
Advances in Pure Mathematics, 2023, 13, 483-494 
https://www.scirp.org/journal/apm 

ISSN Online: 2160-0384 
ISSN Print: 2160-0368 

 

DOI: 10.4236/apm.2023.138032  Aug. 11, 2023 483 Advances in Pure Mathematics 
 

 
 
 

A Class of Potentials for Hyperbolic 
Transcendental Entire Maps 

Irene Inoquio-Renteria 

Instituto de Ciencias Físicas y Matemáticas (ICFM), Universidad Austral de Chile, Casilla 567 Valdivia, Chile 

 
 
 

Abstract 
We identify a class of transcendental entire maps of finite order, of dis-
joint-type, satisfying the rapid derivative growth condition. Within this class, 
we show that there exist hyperbolic transcendental entire maps that generate 
a large class of potentials which intersect the so-called tame potentials and 
form a distinct class of potentials. The methods and techniques derived from 
the thermodynamic formalism are applied to these potentials for transcenden-
tal entire maps acting on some subset of the Julia set which is conjugated to the 
shift map over a code space with a countable alphabet endowed with the eucli-
dean induced metric on the complex plane. 
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1. Introduction 

The study of the thermodynamic formalism of transcendental entire maps has 
received considerable attention. Notably, the ergodic theory of the exponential 
family ( ) ( )expλ λ=E z z  has been thoroughly examined for a wide range of pa-
rameters, as referenced in [1]-[10] and references therein. 

When dealing with transcendental entire functions, several challenges arise in 
the exploration of the thermodynamic formalism. For instance, the Julia set is 
never compact, a contrast to the situation with polynomials and rational maps. 
This discrepancy leads to convergence issues, and standard arguments such as 
the Schauder-Tychonoff Fixed Point Theorem cannot be applied. 

Due to the wide-range nature of the transcendental maps, it becomes essential 
to narrow the scope and consider suitable sub-classes when exploring thermody-
namic formalism. In this context, Mayer and Urbański made significant contri-
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butions to their paper [10] by providing a complete understanding of the ther-
modynamic formalism for a large class of hyperbolic meromorphic functions of 
finite order satisfying a rapid growth condition, associated with a class of tame 
potentials. Furthermore, recently the authors in [11] provided an overview of the 
thermodynamic formalism for transcendental meromorphic and entire func-
tions and their geometric applications. In addition, in [12], they developed an 
optimal approach to thermodynamic formalism for a wide range of transcen-
dental entire functions whose set of singularities is bounded. Another significant 
advancement in the field is the development of thermodynamic formalism for 
random transcendental dynamics. This approach was successfully detailed in 
[13]. 

In the present work, we highlight a class of transcendental entire maps, which 
includes the exponential family, as defined in Section 2. We show that within 
this class exist hyperbolic transcendental entire maps that generate a large class 
of potentials for which the thermodynamic formalism can be effectively applied. 
The key novelty of our study lies in identifying a class of potentials that deviates 
from those earlier studied in [10]. We find that the techniques and methods 
from their work can be adapted with minor modifications to our situation, tak-
ing advantage of the properties of the symbolic representation of these maps 
acting on invariant subsets of Julia sets. These code spaces maintain a natural 
topology that is inherited from the Euclidean topology. 

The paper is organized as follows: In Section 2 we define a class of hyperbolic 
transcendental entire maps and a class of potentials to state Theorem 1. After 
gathering several dynamic properties in Theorem 2 and properties of potentials in 
Proposition 1, the proof of Corollary 1 holds. 

2. Hyperbolic Transcendental Entire Maps, Potentials and  
Results  

Given a transcendental entire function : → f , the Fatou set ( )F f  is the 
subset of   where the iterates nf  of f  form a normal family, and its com-
plement is namely called the Julia set, which is denoted by ( )J f . 

Denote by ( )1Sing −f  the set of finite singularities of the inverse function 
1−f , which is the set of critical values (images of critical points) and asymptotic 

values of f  together with their finite limit points. The post-singular set ( )PS f  
of f  is defined as,  

( ) ( )( )1

0
: Sing ,

∞
−

=

=


n

n
PS f f f  

and 
( )log log

: limsup
log

ρ →∞=f z

f z
z

 is namely called the order of f . 

Let F  denote the class of transcendental entire functions f  satisfying the 
following properties  

1) It is of finite order;  
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2) Satisfies the rapid derivative growth condition: There are 2 0α >  1 2α α>  
and 0κ >  such that for every ( ) ( )1\ −∈ ∞z J f f  we have  

( ) ( ) 211 αακ −′ ≥f z z f z ; 

3) It is of disjoint type, that is, the set ( )1Sing −f  is contained in a compact 
subset of the immediate basin ( )0=B B z  of an attracting fixed point 0 ∈z . 
This is a strong form of hyperbolicity, which was explicitly studied in [14] for 
instance.  

Note that each ∈f F  belongs to the Eremenko-Lyubich class  

( ){ }1: : :Sing is bounded .−= →  f f  

It was proved in [15] that for ∈f  all the Fatou components of f  are 
simply connected. Hence the immediate basin B is simply connected. Moreover 
each ∈f F  is hyperbolic in the sense that the closure of ( )PS f  is disjoint 
from the Julia set and ( )PS f  is compact. We have that f  has no wandering 
and Baker domains, so B is the only Fatou component of f , see [15] [16] [17]. 

Examples in the class F  include the family ( )expλ z  for ( )0,1 eλ∈ , the 
family of maps ( )sinλ z  for ( )0,1λ∈ , and ( )λg z , where { }\ 0λ∈  and g 
is an arbitrary map of finite order such that ( )1Sing −g  is bounded and λ  is 
enough small, other examples are the expanding entire maps ( )

0 e+ −
=∑ p q j p z

jj a , 
, 0>p q , ∈ja , studied early in [9]. 

2.1. Potentials 

Fix ∈f F . Since the immediate attraction basin ( )0=B B z  of an attracting 
fixed point 0z  is simply connected, there exists a bounded simply connected 
domain ⊂D , such that its closure ⊂D B  and boundary ∂D  is an analytic 
Jordan curve. Moreover, ( )1Sing − ⊂f D  and ( ) ⊂f D D , for more details see 
([8], Lemma 3.1). Following [8], the pre-images of \ D  by f  consists of 
countably many unbounded connected components called tracts of f . We de-
note the collection of all these tracts by R . 

Since the closure of each tract is simply connected, there exists an open simple 
arc ( ): 0, \α ∞ → D , which is disjoint from the union of the closures of all 
tracts and such that ( )α t  tends to a point of ∂D  as t tends to 0+ , and ( )α t  
tends to ∞  as t tends to +∞ . We use this curve to define the fundamental do-
mains on each tract as follows: since for every ∈T R  the map 

Tf  is a cover of 
\ D , we have ( )1\ α−T f  is the union of infinitely many disjoint simply con-

nected domains S such that the function  

( ): \ α→ ∪Sf S D  

is bijective. Given ∈T R , we denote by T  the collection of connected com-
ponents of ( )1\ α−T f . The elements of  

 :
∈

=


 T
T R

                          (1) 
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are called fundamental domains. 
For each ∈S , we have that the restriction Sf  is univalent, so we denote 

its inverse branch by ( ) ( )1
: : \ α

−
= ∪ →S Sg f D S . For 1≥n  and each  

{ }0,1, ,∈ j n  denote by jS  an element of   and put 
0 1 0

 =




S S S S Sn n
g g g . 

Then,  

( )( ) ( ){ }
0

\ : , for every 0, , .α∪ = ∈ ∈ =


 
S Sn

j
jg D z f z S j n      (2) 

For each sequence ( )0 1= ∈

S S S , let ( )( )
0 1

0
: \  

S S SnS
n

K g D α
∞

=

= ∪




 . Then, 

the Julia set of f  is given by the disjoint union of SK , that is  

( ) .
∈

=





S
S

J f K  

Since f  has finite order and of disjoint-type, following [18], the Julia set ( )J f  
is a Cantor bouquet, that is a union of uncountably many pairwise disjoint 
curves tending to infinity (hair) and each curve is attached to the unique point 
accessible from the immediate basin B, called the endpoint of the hair. More 
precisely, either SK  is empty or there is a homeomorphism [ ): 0,+∞ →S Sh K  
such that ( )lim  →+∞ = ∞t Sh t , and such that for every 0>t  we have  

( )( )lim →+∞ = ∞n
n Sf h t . In the latter case ( ): 0=S Sz h  is the only point of SK  

accessible1 from the immediate basin B. See also [7], which generalizes previous 
results for the exponential map having an attracting fixed point of [19]. 

Following as in [10], let us consider ρ f  be the order of f  and 1 2, 0α α >  
be the corresponding constants of the rapid derivative growth condition of f .  

Fix ( )20,τ α∈  and let { } { }: \ 0γ → ∪ ∞   defined by ( ) 1
τγ =z

z
. Let θ  

be the Riemaniann metric on { }\ 0  defined by  

 ( ) ( )d d ,θ γ=z z z  

and we derive f  with respect to θ  instead of the Euclidean metric. So, for 
each { }\ 0∈z  we have  

 ( ) ( ) ( )
( ) ( )

( )
.

τ

τθ

γ
γ

′ ′ ′= =
 f z z

f z f z f z
z f z

              (3) 

We consider C , the set of functions ψ  from 
∈ S

S  to +  that are bounded 
from above and are constant on each element of  . That is, we write  

: : : is bounded from above and constant over each .ψ ψ+

∈

 
= → ∈ 
 






S

S SC (4) 

We define the following class of potentials for f :  

 ( ) ( ) ( ),
1

log log , , .ψ θ

ρ
ϕ ψ ψ

α τ
 

′= = − ∈ > + 

f
f t z z t f z tP C  

 

 

1If U is simply connected domain in the Riemann sphere  , we say that a point z U∈∂  is ac-
cessible from U if there exists a curve [ ): 0, Uυ ∞ →  such that ( )limt t zυ→∞ = . 
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Observe that this class contains potentials log
θ
′−t f , which from (3) are co-

homologous to log ′−t f . 
For each ∈f F  we denote by fT  the class of tame potentials defined in 

[10], that is  

1 2

: log ; is bounded weakly Holder function,
θ

ρϕ
α α

 ′
′= = − > 

+ 
f h t f h tT  

Note that the class F  does not include most of the functions considered in 
[10]. However, the class of potentials fP  determined from ∈f F  intersects 
the class of tame potentials, in which the difference is non-empty. So our first 
result is the following  

Theorem 1. There exists ∈f F  such that ∩ ≠∅f fP T  and \ ≠ ∅f fP T .  

2.2. Symbolic Representation 

Let ( ){ }0 1: : , for all 0Σ = = ∈ ≥ js s s s j  be the full shift space, and the shift 
metric is defined as follows, for some ( )0,1θ ∈ ,  

 ( ) { } { }inf :, .θ ≠ ∪ ∞= k kk s td s t                       (5) 

For every 1≥n , we denote a finite word 0 1− ns s  in n  simply by *s , so we 
follows the following notation for cylinders  

 { }* : ,0 1  = ∈Σ = ≤ ≤ −   i is w w s i n  

and for ∈s , we simply denote [ ] { }0:= ∈Σ =s w w s . Let :σ Σ →Σ   be 
the left-sided shift map, given by ( ) ( )0 1 1 2σ = s s s s . 

Observe that by definition the set   given in (1) is countably infinite, so we 
identify   with  . Put  

 { }: : .= ∈ ≠∅ ⊆ Σ
 SX S K                   (6) 

Let  

 .
∈

=
 S
S X

Z K  

From (2), we have for each ∈ S , ( ) ( )σ=S Sf K K , then the function f  on 
the Julia set ( )J f  is semi-conjugate to σ  on X, however f  on the set  

 ( ){ }: 0 : ,= = ∈ S Sz h S X  

is conjugate to σ X
. Hence the set X is completely σ -invariant. 

The set   defined above, is the set of endpoints of hairs SK  and it satis-
fies the following properties, it is the set of accessible points from the immediate 
attraction basin B. It is totally disconnected, however { }∪ ∞  is connected, 
see [14]. Moreover, following [20], the Hausdorff dimension of this set is equal 
to two, generalizing previous results of Karpińska [3] for the exponential map 

( ) eλ λ= zf z  with parameters ( )0,1λ∈ e . This exponential map is probably the 
best-known example in the family F , its Julia set is a Cantor bouquet and the 
set of endpoints is modeled by the symbolic space of all allowable sequences, see  
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[19] and [21]. 
In the following, we state some properties concerning the dynamics ( ),σ XX , 

endowed with a metric inherited from the euclidean metric on ( )J f . It does 
not necessarily generate the topology induced by the cylinder sets. 

Let [ ) ( ): 0,× +∞ →H X J f , and { } { }0 : 0
×

× → XH X  defined by  
( ) ( ),0 0= sH s h , we have that H induces a metric ρ  on X,  

 ( ) ( ) ( ), : 0 0 .ρ = −s ws w h h  

The shift map :σ →X X  is continuous with respect to ρ . 
Given ∈Σs  and *  ∈nw  let us write ( )*

0 1 0 1−=  nw s w w s s . For a set 
⊂ ΣA  write { }* * := ∈w A w s s A . For ∈s X  and 0δ >  we define the follow-

ing sets with respect to the metric ρ .  

( ) ( ){ } ( ) ( ){ }, : : , : 0 0 ,δ ρ δ δ= ∈ < = ∈ − <s wB s w X s w w X h h  

( ) ( ){ }0, : : ,0 .δ ρ δ= ∈ ≤B s X s  

( ) ( ){ }0 0 0, : : , &   .δ ρ δ= ∈ < = s w X s w b a  

For every 1≥n  and ∈s X  define  

( ) ( ) ( )( ){ }0, : : , , for all 0,1, , .δ σ σ δ= ∈ ∈ =  j j
n s w X w s j n  

The set X endowed with the metric ρ  is non-compact, however, it can be 
approximated by an increasing sequence of compact and invariant subsets. In-
deed, for all 1≥N , define  

 ( ) { }{ }0 1: : for 0, , , ,Σ = = ∈ ≥ ∈ − N js s s X j s N N   

so, the following holds 
Theorem 2.  
1) For all 1≥N , Σ ⊂N X , ΣN  is compact with respect to ρ  and inva-

riant by σ . Moreover, for each compact subset Λ  of X with respect to the me-
tric ρ , so that ( )σ Λ ⊂ Λ , we have, there exists 0 1≥N , such that 

0
Λ ⊂ ΣN . 

2) There exists 0δ  such that the following condition holds:  
There exist 0>C  and 1λ >  such that for every ∈n  and , ∈s t X  and 

* ∈nu , if ( ) 0,ρ δ<s t  then we have  

 ( ) ( )* *, , .ρ λ ρ−≤ nu s u t C s t  

3) For every 0>R  there exists 1≥n  such that for every ( )0,∈s B R , we 
have ( )( ) ( )0, 0,σ δ ⊃n B s B R . Thus ( ),σX  is topologically mixing 

4) The set 1≥
Σ

 NN  is dense in X.  
We recall what a conformal measure means; consider a measurable endomor-

phism : →T Y Y  on a measurable space ( ),Y B  and a measurable non-negative 
function g on Y. A measure m on ( ),Y B  is called g-conformal for T on g if for 
all measurable set A which ( )T A  is measurable and 

AT  is invertible we have  

 ( )( ) d .= ∫A
m T A g m                      (7) 
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Observe that (7) implies that m T  is absolutely continuous with respect to m 
on the σ-algebra ∩ AB , for every set ∈A B  such that ( ):  →T A T A  is a 
measurable isomorphism. 

Corollary 1. Let ∈f F . Then for every potential φ ∈ fP  we have the fol-
lowing properties.  

1) The topological pressure ( )
( )

( )
1

0

1: lim log expφ φ
−

−

→∞
=∈

 
=  

 
∑ ∑ 

n

n
j

n
jz f w

P f z
n

. 

exists and is independent of ( )∈w J f .  

2) There exists a unique ( )e φ φ−P -conformal measure φν  of f .  
3) There exists a unique probability Gibbs state φµ . That is, φµ  is f-invariant 

and equivalent to φν . Moreover, both measures are ergodic and supported on 
the radial Julia set ( )rJ f , where  

 ( ) ( ) ( ){ }: lim .
→∞

= ∈ < ∞n
r n

J f z J f f z  

4) The density d dφ φ φρ µ ν=  is a nowhere vanishing continuous and bounded 
function on the Julia set ( )J f .  

3. Proof of Results 
3.1. Proof of Theorem 1  

Consider the exponential family ( ) ( ){ }e , 0,1 eλ λ λ= ∈zf z . Each λf  belongs 
to F , because it has order equal to 1, satisfies the rapid derivative growth con-
dition with 1 0α =  and 2 1α = , and since 0 is the only singular value of λf . 
Thus this map is hyperbolic. Moreover the potentials  

( ) 1 1log log log logλ λγ γ′− = − + − t z t f z f , where 1γ
−= tz , are tame potentials 

and also belong to the class 
λf

P . 
On the other hand, let   be the open unit disk in  , then  

 { }1: Re ln \ 0 ,λ λ
   < =   

   
f z z  

and since 11 ln
λ

 <  
 

 we have ( )λ ⊂ f . Moreover, since the immediate basin 

B of the attracting fixed point is the only Fatou component of λf  we have ⊂ B . 

Since ( )1 1\ : Re lnλ λ
−   = >  

  
 f z z , the only tract of λf  is the half plane 

1: Re ln
λ

  = >  
  

T z z . Let us consider the ray ( ): 0, \α ∞ →   defined by 

( ) ( )1α = − +t t , then  

 ( )( ) ( )1 10, 2 1 : ln ,λ α
λ

−

∈

π
  ∞ = + − >  

  



k
f x k i x  

and for each ∈k , put ( ) ( )1: : Re ln , 2 1 Im 2 1
λ

π
  = > − < < +  

  
πkS z z k z k . 

Then ( )( )1\ λ α−T f t  is the disjoint union of the fundamental domains kS . 
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Following [6], let ( ): λ
+→c J f  be a function such that for each ∈k , this 

function is constant on ( ) ( )  λ −∩ ∪k kJ f S S  and we denote by kc  its value on 
this set. Furthermore we assume that the sequence ( ) ∈k k

c  of positive numbers 
satisfies  

 loglim .
log→∞

= −∞k

k

c
k

                       (8) 

Define ( ) ( )( ): logϕ −= tz c z z , where 0>t , ( ) = kc z c  if −∈ ∪k kz S S  and the 
sequence ( ) ∈k k

c  satisfies (8). Observe that any potential as above  
( ) ( )( )logϕ −= tz c z z  satisfies lim 0→+∞ →k kc , so, ϕ  is not a tame potential, 

however, this belongs to the class 
λf

P  since the function c is bounded on each 

kS  and ( )f z zλ θ
′ = . 

3.2. Proof of Theorem 2  

1) The classical Denjoy-Carleman-Ahlfors Theorem [22] implies that tran-
scendental entire functions of finite order have only a finite number of tracts. 
We will assume for simplicity that for ∈f F  there is only one tract T, and 
there is no complication in the generalization to a finite number of tracts. 

Let 1≥N  and denote by N  the union of 2 1+N  fundamental domains 
in T, that is  

 
=−

=



N

N k
k N

S  

and define  

( ){ }: : for every 0, .= ∈ ≥ ∈ j
N N NK z j f z  

Let ( )
1≥

m

m
s  be a sequence in ΣN . Taking a subsequence if it is necessary, 

one can assume that for some R large enough, the subsequence ( )
1≥

m

m
s  is con-

tained in ( )0,Σ ∩N B R . So for every 1≥m  there is there is an endpoint  

( ) ( )00 ,= ∈ ∩m m Ns s
z h K B z R . Since ( )0 ,∩NK B z R  is bounded and NK  is 

closed in ( )J f  we have there is a subsequence converging to some point 

∈ Nz K . Let s  be the itinerary associated to z, then +∈ΣNs  and  

( ), 0ρ = − →j
m j

m
s

s s z z , →∞j . 

On the other hand, let Λ  be a compact subset of X with respect to the metric 
ρ  with ( )σ Λ ⊂ Λ . Let ∈Λs  and let ( )∈ Λz H  with itinerary s , then since 
the compact subset ( )ΛH  intersects only a finite numbers of tracts (see ([8], 
Lemma 3.2)), there exists 0 1≥N  such that for every 0≥j  we have  

0≤js N . Therefore 
0

Λ ⊂ ΣN . 
2) Follows from the derivative grown condition and the uniformly expanding 

property of f , see ([10], Proposition 4.4). 
3) This a standard fact described in ([10], Lemma 4.2). However, we include a 

short proof. That is, for each 0>R  there exists 1≥n  such that for every 
( )0 ,∈w B z R , ( )( ) ( )0 0, ,δ ⊃nf B w B z R , then the property follows. Let , ∈s t X  
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and ( )1,δ=U B s , ( )2,δ=V B t , for 1 2, 0δ δ > . By expanding property in Part 2, 
follows there is 1 0>n  such ( ) ( )1 1

0,σ σ δ⊇n nU B s . Let R be large enough such 
that ( )1 , 0,σ ∈n s t B R  and there is 1N  such that  

( )( ) ( )1 1
0, 0, .σ σ δ ⊃N nB s B R  

So, ( ) ( ) ( )1 1 1 1
0, 0,σ σ σ δ+ ⊃ ⊃N n N nU B s B R . Taking 1 1> +m N n , we have for 

every ≥k m , ( )σ ∩ ≠∅k U V . 
4) This property can be inferred from the general property of the density of pe-

riodic sources in the Julia set, as referred in ([23], Theorem 4). However, we include 
here a short proof: Let ( )0 1= ∈s s s X  and 0ε > . Then, there exists 1 0>n  
such that  

( ) ( )1 1
0, , .σ δ σ ε⊆n nB s B s  

It is enough to take 1 0>n  such that 1
0λ δ ε− <nC . So, we have  

( ) ( ) ( )1 1
10 1 1 0 0, , , .σ δ λ δ ε−
− ⊆ ⊆

n n
ns s s B s B s C B s  

Hence, ( ) ( )1 1
0, ,σ δ σ ε⊆n nB s B s . Since ( )0

0,
>

=
R

X B R , then for some 0>R  
we have ( )1 0,σ ∈n s B R . Moreover from Part 3, there is 2 0>n  such that 
( ) ( )2 1

00, ,σ σ δ⊂ n nB R B s . Therefore, for 1 2= +n n n  we follow that  
( ) ( )0, ,σ ε⊂ nB R B s . Hence, the set ( ),σ εnB s  contains the sequence 0 00=  . 

Let *
0 1−= ∈ n

nw w w  such that ( ) ( )* 0, ,ε⊂w B R B s , then  
( )0 10 ,ε− ∈ nw w B s . Then, taking { }0 1: max , , −=  nN w w  we conclude  

0 1 0∈Σ n Nw w w . 

3.3. Proof of Corollary 1  

Let ( )( )CB ,J f  be denote the Banach space of bounded continuous func-
tions on ( )J f . For each potential ϕ∈ fP , the transfer operator associated to 
ϕ  and denoted by ϕL  acts continuously on ( )( )CB ,J f . So for each  

( )( )CB ,ψ ∈ J f ,  

( )
( )

( ) ( )( )exp .ϕψ ψ ϕ
=

= ∑
f w z

z w wL  

To prove Corollary 1 one can adapt with minor modifications the approach 
given in [10] on the thermodynamic formalism for a large class of hyperbolic me-
romorphic functions : → f  of finite order ρ′  satisfying a rapid growth 
condition and for a class of tame potentials, to the family of transcendental entire 
maps and potentials under study. Therefore, following as in [10], we have that the 
following proposition remains valid for potentials φc  with c being only bounded 
from above. 

Proposition 1. Given ∈f F , we have each potential ,ϕ ∈c t fP  satisfies the 
following properties.  

1) ( )( )
,

sup 1lϕ
∈

< ∞
c t H

w X
wL   

2) 
[ ] ( )( )

( ),
\ 0,

lim exp sup 0ϕ
→∞ ∈ ∩∈

 
=  

 
∑ 


c tR w s X B Rs

H w   
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3) ( )
,

lim 1l 0ϕ→∞
=

c t
w

Hz
wL   

Proof. Let , log log
θ

ϕ ′= −c t c t f  be a potential in fP  and ( )( )CB ,ψ ∈ J f ,  

 

( )
( )

( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( )

,

.

ϕ θσ

ττ

σ

τ τ

σ

ψ ψ

ψ

ψ

−

=

− −

=

− −

=

′=

′=

′=

∑

∑

∑





Hc t

t

s s s
s w

t tt
s s s s s

s w

tt t
w s s s s

s w

H w z c z f z

z c z f z z f z

z z c z f z z

L

 

Since f  satisfies the derivative growth condition, we have  

( )( )
( )

( ) ( )

( )
( )

( )
( )

( ) ( )

( ) ( )
( )

( )

21

,

1 2

1

2

1

2

1l

sup .

ατ α τ
ϕ

σ

τ α α τ

σ

τ α

α τ
σ

τ α

α τ
σ

κ

κ

κ

κ

−− −

=

− − −

=

− +

−
=

− +

−
=∈

≤

=

≤

≤

∑

∑

∑

∑





c t

tt t tt
H w s s s s

s w

t t t tt
w s s w s

s w

t t
s st

s w
w

t t
s st

s ws
w

w z c z z f z z

z c z z z z

c z z
z

c z z
z

L

 

Since f  is a transcendental entire function of finite order ρ  and  
( )1ρ τ α> +t , then the Borel-Picard Theorem (see ([10], Theorem 3.5)) states 

that the series has the exponent of convergence equal to ρ . So the last sum is 
finite. Following ([10], Proposition 3.6), there exists 0>t  such for all 
∈w X  we have  

 ( )( ) ( ) ( ), 2
1l sup .ϕ α τ−

∈

≤





c t

t
H st

s
w

w c z
z

L                 (9) 

So, the Equation (9) implies 
[ ] ( )( )

( ),
\ 0,

lim exp sup 0ϕ
→∞ ∈ ∩∈

 
=  

 
∑ 


c tR w s X B Rs

H w  and  

( )
,

lim 1l 0ϕ→∞ =
w c tz H wL .                                           □ 
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