented by the unique formula  

 ( ) ( ) ( ) ( )i d T , 0,1,2, .
2

n

n nc y f y y nα α
+∞

−∞
= =

π ∫


          (4.8) 

This formula can be applied if we know the Fourier transform ( )f y  of the 
function ( )f x . 

Changing the order of integrations the formula (4.8) for the coefficients can 
be also represented in the following way  

 

( ) ( ) ( )

( ) ( )( )
( )

i

i

i d T d e
2
i d d T e
2

i d T ,
2

n
yx

n n

n
yx

n

n

n

c y y x f x

x f x y y

xx f x

α α

α

α α

+∞ +∞ −

−∞ −∞

+∞ +∞ −

−∞ −∞

+∞

−∞

π
=

=

 =  
π 

π

∫ ∫

∫ ∫

∫ 

            (4.9) 

where ( )Tn y  is the Fourier transform of ( )Tn x  in the sense of (4.1). The 
Fourier transform of a polynomial, contrary to the Fourier transform of an arbi-
trary function, is in every case a finite superposition of the delta function and of 
their derivatives and thus always a Generalized function. 

Using the well-known expression of the Chebyshev polynomials of first kind 
( )Tn x  in powers of x given in (3.11) we find its Fourier transform which similar 
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to all polynomials is a singular function which can be expressed by a superposi-
tion of derivatives of the delta function as follows  

 

( ) ( ) ( )
( )

( ) ( )
( )

( )

22
2 i

0

22
i

0

1 1 !2
T d e

2 ! 2 !

1 1 !
i2 d e

2 ! 2 !

2 T i .

n
k n k

n k yx
n

k

n
k n k

yx

k

n

n kny xx
k n k

n kn x
k n k y

y
y
δ

 
  −  +∞ − −

−∞
=

 
−   +∞ −

−∞
=

− − −
=

−

− − −  ∂
=  − ∂ 

 ∂
=  ∂

π


∑ ∫

∑ ∫



         (4.10) 

From this follows  

 ( )T 2 T i 2 T i .n n n
y y y

y y
α δ α α δ

α α
   ∂ ∂   = =      ∂ ∂    

π


π
 

         (4.11) 

Inserting this into the formula (4.9) for the coefficients and changing the inte-
gration variable x y→  we find  

 

( ) ( ) ( )

( ) ( )

( )
0

i d T i

i d T i

i T i ,

n
n n

n
n

n
n

y

c y f y y
y

y y f y
y

f y
y

α α δ

δ α

α

+∞

−∞

+∞

−∞

=

  ∂
=   ∂  

  ∂
= −  ∂  

  ∂ = −  ∂   

∫

∫             (4.12) 

and explicitly using the form of the Chebyshev polynomials ( )Tn x  in (3.11)  

 ( ) ( )
( ) ( ) ( ) ( )

2
2 2

0

1 !
2 0 .

2 ! 2 !

n

n k n k
n

k

n knc f
k n k

α α

 
   − −

=

− −
=

−∑            (4.13) 

The transition from the first to the second line in (4.12) is in the sense of the 
theory of generalized functions. 

In Section 6 we consider special cases of expansions in Bessel functions. First, 
we try to derive completeness and (bi)-orthogonality relation for the expansions 
in Bessel functions. 

5. Completeness and Orthogonality Relations between  
Bessel Functions and Fourier Transforms of Chebyshev  
Polynomials of First Kind 

By combination of the formal expansion (4.6) with the form of the coefficients 
(4.12) we find the relation  

 

( ) ( ) ( )

( ) ( )

( ) ( )

J d i T i

d J i T i

d .

n
n n

n

n
n n

n

xf x y f y y
y

xy f y y
y

y f y x y

α δ
α

α δ
α

δ

+∞ +∞

−∞
=−∞

+∞+∞

−∞
=−∞

+∞

−∞

 ∂ =    ∂   
 ∂ =    ∂   

= −

∑ ∫

∑∫

∫

         (5.1) 
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Therefore, it should be  

 J i T i exp ,n
n n

n

x x
y y

α
α

+∞

=−∞

   ∂ ∂  = −     ∂ ∂     
∑              (5.2) 

where the operator on the right-hand side is the displacement operator for the 
shift of the variable y of an arbitrary function ( )f y  from y to y y x→ − . Indeed,  

if we substitute in (3.24) , iz x x
y
∂

→ →
∂

 we obtain the identity (5.2). From this 

identity follows then immediately  

 ( ) ( )J i T i .n
n n

n

x y x y
y

α δ δ
α

+∞

=−∞

 ∂  = −   ∂   
∑            (5.3) 

This is a kind of completeness relation for expansion of continuous functions 
defined over the whole real axis and is in analogy to (2.3). However, it is over- 
complete since the Bessel functions ( )Jn z  with negative indices n are related to 
that with corresponding positive indices and in analogous way the Chebyshev 
polynomials of first kind by (4.4). Excluding this over-completeness we find 
from (5.3)  

 ( ) ( )0
1

J 2 J i T i .n
n n

n

x x y x y
y

α δ δ
α α

+∞

=

  ∂    + = −      ∂      
∑       (5.4) 

It is no more an over-completeness since from the expansion of the Bessel func-

tions ( )J , 0,1,2,n
x n
α
  = 
 

  exactly one begins with the powers proportional to 

( ), 0,1,2,nx n =  . 
We now multiply the completeness relation (5.4) with the Bessel function 

Jm
y
α
 
 
 

 and integrate the obtained relation over the variable y and find  

 

( )

( )

( )


( )
,0

0
1

0
1

J d J

d J J 2 J i T i

J J 0 2 J d J i T i .
m

m m

n
m n n

n

n
m n m n

n

x yy x y

y x xy y
y

x x yy y
y

δ

δ
α α

α δ
α α α

α δ
α α α

+∞

−∞

+∞+∞

−∞
=

+∞ +∞

−∞
=

=

   = −   
   

  ∂      = +        ∂        
 ∂     = +        ∂       

∫

∑∫

∑ ∫

 (5.5) 

From this relation we conclude the orthonormality relation  

 ( ) 0 02 , 0,
2 d J i T i

, 0.
m nn

m n
mn

nyy y
ny

δ δ
α δ

δα
+∞

−∞

= ∂  =    ≠∂    
∫          (5.6) 

The left-hand side of this identity can be also represented according to the rules 
of differentiations of the delta function in the following way  

 
( )

0

0 0

2 i T i J 2 d i T i J

2 , 0,
, 0,

n n
n m n m

y

m n

mn

y yy y
y y

n
n

α δ α
α α

δ δ
δ

+∞

−∞
=

    ∂ ∂    − = −       ∂ ∂        

=
=  ≠

∫
  (5.7) 
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with the right-hand side similar to the right-hand side of (3.22). It is not very 
difficult to check this formula numerically for low values n and, at least, larger 
values m by computer3. 

With the formulae (5.3) and (5.7) one may make also expansions of continuous 
and continuously differentiable functions in terms of the generalized functions  

( )i T in
n x

x
α δ∂ 

 ∂ 
 in analogy to the moment series (2.7) with the coefficients in  

form of the moments (2.8). However, in present case the coefficients become 
mixed moments with the Bessel functions as coefficients and it is not to see 
whether or not such expansions will get some importance in future. We mention 
yet another feature of the identities (5.6) and (5.7). The integration goes here 
over the full interval from −∞  to +∞  and there is no way to shorten this in-
terval to that from 0 to +∞ . 

6. Examples of Expansions in Bessel Functions 

We consider now examples for expansion of functions in series over Bessel func-
tions with integer indices. 

First we discuss the expansion of the monomials nz  into Bessel functions. 
For this purpose we may use the formula (3.24) where we make on both sides an 
expansion in powers of nx  for which the second line is best appropriate. If we 
insert the explicit form of the Chebyshev polynomials ( )Tn x  given in (3.11) 
then we find  

 

( )

( ) ( )
( ) ( )

( ) ( ) ( )

i

1

2
2

0
1 0

0 2 2
0 1 0

i
e 1

!

1 1 !
J 2 i 2 J

2 ! 2 !

i2 1 !
J 2 J 2 J .

! !

n
xz n

n

m
k

m km
m

m k

n

k n k
k n k

x
z

n

m kz m zx
k m k

x n kz z zn k
n k

α
α α

α
α α α

∞

=

 
 ∞   −

= =

∞ ∞ ∞

+
= = =

= +

− − −   = +   −   

− +     = + + +     
     

∑

∑ ∑

∑ ∑ ∑

 (6.1) 

Collecting on both sides the terms proportional to nx  for the expansions of nz  
in series of Bessel functions follows a relation equivalent to  

 
( ) ( )

( ) ( ) ( )

0 2
0

2
0

J 2 J 1, 0,

1 !
2 2 J , 0.

!

k
kn

n
n k

k

z z n
z

n k
n k z n

k

∞

=

∞

+
=

 + = ==  − + + ≠

∑

∑
           (6.2) 

The involvement of the free parameter α is here trivial and can be obtained by  

the substitution zz
α

→ . A result for this kind of relation one finds in Watson  

[1] (p. 138) which he refers to Gegenbauer. It agrees with our result almost but 
not fully concerning the case 0n =  in (6.2). 

 

 

3However, it is more difficult to check the expressions with the delta function directly by computer 
since up to now this function is not programmed in “Mathematica” and one has to use for this pur-
pose approximations such as by the Gauss bell function and then have to make a limiting transition 
to the delta function but this we did not make. 
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Expansions for arbitrary functions with a Taylor series can be used to establish 
their expansions into series of Bessel functions. In this approach one has then to 
collect the sum terms proportional to ( )Jn z  and to reorder the sums in cor-
responding way. 

Using the duality between Bessel functions ( )Jn z  and Chebyshev polyno-
mials of first kind ( )Tn x  in (3.24) one may also obtain the expansion of power 
functions nx  into Chebyshev polynomials. In analogy to (6.1) one has4  

 

( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

i

1

2 2

02
0 1 0

0 2
1 0

i
e 1

!

1 1
T 2 i T

! 2 ! ! 2

i !T T .
2 ! !

n
xz n

n
k kk m k

m
m

k m k

n n

n k
n k

z
x

n

z zx x
k k m k

z nx x
k n k

α α
α α

α α
α

∞

=

+∞ ∞ ∞

= = =

∞

−
= =

= +

− −   = +   +   

 = +   − 

∑

∑ ∑ ∑

∑ ∑

 (6.3) 

Collecting on both sides the terms in front of nz  one finds ([13] and, more 
generally, [14])  

 
( )

( ) ( )
0

2
0

T 1, 0,
1 ! T , 0,

! !2

n n

n kn
k

x n
x n x n

k n k −
=

 = =
=  ≠ −

∑
             (6.4) 

where the involvement of the free parameter α such as in the case (6.2) is trivial 
and can be reached by the substitution x xα→ . 

From Section 7 on we deal with Bessel functions with semi-integer indices and 
closely related Spherical Bessel functions with some different behavior from that 
for integer indices. 

7. Expansions of Functions into Series of Spherical Bessel  
functions 

Up to now we discussed expansions of functions into series over Bessel functions 
( )J zν  with integer indices ( ), 0,1,2,n nν = =  . Now we will consider expansions 

of functions into series over Bessel functions ( )J zν  with semi-integer indices  

( )1 , 0,1,2,
2

n nν = + =   modified by an additional z-dependent factor. This  

leads us as dual partner to the Legendre polynomials that is not expressed in the 
title of the article. 

The general Taylor series of Bessel functions ( )J zν  with arbitrary complex ν  

was given in (3.14). From this formula follows for semi-integer indices 1
2

nν = +   

 ( ) ( )
1 2
2

1
02

1
J .

12 2! !
2

kn k

n k

z zz
k k n

+ ∞

+ =

−   =        + + 
 

∑              (7.1) 

 

 

4On the second line of the following identity we have only Chebyshev polynomials with non-negative 
indices. For an easier representation we have in third line also Chebyshev polynomials with negative 
indices that means an over-complete set of Chebyshev polynomials where we used the relation 

( ) ( )T Tn nx x−= . 
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These functions are not entire functions because they possess a branch point at 

0z =  due to factor 
1
2

2
z 

 
 

. We remove this factor by the definition  

 ( ) ( )1
2

j J ,
2n n

z z
z +

π
≡                         (7.2) 

with the expansion into a Taylor series  

 ( )
( )

( ) ( ) ( )
2

0

11 !
2j , j 1 j .

12 2! !
2

k
n k

n
n n n

k

z zz z z
k k n

∞

=

 −      = = − −       + + 
 

∑       (7.3) 

and arrived with the definition (7.2) at a sequence of functions  
( ) ( )j , 0, 1, 2,n z n = ± ±   which are called the Spherical Bessel functions. They are 

the three-dimensional analogue to the Bessel functions for dimension 2N =  
concerning the splitting of the Laplace or wave-equation operator in Radius and 
Spherical coordinates (see Appendix B, in particular, the case 3N =  in (B.9)). 
In comparison to (B.9) the definition of the Spherical Bessel functions contains  

an additional common factor 
2
π  for all these functions to get a more conve-

nient normalization. For 0z <  the Bessel functions ( )1
2

J
n

z
+

 as well as the 

root 
1
z

 become imaginary but their coupling makes them real-valued on the  

whole real axis. The Spherical Bessel functions appear if we write down the 
three-dimensional wave equation or Helmholtz equation ( ) ( )2 2 r 0κ ψ+ =∇  in 
Spherical coordinates as separated solutions for the radial part (e.g., [5]) (Ap-
pendix B). The solutions for the angular part are then the Spherical harmonics. 

From the general recurrence and differentiation relations for Bessel functions 
(3.15) follows for the Spherical Bessel functions  

( ) ( ) ( )1 1
2 1j j j ,n n n

nz z z
z+ −
+

+ =  

 ( ) ( ) ( )1 1
1j j 2 j ,n n nz z z

z z+ −
∂ − = − + ∂ 

             (7.4) 

and by linear combinations for the raising and lowering relations for the indices 
of the Spherical Bessel functions  

( ) ( ) ( )1
1j j j ,n

n n nn
nz z z z
z z z z+

∂ ∂ = − = − ∂ ∂ 
 

 ( ) ( ) ( )1
1 1

1 1j j j .n
n n nn

nz z z z
z z zz

+
− +

+ ∂ ∂ = + = ∂ ∂ 
         (7.5) 

The differential equation for Spherical Bessel functions ( )jn z  is (see (B.9), case 
3N = )  

 ( ) ( )
2

2 2

120 1 j .n

n n
z

z zz z
 +∂ ∂ = + + − 

∂∂  
             (7.6) 
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For 0n =  and 1n = −  we find from the Taylor series (7.3)  

( ) ( ) ( )0 1

sin 1j j ,
z

z z
z z z −

∂ = = − + ∂ 
 

 ( ) ( ) ( )1 0

cos 1j j .
z

z z
z z z−

∂ = = + ∂ 
                (7.7) 

Using the raising and lowering relations (7.5) for the indices one finds the 
Spherical Bessel functions ( )jn z  with arbitrary integer indices n in the follow-
ing way  

 ( ) ( ) ( ) ( ) ( )
1

sin cos1 1j , j ,
n n

n n
n n

z z
z z z z

z z z z z z− −
∂ ∂   = − =   ∂ ∂   

   (7.8) 

that can be proved by complete induction. The Spherical Bessel functions  
( ) ( )1j , 0,1,2,n z n− − =   are singular at 0z = . A greater number of explicit rela-

tions for the Spherical Bessel functions are given in Appendix C. In this Appendix 
we give also formulae for normal and anti-normal ordering of the operators  

1 n

z z
∂ 

 ∂ 
 and 1 n

z z
∂ 

 ∂ 
. 

The Spherical Bessel functions possess a property of orthogonality on the 
whole real axis which, apparently, is exceptional within the sequences of mod-
ified Bessel function (B.9) as non-singular solutions of the N-dimensional Radial 
part of the Helmholtz equation corresponding to dimension 3N =  (e.g., [5], p. 
629, 11.174; [12], p. 211)  

 ( ) ( )d j j .
1m n mnz z z

m n
δ

+∞

−∞
=

+ +
π

∫                 (7.9) 

This means that an appropriate continuous function on the real axis can be ex-
panded into Spherical Bessel functions according to  

 ( ) ( )
0

j ,n n
n

f x c z
∞

=

= ∑                     (7.10) 

with the coefficients nc  determined by  

 ( ) ( )2 1 d j .n n
nc z f z z

+∞

−∞
=

π
+
∫               (7.11) 

We mention that the orthogonality of the Spherical Bessel function (7.9) is not 
true for restriction of the integral to one of the semi-axes, for example from 
0 z≤ < +∞ . On the other side as radial part of solutions of the three-dimensional 
Laplace or Helmholtz equation the Spherical Bessel functions are in most appli-
cations restricted to the positive semi-axis. 

In the next Section we show that the dual partner in expansion of functions 
into Spherical Bessel functions are the Legendre polynomials. 

8. Legendre Polynomials as Dual Partner to Spherical Bessel  
Functions in Expansion of Functions 

Starting point for the derivation of functions into series of Spherical Bessel func-
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tions are here again special expansions for ( )cos xz  and ( )sin xz  in analogy to 
(3.23) as follows  

( ) ( ) ( ) ( )2 2
0

cos cos 1 4 1 P j ,m
m m

m

z zxz x m xα α
α α

∞

=

   = = − +   
   

∑  

 ( ) ( ) ( ) ( )2 1 2 1
0

sin sin 1 4 3 P j ,m
m m

m

z zxz x m xα α
α α

∞

+ +
=

   = = − +   
   

∑     (8.1) 

and both these formulae can be combined to  

 ( ) ( )i

0
e exp i i 2 1 P j ,xz n

n n
n

z zx n xα α
α α

∞

=

   = = +   
   

∑          (8.2) 

where ( ) ( )P , 0,1,2,n x n =   are the Legendre polynomials and where α is a free 
eligible parameter. The expansion (8.2) is a known relation and one may find it, 
for example, in the encyclopedic articles [7] [9] and can prove it, for example, 
using the expansion (7.10) with the formula for the coefficients (7.11). It is the 
analogue of the expansion of the Exponential function (3.24) in Chebyshev po-
lynomials of first kind with Bessel functions with integer indices as coefficients. 

The Legendre polynomials possess the explicit form (observe 1 !
2

 − = 
 

π )  

( )
( )

( )
( ) ( ) ( ) ( ) ( )

2
2

1
0

11 !
2P 2 , P 1 P P .
1! 2 ! !
2

kn

n k n
n n n n

k

n k
x x x x x

k n k

 
   −

− −
=

 − − − 
 = = − − =

 − − 
 

∑  (8.3) 

Similar to the Chebyshev polynomials the Legendre polynomials are a special 
case of the Jacobi polynomials ( ) ( ),Pn xα β  with equal upper indices α β=  (Ul-
traspherical polynomials). They are related to Gegenbauer polynomials ( )Cn xν  
by  

 ( ) ( ) ( ) ( )
( ) ( )

1
, 2

! 2 !
P C ,

2 ! !n n

n
x x

n
αα α α α

α α
++

=
+

                 (8.4) 

and altogether are a special case of the Hypergeometric function ( )2 1F , ; ;a b c z , 
in particular  

 ( ) ( ) ( )0,0
2 1

1P F , 1;1; P .
2n n

xx n n x− = − + = 
 

             (8.5) 

The set of Legendre polynomials is complete for non-negative indices n and is 
separated from the set of Legendre polynomials with negative indices which are 
also complete (see Appendix D for comparison with Chebyshev and Gegenbau-
er polynomials). The set of Spherical Bessel functions is also complete for 
non-negative indices but for negative indices it forms a new series which is 
equivalent to a second solution of the differential equation. 

The Legendre polynomials belong to the Classical Orthogonal Polynomials 
and are orthogonal (and thus self-dual) in the interval 1 1x− ≤ ≤  according to  

 ( ) ( ) ( ) ( )( ) ( )( )1

1 0

2d P P d sin P cos P cos ,
1m n m n mnx x x

m n
θ θ θ θ δ

+

−

π
= =

+ +∫ ∫  (8.6) 
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but they are not orthogonal on the whole real axis or semi-axis and are here ap-
plied in a different sense. 

The Chebyshev polynomials of first kind and the Legendre polynomials are 
related by the identities  

( ) ( ) ( )2
0

1 1! !
1 2 2P T ,

! !

n

n n k
k

k n k
x x

k n k −
=

   − − −   
   

π
=

−∑  

 ( )

( )

( )
( ) ( )

0

2

2
0

P 1, 0,
3 ! 1 !T .2 2 4 1 P , 0.

18 ! !
2

n

n
n k

k

x n

k n kx n n k x n
k n k

 
  

−
=

 = =


  − − − =   − − + ≠   − +   

∑
 (8.7) 

These relations can be proved by complete induction from their recurrence and 
differentiation relations. 

9. Expansions of Functions into Series of Spherical Bessel  
Functions 

Expansions of Exponential functions of the special kind (3.24) and (8.2) are fa-
vorable as starting point for the derivation of expansions of more general func-
tions using the Fourier decomposition of these functions. This was made in Sec-
tion 4 for the expansion in Bessel functions of integer argument. In this Section 
we develop the analogous case of expansions in Spherical Bessel functions using 
(8.2) as starting point. The Fourier transform of a function and its inversion are 
defined in the same way as in (4.1). 

In analogy to (4.2) using (8.2) we find the expansion of a function in Spherical 
Bessel functions  

 ( ) ( ) ( ) ( ) ( )( )i

0

1 1d e i 2 1 d P j ,
2 2

xy n
n n

n

xf x y f u n y f y yα
α

+∞+∞ +∞

−∞ −∞
=

 = = +  
π π 

∑∫ ∫   (9.1) 

or split in Real and Imaginary part  

 
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
2 2

0

2 1 2 1
0

1 1 4 1 d P j
2

i 1 4 3 d P j .

m
m m

m

m
m m

m

xf x m y f y y

xm y f u y

α
α

α
α

+∞ +∞

−∞
=

∞ +∞

+ +−∞
=

  = − +  
 

 + − +  
 

π



∑ ∫

∑ ∫





     (9.2) 

A difference to (4.3) is that for simplicity an over-complete set Chebyshev poly-
nomials of first kind ( )Tn x  is used there whereas here it is favorable to use 
the complete but not over-complete set of Legendre polynomials ( )Pn x  with 
non-negative indices. 

Thus a function ( )f x  can be expanded in Spherical Bessel functions in the 
following way  

 ( ) ( )
0

,n n
n

zf x c jα
α

∞

=

 =  
 

∑                     (9.3) 
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where the coefficients of the expansion are determined by  

 ( ) ( ) ( ) ( )i 2 1 d P .
2

n

n nc n y f y yα α
+∞

−∞
=

π
+ ∫                  (9.4) 

The next relations which we write down in the following can be made in full 
analogy to corresponding relations for Bessel functions and Chebyshev polyno-
mials in Section 5. In this way, in analogy to (5.3) the completeness relation for 
the pair of Spherical Bessel functions and Legendre polynomials is  

 ( ) ( ) ( )
0

2 1 j i P i .n
n n

n

xn y x y
y

α δ δ
α

+∞

=

 ∂ + = −   ∂   
∑             (9.5) 

from which follows by multiplication with j y
α
 
 
 

 and integration over the real 

axis y a relation from which we conclude the orthogonality  

 ( ) ,d j i P i .
1

m nn
m n

yy y
y m n

δ
α δ

α
+∞

−∞

 ∂  =   ∂ + +   
∫              (9.6) 

According to the rules of the theory of generalized functions this may be rewrit-
ten in analogy to (5.7)  

 ( )
0

i P i j d i P i j .
1

n n mn
n m n m

y

y yy y
y y m n

δ
α δ α

α α
+∞

−∞
=

    ∂ ∂    − = − =       ∂ ∂ + +        
∫  (9.7) 

This relation can be used to make expansions into series of generalized functions  

( )i P in
n x

x
α δ∂ 

 ∂ 
 which are a modification of the expansion into moment series  

discussed in Section 2. The coefficients of these expansions are generalized mo-
ments of the expanded function ( )f x . 

10. Examples of Expansions into Spherical Bessel Functions 

A simple method to find the expansion of the monomials in Spherical Bessel 
functions is again (see Section 6) to expand both sides of (8.2) into a Taylor se-
ries with respect to powers nx . Inserting the explicit form of the Legendre po-
lynomials (8.3) one finds in this way  

 

( )

( )
( )

( )
( )

( ) ( )

i

0

2
2

0 0

2
0 0

i
e

!
11 !
2i 2 1 2 j

1! 2 ! !
2

1 !i2 2 2 1 4 j .
1! ! !
2

n
xz n

n

kn

m km
m

m k

n

n k
n k

x
z

n

m k
zm x

k m k

n kx zn k
n k

α
α

α
α

∞

=

 
 ∞   −

= =

∞ ∞

+
= =

=

 − − −    = +     − − 
 

 − +    = + +     − 
 

∑

∑ ∑

∑ ∑

     (10.1) 

If we collect now on both sides the sum terms proportional to nx  we find the 
following expansion of nz  in Spherical Bessel functions  

https://doi.org/10.4236/apm.2023.138034


A. Wünsche 
 

 

DOI: 10.4236/apm.2023.138034 523 Advances in Pure Mathematics 
 

 ( ) ( ) ( )2
0

1 !
22 2 1 4 j , 0,1,2, .
1 ! !
2

n n
n k

k

n k
z n k z n

k

∞

+
=

 − + 
 = + + =
 − 
 

∑     (10.2) 

In particular, from this formula follows for 0n =   

 ( ) ( )0
2

0

1 !
2 1 4 j 1,
1! !
2

k
k

k
z k z

k

∞

=

 − 
 = + =
 − 
 

∑                 (10.3) 

independently of the chosen value z on the middle side. 
If we insert the expression for ( )Pn x  in (8.7) then by reordering of the sum 

terms and comparison with (3.24) follows a relation of the Bessel functions ex-
pressed by the Spherical Bessel functions and similar its inversion  

( )
( )

( ) ( ) ( )2
0

1 11 ! !
1 2 2J 2 4 1 j ,

! !

k

n n k
k

k n k
z n k z

k n k

∞

+
=

   − − + −   
   = + +

+π∑  

 ( )

( ) ( )
( )( ) ( )

( ) ( )
( ) ( )

1

0 2
1

2

2
0

1
J 2 J , 0,

2 1 2 1

3j 1 ! 1 !
1 2 2 J , 1.

14 ! !
2

k

k
k

knn

n k
k

z z n
k k

z k n k
n k z n

k n k

−∞

=

 
  

+
=

 −
 + =

− +
  =  − − + −   − + ≠   + +   

∑

∑
 (10.4) 

The expansion for ( ) ( )
0

sin
j

z
z

z
=  in Bessel functions in (10.4) was necessary to 

calculate separately and we used the Taylor series of 
( )sin z
z

 inserting there the  

relation for nz  in (6.2). In similar way from the Taylor series of ( )cos z  and 
( )sin z  one obtains  

( ) ( ) ( ) ( )0 2
1

cos J 2 1 J ,n
n

n
z z z

∞

=

= + −∑  

 ( ) ( ) ( )2 1
0

sin 2 1 J .n
n

n
z z

∞

+
=

= −∑                  (10.5) 

These relations are the special case 1x =  in the formulae (3.20). 

11. Expansions into Hermite Polynomials and Hermite  
Functions 

For comparison with the preceding expansions we give in this Section widely 
without proofs a well-known example for the expansion of functions into a se-
ries of Hermite functions. 

The Hermite polynomials ( ) ( )H , 0,1,2,n x n =   can be introduced by the 
Rodrigues or by an alternative definition as follows  
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( ) ( ) ( ) ( )

( )

2 2

2 2

2 2

1

H 1 exp exp

1 1exp 2 exp 1 2 1,
4 4

n
n

n n

n
n

x x x
x

x x
xx x

=

∂
≡ − −

∂
   ∂ ∂ ∂ = − = −     ∂∂ ∂     



     (11.1) 

with the explicit representation  

 ( ) ( )
( ) ( )

2
2

0

1 !
H 2 .

! 2 !

n
k

n k
n

k

n
x x

k n k

 
   −

=

−
=

−∑                  (11.2) 

Besides the Hermite polynomials ( )Hn x  we define the Hermite functions 
( )hn x  by  

 ( ) ( )
2

1
4

1h exp H .
2

2 !
n n

n

xx x
n

 
≡ − 

 π
               (11.3) 

They satisfy the orthonormality relation  

 ( ) ( )d h h ,m n mnx x x δ
+∞

−∞
=∫                    (11.4) 

and the completeness relation  

 ( ) ( ) ( )
0
h h .n n

n
x y x yδ

∞

=

= −∑                   (11.5) 

In the cases up to now discussed, we have had two different sets of functions which 
are mutually bi-orthogonal. Here both sets of involved functions are the same. 

By introduction of a free real parameter α by the substitution xx
α

→  the or-

thonormality relation (11.4) can be generalized to  

 1 d h h ,m n mn
x xx δ

α α α
+∞

−∞

    =   
   ∫                (11.6) 

and the completeness relation (11.5) to  

 ( )
0

1 1h h .n n
n

x y x y x yδ δ
α α α α α

∞

=

−     = = −     
     

∑          (11.7) 

For the expansion of a continuously differentiable function ( )f x  into Hermite 

functions h x
α
 
 
 

 one obtains then  

 ( ) ( ) ( ) ( )
0

1h , d h .n n n n
n

x xf x c c x f xα α
α α α

∞ +∞

−∞
=

   = =   
   

∑ ∫     (11.8) 

This can be obtained in well-known way from the orthonormality relation (11.6). 
However, one may it also derive from the completeness relation (11.7) according to  

 

( ) ( ) ( ) ( )

( )

( )

0

0

1d d h h

1 d h h .

n

n n
n

n n
n

c

x yf x y x y f y y f y

y xy f y

α

δ
α α α

α α α

∞+∞ +∞

−∞ −∞
=

∞ +∞

−∞
=

=

   = − =    
   

   =    
   

∑∫ ∫

∑ ∫


  (11.9) 
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where we have changed the ordering of integration and summation. 
As example we consider an exponential function ie xz  and make an expansion  

in Hermite functions n
zh
α
 
 
 

. We do not calculate it here in detail and give only 

the result for this expansion which is  

 ( )i

0
e exp i 2 i h h ,xz n

n n
n

z zx xα α
α α

∞

=

   = =   
   

π∑          (11.10) 

where α is a free parameter. It possesses the same principal structure as the ex-
pansions (3.24) and (8.2) of the same exponential function. However, the right- 
hand side is divergent in usual sense but from this does not categorically follow 
that it is not convergent in a generalized sense. It should be convergent in the 
sense of weak convergence of generalized functions or linear functionals and 
then could be used, for example, in Fourier integrals over sufficiently well-behaved 
functions that we do not discuss here in detail. 

There is still another possibility to modify the expansion into Hermite func-
tions ( )hn x  by a free real parameter β by writing the orthonormality (11.4) 
using (11.3)  

 ( )( ) ( ) ( ) ( )2 2 2 21 d exp 1 H exp H .
2 ! !

m n mnm n
x x x x x

m n
β β δ

+∞

−∞+
− − − =

π
∫  (11.11) 

Then one finds for expansions of the form  

 ( ) ( ) ( ) ( )2 2

0
exp H ,n n

n
f x c x xβ β

∞

=

= −∑               (11.12) 

with the coefficients ( )nc β  determined by  

 ( ) ( )( ) ( ) ( )2 21 d exp 1 H .
2 !n mn

c x x x f x
n

β β
+∞

−∞π
= − −∫       (11.13) 

For 0β =  this is the expansion of a function directly into a series of Hermite 
polynomials. 

12. Conclusions 

We have discussed the expansion of functions in series of Bessel functions and of 
Spherical Bessel functions of kind which is usually called Neumann series and 
tried to illuminate the analogies to other known expansions, in particular to 
Taylor series, momentum series and series in Hermite functions. An important 
role played what we call a dual partner of the considered sequence of functions 
which in case of Hermite functions are again the same functions (self-duality). 
The most of our expansions possess a free eligible parameter α. Orthogonality 
and completeness relations could be formulated from the dual partners of func-
tions. We tried to illustrate this by the expansion of special sets of functions, in 
particular, of the monomials ( ), 0,1,2,nz n =   in series of Bessel and Spherical 
Bessel functions. The kind of convergence of the expansions is usually not dis-
cussed but it seems that in most cases there is a sufficient supply of appropriate 
functions for which the series are convergent in different sense (at least, in the 
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sense of weak convergence of Generalized functions). We think that there exist 
also other sets of dual partners for expansions of functions and conjecture that 
the modified Bessel function to the four-dimensional case 4N =  of the Helm-
holtz equation (see Appendix B) could be related to the Chebyshev polynomials 
of second kind ( )Un x  but did not investigate this. 

In the four Appendices we make some useful collection of formulae (mod-
ulated Trigonometric and Hyperbolic functions, N-dimensional Radial part of 
Helmholtz equation) and of the normally-ordered form of the operators which 
generate the Spherical Bessel functions from an initial member of their se-
quences. In last Appendix we illustrate the differences between Chebyshev po-
lynomials of first and second kind and of Legendre polynomials with their con-
nection to Gegenbauer polynomials and with respect to their over-completeness 
if we take into account their non-negative and their negative indices. 
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Appendices  
Appendix A. Expansions of Modulated Trigonometric and  
Hyperbolic Functions in Bessel Functions 

In this Appendix we collect for lexicographic purposes formulae which can be 
derived from the basic definition (3.1) by transformations and substitutions for 
modulated Trigonometric and Hyperbolic functions. 

The following first group are exponential functions with Trigonometric func-
tions in the argument  

( )( ) ( ) ( )i iexp i sin J e i I i e ,n n n
n n

n n
z z zθ θθ

+∞ +∞

=−∞ =−∞

= = −∑ ∑  

( )( ) ( ) ( )i iexp i cos i J e I i e ,n n n
n n

n n
z z zθ θθ

+∞ +∞

=−∞ =−∞

= =∑ ∑  

( )( ) ( ) ( )i iexp sin J i e i I e ,n n n
n n

n n
z z zθ θθ

+∞ +∞

=−∞ =−∞

= − = −∑ ∑  

 ( )( ) ( ) ( )i iexp cos i J i e I e .n n n
n n

n n
z z zθ θθ

+∞ +∞

=−∞ =−∞

= − =∑ ∑         (A.1) 

The following second group are exponential functions with Hyperbolic func-
tions in the argument  

( )( ) ( ) ( )exp sh J e i I i e ,nt n nt
n n

n n
z t z z

+∞ +∞

=−∞ =−∞

= = −∑ ∑  

( )( ) ( ) ( )exp i ch i J e I i e ,n nt nt
n n

n n
z t z z

+∞ +∞

=−∞ =−∞

= =∑ ∑  

( )( ) ( ) ( )exp i sh J i e i I e ,nt n nt
n n

n n
z t z z

+∞ +∞

=−∞ =−∞

= =∑ ∑  

 ( )( ) ( ) ( )exp ch i J i e I e .n nt nt
n n

n n
z u z z

+∞ +∞

=−∞ =−∞

= − =∑ ∑           (A.2) 

We now consider Trigonometric and Hyperbolic functions modulated by tri-
gonometric or Hyperbolic functions. 

First group: Trigonometric functions modulated by Trigonometric functions5  

( )( ) ( ) ( ) ( )2cos cos 1 J cos 2 ,m
m

m
z z mθ θ

+∞

=−∞

= −∑  

( )( ) ( ) ( ) ( )( )2 1sin cos 1 J cos 2 1 ,m
m

m
z z mθ θ

+∞

+
=−∞

= − +∑  

( )( ) ( ) ( )2cos sin J cos 2 ,m
m

z z mθ θ
+∞

=−∞

= ∑  

 ( )( ) ( ) ( )( )2 1sin sin J sin 2 1 .m
m

z z mθ θ
+∞

+
=−∞

= +∑           (A.3) 

Second group: Trigonometric functions modulated by Hyperbolic functions  

 

 

5This group is mostly given in reference books, e.g., [6], (9.1.42-9.1.45). The next groups can be ob-
tained by simple transformations but for convenience we give them too. 
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( )( ) ( ) ( ) ( )2cos ch 1 J ch 2 ,m
m

m
z t z mt

+∞

=−∞

= −∑  

( )( ) ( ) ( ) ( )( )2 1sin ch 1 J ch 2 1m
m

m
z t z m t

+∞

+
=−∞

= − +∑  

( )( ) ( ) ( ) ( )2cos sh 1 I ch 2 ,m
m

m
z t z mt

+∞

=−∞

= −∑  

 ( )( ) ( ) ( ) ( )( )2 1sin sh 1 I sh 2 1 .m
m

m
z t z m t

+∞

+
=−∞

= − +∑          (A.4) 

Third group: Hyperbolic functions modulated by Trigonometric functions  

( )( ) ( ) ( )2ch cos I cos 2 ,m
m

z z mθ θ
+∞

=−∞

= ∑  

( )( ) ( ) ( )( )2 1sh cos I cos 2 1 ,m
m

z z mθ θ
+∞

+
=−∞

= +∑  

( )( ) ( ) ( ) ( )2ch sin 1 I cos 2 ,m
m

m
z z mθ θ

+∞

=−∞

= −∑  

 ( )( ) ( ) ( ) ( )( )2 1sh sin 1 I sin 2 1 ,m
m

m
z z mθ θ

+∞

+
=−∞

= − +∑          (A.5) 

Fourth group: Hyperbolic functions modulated by Hyperbolic functions  

( )( ) ( ) ( )2ch ch I ch 2 ,m
m

z t z mt
+∞

=−∞

= ∑  

( )( ) ( ) ( )( )2 1sh ch I ch 2 1 ,m
m

z t z m t
+∞

+
=−∞

= +∑  

( )( ) ( ) ( )2ch sh J ch 2 ,m
m

z t z mt
+∞

=−∞

= ∑  

 ( )( ) ( ) ( )( )2 1sh sh J sh 2 1 .m
m

z t z m t
+∞

+
=−∞

= +∑              (A.6) 

The formulae (A.3)-(A.4) can be transformed in various way. One can make 
substitutions according to (3.3) and can apply the identities (3.17). Furthermore, 
the Bessel functions with negative indices can be substituted according to (3.2) 
and (3.4) by Bessel functions with positive indices. 

Appendix B. The N-Dimensional Laplace and Corresponding  
Wave-Equation Operator in Spherical Coordinates in  
Coordinate-Invariant Form 

In an N-dimensional Euclidean space we split the N-dimensional position vector 
r  into the product of radius coordinate r  with a unit vector n  in direction 
of the vector r  and make this for clarity in the first equations in index-less and 
at once in index representation  

2, , ,i i i ir r rn r r r= = = ≡ =r n r r  

 2, , 1, .i
i i i i i

rn n n r n r
r

≡ = = = = ≡
rn n rn
r

          (B.1) 
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The unit vector n  possesses 1N −  independent coordinates equivalently to the 
unit sphere in N-dimensional Euclidean space. Then the operator of vectorial  

differentiation (Nabla) ∂
≡
∂r

∇  is  

 , ,j
i

i i j

nr
r r r n

∂∂ ∂ ∂ ∂ ∂ ∂ ∂
= + ∇ = +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

r n
r r r n

∇            (B.2) 

with the result  

 ( ) ( )1 1I , .i i ij i j
j

n n n
r r n

δ∂ ∂ ∂ ∂
= + − ⋅ ∇ = + −

∂ ∂ ∂ ∂
n n n

r r n
∇      (B.3) 

For the Laplace operator 2∇  we find separated in Radius plus Spherical 
coordinates  

 ( ) ( )

( ) ( )

2

2 2

2 2

1 1

1 1 1 .

i i

i ij i j i ik i k
j k

jk j k k
j k k

n n n n n n
r r n r r n

N n n N n
r r n n nr r

δ δ

δ

= ∇ ∇

  ∂ ∂ ∂ ∂
= + − + −   ∂ ∂ ∂ ∂  

  ∂ − ∂ ∂ ∂
= + + − − −    ∂ ∂ ∂ ∂∂   

∇

 (B.4) 

The spherical part is here derived and represented in coordinate-invariant form 
(see, e.g., Madelung [20], p. 243, in special spherical coordinates). The wave- 
equation operator is 2 2κ+∇  where for the temporal part a Fourier transforma-  

tion is made which adds a term 
2

2
2c

ωκ ≡  to the Laplace operator which becomes  

then a Helmholtz operator. In the form (B.4) of the Laplace operator a separa-
tion of the variables is not possible. One has first to multiply it with 2r . Then 
one obtains for a solution ( ) ( ) ( )F R r= Φr n  of the wave equation  

{ } ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

2 2 2

2 2
2 2

2

2
2 2

2

2

0

1 1

1

1 .

jk j k k
j k k

jk j k k
j k k

r F

Nr n n N n R r
r r n n nr

Nr R r
r rr

R r n n N n
n n n

κ

κ δ

κ

δ

= +

   ∂ − ∂ ∂ ∂ = + + + − − − Φ     ∂ ∂ ∂ ∂∂    
  ∂ − ∂ = Φ + +  ∂∂   
 ∂ ∂ + − − − Φ ∂ ∂ ∂  

r

n

n

n

∇

(B.5) 

After division of this equation by ( ) ( )R r Φ n  it leads to two separate equations  

( )
2

2 2
2

10 ,Nr c R r
r rr

κ
  ∂ − ∂ = + + −  ∂∂   

 

 ( ) ( ) ( )
2

0 1 ,jk j k k
j k k

n n N n c
n n n

δ
 ∂ ∂ = − − − + Φ ∂ ∂ ∂  

n         (B.6) 

where c is a constant. It is favorable to represent this constant in the form 
( )2c Nν ν= + − . The equation for the radial part is then  
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( ) ( )

2
2 2

2 2

210 ,
NNr R r

r rr r
ν ν

κ
 + −∂ − ∂ = + + − 

∂∂  
           (B.7) 

with one of two possible linearly independent solutions  

 ( )
( )

( )
1

2

1
2

J
, 0 .

N

N

r
R r r

r

ν
κ

+ −

−
= ≥                      (B.8) 

For some first low cases of the dimension N these are the equations  

( ) ( )
12

2 2
12 2
2

1
1: 0 J ,N r r

r r ν

ν ν
κ κ

−

 −∂ = = + − 
∂  

 

( )
2 2

2
2 2

12 : 0 J ,N r
r rr r ν

νκ κ
 ∂ ∂

= = + + − ∂∂ 
 

( ) ( )12
2 2

2 2 1
2

J
123: 0 ,

r
N

r rr r
r

ν
κ

ν ν
κ

+ +∂ ∂ = = + + − ∂∂  
 

 
( ) ( )2

12
2 2

2 J34 : 0 .
r

N
r r rr r

νν ν κ
κ + +∂ ∂ = = + + − 

∂∂  
        (B.9) 

We do not discuss a second linearly independent solution of these equations. We 
also cannot discuss the equations for the spherical parts of the Helmholtz equa-
tions. 

Appendix C. Explicit Representations of Spherical Bessel  
Functions ( )n zj  for Low Numbers n 

According to (7.8) the Spherical Bessel functions can be successively obtained 
from the relations  

( ) ( ) ( ) ( ) ( )1sin1 1j 1 1 sin ,
n n

n nn n
n

z
z z z z

z z z z z
−∂ ∂   = − = −   ∂ ∂   

 

 ( ) ( ) ( )1
1

cos1 1j cos ,
n n

n n
n

z
z z z z

z z z z z
−

− −
∂ ∂   = =   ∂ ∂   

        (C.1) 

Using these raising and lowering relations we find explicitly for positive indices n  

( ) ( )
0

sin
j ,

z
z

z
=  

( ) ( ) ( )
1 2

cos sin
j ,

z z z
z

z
−

= −  

( )
( ) ( ) ( )2

2 3

3 sin 3 cos
j ,

z z z z
z

z

− +
= −  

( )
( ) ( ) ( ) ( )2 2

3 4

15 cos 3 2 5 sin
j ,

z z z z z
z

z

− − −
=  

 ( )
( ) ( ) ( ) ( )4 2 2

4 5

45 105 sin 5 2 21 cos
j ,

z z z z z z
z

z

− + + −
=  
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 ( )
( ) ( ) ( ) ( )4 2 4 2

5 6

105 945 cos 15 28 63 sin
j ,

z z z z z z z
z

z

− + − − +
= −    (C.2) 

and for negative indices n|6  

( ) ( )
1

cos
j ,

z
z

z− =  

( ) ( ) ( )
2 2

sin cos
j ,

z z z
z

z−

+
= −  

( )
( ) ( ) ( )2

3 3

3 cos 3 sin
j ,

z z z z
z

z−

− −
= −  

( )
( ) ( ) ( ) ( )2 2

4 4

15 sin 3 2 5 cos
j ,

z z z z z
z

z−

− + −
=  

( )
( ) ( ) ( ) ( )4 2 2

5 5

45 105 cos 5 2 21 sin
j ,

z z z z z z
z

z−

− + − −
=  

 ( )
( ) ( ) ( ) ( )4 2 4 2

6 6

105 945 sin 15 28 63 cos
j .

z z z z z z z
z

z−

− + + − +
= −  (C.3) 

The Spherical Bessel functions ( )jn z  with non-negative indices n are regular at 
0z =  and that with negative indices n are singular at 0z = . 

Operators of the considered form composed from multiplication and diffe-
rentiation operators are called normally ordered (or disentangled) if all multip-
lication operators stand in front of the differential operators and in opposite case  

anti-normally ordered. The normally ordered form of the operators 1 n

z z
∂ 

 ∂ 
 

and 1 n

z z
∂ 

 ∂ 
 is  

( ) ( )
( )

1

0

1 1 !1 1 1 1 ,
2 ! 1 !

kn nn kn

k n k n k
k

n k
z z z z z zk n k z z

−−

+ −
=

− − +∂ ∂ ∂ ∂   = =   ∂ ∂ ∂− − ∂   
∑  

 
( ) ( )

( )0

1 !1 1 1 1 .
2 ! !

kn nn kn

k n k n k
k

n k
z

z z z z zk n k z z

−

+ −
=

− +∂ ∂ ∂   = =   ∂ ∂− ∂   
∑       (C.4) 

This can be proved by complete induction but one has only to prove one of the 
two disentanglement relations (C.4), for example, the second because then the 
first follows automatically from the right-hand relation (C.4). For some com-
pleteness let us give also the anti-normally ordered form of these operators  

( )
( )0

!1 1 ,
2 ! !

n n kn

k n k n k
k

n k
z z k n k z z

−

− +
=

+∂ ∂  = ∂ − ∂ 
∑  

 
( )
( )0

1 !1 1 .
2 ! 1 !

n n kn

k n k n k
k

n k
z z k n k z z

−

− +
=

− +∂ ∂  = ∂ − − ∂ 
∑             (C.5) 

 

 

6Instead of ( )j n z−  as a second series of linearly independent solutions of the differential equation 

for Spherical Bessel functions (7.6) (see (B.9), case 3N = ) and in analogy to a second linearly in-
dependent series of Bessel functions ( )Yn z  to ( )Jn z  are often introduced the functions  

( ) ( ) ( )1

11 jn

n ny z z+

− −≡ −  in their standard notation. 
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The sum term to k n=  in the first formula of (C.4) and second formula of (C.5) 
vanishes for 0n ≠  and provides only for 0n =  a non-vanishing term. 

According to (C.1) taking into account (C.4) the Spherical Bessel functions 
may be represented in terms of Sine and Cosine functions by the following for-
mulae  

( ) ( ) ( ) ( ) ( )
( ) ( )1

1
0

1 !1 1j 1 sin sin ,
2 ! !

n kn n knn n
n k k n k

k

n k
z z z z

z z k n k z z

− −
−

+ −
=

− +∂ ∂ = − = ∂ − ∂ 
∑  

 ( ) ( ) ( ) ( )
( ) ( )1

1 1
0

1 !1 1j cos cos .
2 ! !

kn n kn
n

n k k n k
k

n k
z z z z

z z k n k z z

−
−

− − + −
=

− +∂ ∂ = = ∂ − ∂ 
∑   (C.6) 

The coefficients in front of the Sine and Cosine functions in (C.2) and (C.3) 
can also be determined from the relations (C.4) but this is a little difficile be-
cause the signs of the derivatives of Sine and Cosine are alternating and interfere 
with the signs in (C.4). For the polynomial coefficients in the numerators of (C.2) 
on the left-hand side ( )np z  and on the right-hand side ( )nq z  we get from 
above to below  

( ) ( )
( ) ( ) ( )

( ) ( )
1 2

22
2

0

1 2 !
1 ,

2 2 ! 2 !

n
ln n

n l
n l

l

n l
p z z

l n l

 
 +  

−

=

− +
= −

−∑  

 ( ) ( ) ( ) ( )
( ) ( )

1
2

2 1
2 1

0

1 2 1 !
1 .

2 2 1 ! 2 1 !

n
l

n n l
n l

l

n l
q z z

l n l

− 
  

− −
+

=

− + +
= −

+ − −∑         (C.7) 

The operators 1
z z
∂
∂

 and 1
z z
∂
∂

 do not commute. Their commutator is  

 
2

2 2 4
1 1 1 1 1 2, ,
z z z z z z z zz z z
∂ ∂ ∂ ∂ ∂  ≡ − = ∂ ∂ ∂ ∂∂ 

            (C.8) 

and their algebra is not closed in the sense of a Lie algebra and needs infinitely 

many additional multiplication operators ( )2
1 , 2,3,n n

z
=   for closing. 

Appendix D. A Peculiarity of Chebyshev Polynomials of First Kind  
( )n zT  within Gegenbauer Polynomials ( )n zCν  and Their Special  

Cases of Legendre Polynomials ( )n zP  and Chebyshev  

Polynomials of Second Kind ( )n zU  

In this Appendix we make a comparison of Chebyshev polynomials and Legen-
dre polynomials within the Gegenbauer polynomials and underline the peculiar 
role of Chebyshev polynomials of first kind ( )Tn z  which illuminates why often 
in formulae with the last the case 0n =  has to be considered separately from 
the other cases 0n ≠ . 

The Gegenbauer polynomials ( )Cn zν  and their special cases of Chebyshev 
polynomials of first and second kind ( )Tn z  and ( )Un z  as well as Legendre 
polynomials ( )Pn z  can be continued in natural way from non-negative indices 
n to negative indices n using properties of the factorials. They become in this 
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way overcomplete and the part with negative indices can be expressed by that 
with positive indices. For the Gegenbauer polynomials this symmetry is  

 ( ) ( ) ( ) ( ) ( ) ( )1 0 02 2C 1 C , 0,1,2, , C C 0.
m m

m
n n m n nz z m z z−

− − −= − = ⇒ = − =  (D.1) 

Genuine polynomials from the Gegenbauer polynomials ( )Cn zν  with upper 
index 0ν =  can be only defined by a limiting procedure. These are the Cheby-
shev polynomials of first kind ( )Tn z  which can be alternatively defined by the 
limiting procedure  

 ( ) ( )
0

1, 0,
T 1lim C , 0.

2
n

n

n
z n z nε

ε ε→

=
≡ 

≠

                  (D.2) 

The member ( )0T z  cannot even be defined by this limiting procedure and has 
to be a fixed constant for the set ( ) ( )T , 0,1,2,n z n =   to be a complete set 
within the continuous functions and this constant is chosen by convention as 

1c = , likely the best choice. The monomial ( )0T z  is also not unique by the 
general formula (3.11). The set of polynomials ( ) ( )T , 0,1,2,n z n− =   form also 
such a complete set of functions which, however, shares the element ( )0T z  
with that of non-negative indices. The other sets of polynomials related to the 
Gegenbauer polynomials ( )Cn zν  which are the Legendre polynomials ( )Pn z  
and the Chebyshev polynomials of second kind ( )Un z  are defined in simple 
way by the Gegenbauer polynomials. They possess also a complete part of poly-
nomials with negative indices but this part does not have an intersection with 
elements from the non-negative part. In case of the polynomials ( )Un z  the 
part with negative indices is separated by a “zero-polynomial” ( )1U 0z− =  and 
in the Gegenbauer polynomials with higher upper semi-integer and integer in-
dices the number of the vanishing polynomials grows in unit steps. 

The above mentioned peculiarities of the Chebyshev polynomials of first kind 
( )Tn z  are the reason that in many formulae related to the polynomials the case 
0n =  and the cases 0n ≠  have to be considered separately. We see this in the 

following Table D1 & Table D2: 
 

Table D1. Chebyshev and Legendre polynomials for positive and negative lower indices.  

n  ( ) ( )
0

1T lim C
2n n
nz zε

ε ε→
=  ( ) ( )

1
2P Cn nz z=  ( ) ( )1U Cn nz z=  

−6 6 4 232 48 18 1,z z z− + −  ( )5 31 63 70 15 ,
8

z z z− +  4 216 12 1z z− + −  

−5 5 316 20 5 ,z z z− +  ( )4 21 35 30 3 ,
8

z z− +  ( )34 2z z− −  

−4 4 28 8 1,z z− +  ( )31 5 3 ,
2

z z−  24 1z− +  

−3 34 3 ,z z−  ( )21 3 1 ,
2

z −  2z−  

−2 22 1,z −  ,z  −1 
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Continued 

−1 ,z  1, 0 

0 1, 1, 1 

1 ,z  ,z  2z  

2 22 1,z −  ( )21 3 1 ,
2

z −  24 1z −  

3 34 3 ,z z−  ( )31 5 3 ,
2

z z−  ( )34 2z z−  

4 4 28 8 1,z z− +  ( )4 21 35 30 3 ,
8

z z− +  4 216 12 1z z− +  

5 5 316 20 5 ,z z z− +  ( )5 31 63 70 15 ,
8

z z z− +  ( )5 32 16 16 3z z z− +  

6 6 4 232 48 18 1,z z z− + −  ( )6 4 21 231 315 105 5 ,
16

z z z− + −  6 4 264 80 24 1z z z− + −  

(D.3) 
 

Table D2. Gegenbauer polynomials of higher upper integer and semi-integer indices.  

n  ( )
3
2Cn z  ( )2Cn z  ( )

5
2Cn z  

−6 ( )35 7 3 ,
2

z z−  ( )22 6 1 ,z− −  5z  

−5 ( )23 5 1 ,
2

z −  4 ,z−  1 

−4 3 ,z  −1, 0 

−3 1, 0, 0 

−2 0, 0, 0 

−1 0, 0, 0 

0 1, 1, 1 

1 3 ,z  4 ,z  5z  

2 ( )23 5 1 ,
2

z −  ( )22 6 1 ,z −  ( )25 7 1
2

z −  

3 ( )35 7 3 ,
2

z z−  ( )34 8 3 ,z z−  ( )335 3
2

z z−  

4 ( )4 215 21 14 1 ,
8

z z− +  4 280 48 3,z z− +  ( )4 235 33 18 1
8

z z− +  

5 ( )5 321 33 30 5 ,
8

z z z− +  ( )5 38 24 20 3 ,z z z− +  ( )5 321 143 110 15
8

z z z− +  

6 ( )6 4 27 429 495 135 5 ,
16

z z z− + −  ( )6 4 24 112 120 30 1 ,z z z− + −  ( )6 4 2105 143 143 33 1
16

z z z− + −  

(D.4) 
 

For convenience, the relation of Ultraspherical polynomials ( ) ( ),Pn zα α  as 
special case α β=  of Jacobi polynomials ( ) ( ),Pn zα β  to Gegenbauer polyno-
mials ( )Cn zν  is  
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 ( ) ( ) ( ) ( )
( ) ( )

( )

( )
( )

2
1 1

, 2 2

12 ! !! 2 ! 2P C C ,
12 ! ! 2 ! !
2

n n n

nn
z z z

n n

α

α αα α
α αα α

α α α

+ +

 + − +  = =
+  + − 

 

   (D.5) 

and its inversion  

 ( )
( )

( )
( )

( )

( )
( )

1 1 1 1, ,
2 2 2 2

2 1

1 12 1 ! ! 2 1 ! !
2 2C P P ,

1 1! 2 1 ! 2 ! 1 !
2 2

n n n

n n
z z z

n n

ν ν ν ν
ν

ν

ν ν ν

ν ν ν ν

   − − − −   
   

−

   + − − + − −   
   = =

   + − − + − −   
   

(D.6) 

where the doubling formula of the Gamma function is used. 
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