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Abstract 
After having laid down the Axiom of Algebra, bringing the creation of the 
square root of −1 by Euler to the entire circle and thus authorizing a simple 
notation of the nth roots of unity, the author uses it to organize homogeneous 
divisions of the limited development of the exponential function, that is 
opening the way to the use of a whole bunch of new primary functions in 
Differential Calculus. He then shows how new supercomplex products in di-
mension 3 make it possible to calculate fractals whose connexity depends on 
the product considered. We recall the geometry of convex polygons and reg-
ular polygons. 
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1. Introduction 

“Round Trip”. The transcendental character of the circle finds an echo in both 
philosophy and mathematics. The circle, symbol of transcendence and unity, is 
also revealed to be transcendental in its mathematical representation thanks to 
the Lindemann-Weierstrass theorem. The definition of the points of the unit 
circle as so many rotations by Euler’s expressions eiθ  highlights this intimate 
relationship. The new notation introduced here brings back the definition of any 
angle to its part of the unit circle. 

2. Generalization of the Sign 

With the newly introduced symbols, the multiplication by minus one is equiva-
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lent at going alongside the diameter, through the center, until the other side. 

2.1. The Replacement of the Notation “i” by the 4∆  Symbol and  
Its New Relevance in Differential Calculus 

Delta4 is also the partition of the circle into 4, or the quarter of a circle. The no-
tation i introduced by Leonhard Euler [1] arises from the equation 2 1i = − .  

( )2
4 1∆ = −  in the same way as i. But the new notation introduces the notion 

of partitioning the circle into n parts or “th” of a circle; and thus we obtain a 
more general law: let  

( ) 1,n
n n∆ = + ∈  

This corresponds to making n rotations of an nth partition of the circle in the 
direct or anti-clockwise direction around the zero origin, or center of the circle, 
and thus return to the starting point of the circle with radius 1, or point +1 of 
the real line. We also had 4 1i = +  but that did not bring out the notion that i is 
a quarter of a circle. We will better understand the new notation with the dia-
gram (Figure 1). 

We use to denote delta “n” a triangle which circumscribes the integer n. The 
points of the circle of radius 1, nth roots of the unit are thus the set of the ( )k

n∆ , 
n∈ , k∈ , k n≤ . We can join a ( )k

n∆  by going through the diameter 
and adding the minus sign in front of it. If, starting from point +1 we perform 
the rotation in the opposite direction, then we take the inverse of n∆ . 

So 2
6 3

6

1−
= ∆ = ∆

∆
 as 3

6 1∆ = − ; 

More generally 2 1
n

n∆ = − , for 2n ≥ . 

Thus 5
8 83

8

1
= ∆ = −∆

∆
 and 4

6 62
6

1
= ∆ = −∆

∆
, in the same way we have: 

1i
i

− = , or 4
4

1
= −∆

∆
. 2

2

1
∆ =

∆
 is like writing 1 1− = − . 

2.2. The Exponential, or Self-Derivative, Function 

The exponential, or self-derivative, function has for limited development the 

sum of modulus 
!

nx
n

 more 1, so: 

( )
2 3

exp 1 ,
1! 2! 3!
x x xx x= + + + + −∞ < < ∞

 

We consider the limited development  

( ) ( ) ( ) ( )2 3 4
4 4 44

4exp 1 ,
1! 2! 3! 4!

x x xxx x
∆ ∆ ∆∆

∆ = + + + + + −∞ < < ∞  

We apply the above calculation rules to the ( )4
n∆  and we obtain as with i, 

the factoring of 4∆  as follows: 

( ) ( ) ( )4 4exp cos sinx x x∆ = + ∆  
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Figure 1. The delta “n” power k. 

 
With  

( )
2 4 6

cos 1 ,
2! 4! 6!
x x xx x= − + − + −∞ < < ∞

 

and  

( )
3 5 7

sin ,
1! 3! 5! 7!
x x x xx x= − + − + −∞ < < ∞

 

where cos(x) is the real part and sin(x) the imaginary part of the complex num-
ber ( )4exp x∆ . 

In the same way we will consider the number ( )6exp x∆  

We take 6n =  so that 
2
n

 is defined and that we can simplify by minus one, 

so: 

( ) ( ) ( ) ( )2 3 4
6 6 66

6exp 1 ,
1! 2! 3! 4!

x x xxx x
∆ ∆ ∆∆

∆ = + + + + + −∞ < < ∞  

To model the factoring of ( )4exp x∆ , we now have two successive factors 6∆  
and 2

6 3∆ = ∆ , as follows: 

( ) ( ) ( ) ( )2
6 6 6exp x ga x fa x zu x∆ = + ∆ + ∆  

With 

( ) 0
6

3 6 9

( ) 1 ,
3! 6! 9!
x x xga x F x x

∆
= = − + − + −∞ < < ∞

 

( ) ( )
6

4 7 10

,
1! 4! 7! 10!
x x x xfa x F x x∆= = − + − + −∞ < < ∞
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And 

( ) 2
6

2 5 8 11

( ) ,
2! 5! 8! 11!
x x x xzu x F x x

∆
= = − + − + −∞ < < ∞

 

ga(x), fa(x) and zu(x) form a stable group for the derivation operation: 

( ){ } ( )ga x zu x′ = − , ( ){ } ( )fa x ga x′ =  and ( ){ } ( )zu x fa x′ =  

The second derivatives are therefore: 

( ){ } ( )ga x fa x′′ = − , ( ){ } ( )fa x zu x′′ = −  and ( ){ } ( )zu x ga x′′ =  

And the three-fold derivatives: 

( ){ } ( )ga x ga x′′′ = − , ( ){ } ( )fa x fa x′′′ = −  and ( ){ } ( )zu x zu x′′′ = −  

The group is therefore stable for the derivation operation. 
In the same way we had for cos(x) and sin(x): 

( ) ( )0
4

cos x F x
∆

=  and ( ) ( )
4

sin x F x∆= , 0
4∆  being an index which numbers 

the function like a number and we cannot simplify the writing apart 1
n∆  ( n∆  

power 1) which is written n∆ , a triangle which circumscribes the natural integ-
er of the nth of a circle. 

With 

( ){ } ( )cos sinx x′ = −  and ( ){ } ( )sin cosx x′ =  

Thus ( ){ } ( )cos cosx x′′ = −  and ( ){ } ( )sin sinx x′′ = −   
The group is stable for the derivation operation. 
We can say that ga(x), fa(x) and zu(x) are primary solutions of the differential 

equation of the function f of the variable x∈  so that ( ) ( ) ( )3f x f x= − . 
We can also consider hyperbolic functions, and as we have  

( ) ( ) ( )exp cosh sinhx x x= + ;  

We have: 

( ) ( ) ( ) ( )2 3 4
3 3 33

3exp 1 ...,
1! 2! 3! 4!

x x xxx x
∆ ∆ ∆∆

∆ = + + + + + −∞ < < ∞  

We apply the preceding calculation rules to the ( )3
n∆  and we get the follow-

ing factoring where the name of the function followed by “h” means the hyper-
bolic of the function, i.e. the limited development with only some +. 

( ) ( ) ( ) ( ) ( )2
3 3 3exp x gah x fah x zuh x∆ = + ∆ + ∆  

( ) ( ) ( ) ( ) ( )0 266 6

2
3 3 3exp x F h x F h x F h x∆∆ ∆

∆ = + ∆ + ∆  

We have also: gah(x), fah(x) and zuh(x) are primary solutions of the differen-
tial equation of the function f of the variable x∈  so that ( ) ( ) ( )3f x f x= . 

Continuing the values of n, after 6∆  we have 8∆ , if we first take n even, so 

that 2 1
n

n∆ = −  

And so 
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( ) ( ) ( ) ( )2 3 4
8 8 88

8exp 1
1! 2! 3! 4!

x x xxx
∆ ∆ ∆∆

∆ = + + + + +  

Either: 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 2 388 8 8

2 3
8 8 8 8exp x F x F x F x F x∆∆ ∆ ∆

∆ = + ∆ + ∆ + ∆  

With: 

( )0
8

4 8 12

1 ,
4! 8! 12!
x x xF x x

∆
= − + − + −∞ < < ∞

 

( )
8

5 9 13

,
1! 5! 9! 13!
x x x xF x x∆ = − + − + −∞ < < ∞

 

( )2
8

2 6 10 14

,
2! 6! 10! 14!
x x x xF x x

∆
= − + − + −∞ < < ∞

 

And: 

( )3
8

3 7 11 15

,
3! 7! 11! 15!
x x x xF x x

∆
= − + − + −∞ < < ∞

 

We observe the stability of the group for the derivation operation. 

8i = ∆  defines the eighth of a circle and generates the octagon. 
The powers , , ,k

n n k k n∆ ∈ ∈ ≤   define the vertex points of regular poly-
gons inscribed in the unit circle. 

For the pentagon, we have: 

( ) ( ) ( ) ( )2 3 4
5 5 55

5exp 1
1! 2! 3! 4!

x x xxx
∆ ∆ ∆∆

∆ = + + + + +  

Either with the hyperbolics of the functions ( )
10

,0 1
2k
nF x k

∆
≤ ≤ − , defined for 

the decagon:  

( ) ( ) ( ) ( ) ( ) ( )0 2 3 41010 10 10 10

2 3 4
5 5 5 5 5exp x F h x F h x F h x F h x F h x∆∆ ∆ ∆ ∆

∆ = + ∆ + ∆ + ∆ + ∆  

Thus we define the limited developments for all the groups of functions for 
any n even and we use the hyperbolics when n is odd. 

( )0
10

5 10

1 ,
5! 10!
x xF h x x

∆
= + + + −∞ < < ∞

 

( )
10

6 11

,
6! 11!
x xF h x x x∆ = + + + −∞ < < ∞

 

( )2
10

2 7 12

,
2! 7! 12!
x x xF h x x

∆
= + + + −∞ < < ∞

 

( )3
10

3 8 13

,
3! 8! 13!
x x xF h x x

∆
= + + + −∞ < < ∞

 

( )4
10

4 9 14

,
4! 9! 14!
x x xF h x x

∆
= + + + −∞ < < ∞

 

3. Products More Than Complex 

With ( ) 6, , , , ,a b c d e f ∈ , in dimension 3, we have supercomplex products with 
the hexagon: 
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{ } { }
( ) ( ) ( )

2 2
6 6 6 6

2
6 6

a b c d e f

ad bf ec ae bd cf cd be af

+ ∆ + ∆ ∗ + ∆ + ∆

= − − + ∆ + − + ∆ + +
 

So for the square: 

{ } ( ) ( )22 2 2 2 2
6 6 6 62 2 2a b c a bc ab c ac b+ ∆ + ∆ = − + ∆ − + ∆ +  

We also have with the triangle 3∆ : 

{ } { }
( ) ( ) ( )

2 2
3 3 3 3

2
3 3

a b c d e f

ad bf ec ae bd cf cd be af

+ ∆ + ∆ ∗ + ∆ + ∆

= + + + ∆ + + + ∆ + +
 

So for the square: 

{ } ( ) ( )22 2 2 2 2
3 3 3 32 2 2a b c a bc ab c ac b+ ∆ + ∆ = + + ∆ + + ∆ +  

The , , ,k
n n k k n∆ ∈ ∈ ≤   are complex numbers, nth roots of the unit, de-

fined by the formula: 
2

e
i k

k n
n

π

∆ =  
where i is the imaginary number of Euler also called 4∆ . 

The first product with 6∆  and 2
6∆ , and the other stable products in dimen-

sion 3, having coefficients not all positive, make it possible to define calculations 
of fractals in three dimensions by taking the z points of the space of coordinates 
a, b, c and of modulus a norm for the metric space. 

With ( ) 8, , , , , , ,a b c d e f g h ∈ , in dimension 4, one has among other things 
“hypercomplex” product of the square: 

{ } { }
( ) ( )

( )

2 3 2 3
4 4 4 4 4 4

2
4 4

3
4

a b c d e f g h

ae bh cg df af be ch dg ag bf ce dh

de cf bg ah

+ ∆ + ∆ + ∆ ∗ + ∆ + ∆ + ∆

= + + + + ∆ + + + + ∆ + + +

+ ∆ + + +

 

As 2
4 1∆ = −  and 3

4 4∆ = −∆  we can write: 
With ( ) 6

1 2 3 4 5 6, , , , ,z z z z z z ∈  we have: 

( ) ( )1 2 3 4 5 6z z z z z z− ∗ − = −  

The product of two complex differences is a complex difference and a com-
plex difference is the product of two complex differences.  

We can also, in dimension 4, define hypercomplex products with the powers 
of 8∆ , as long as we choose 4 powers allowing a stable product. This is always 
the case if we choose the 4 vertices of the octagon on 4 distinct diameters. 

It seems that we can define more general formulas concerning the k
n∆ , which 

apply even when k is rational, for 
n
k

 integer, n∈ : 

k
n n

k

∆ = ∆  if k is positive, 2,n k n≥ ≤  

and 
1k

n n
k

−∆ = ∆  if k is negative, 2,n k n≥ ≤  
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For mathematical imagery, in dimension 3, we can have fun counting the 
number of different STABLE products for its emission polygon; with component 
vector { 0

6∆ , 6∆ , 2
6∆ } as previously calculated; or { 1

6
−∆ , 0

6∆ , 6∆ }, or { 3
6∆ ,

4
6∆ , 5

6∆ } which is the same result as { 0
6∆ , 6∆ , 2

6∆ } but which defines a dif-
ferent product for the components of the vector put back in factor.  

{ } { }
( ) ( )

( ) ( ) ( )

3 4 5 3 4 5
6 6 6 6 6 6

2
6 6

3 4 5
6 6 6

a b c d e f

ad bf ce ae bd cf af be cd

bf ce ad cf ae bd af be cd

∆ + ∆ + ∆ ∗ ∆ + ∆ + ∆

= − − + ∆ + − + ∆ + +

= ∆ + − + ∆ − − + ∆ − − −

 

The products must remain in the predefined components to be qualified as 
STABLE. It would appear that the product is stable for three vertices of the hex-
agon located on three different diameters of the circumscribed circle. If we take 
{ 0

6∆ , 2
6∆ , 4

6∆ } it comes down to taking  
{ 0

3∆ , 3∆ , 2
3∆ } as previously calculated, or so { 0

6∆ , 2
6∆ , 6−∆ }, the prod-

uct has only positive coefficients. We will see that if we take the three vertices 
symmetrical with respect to the imaginary axis, which are also symmetrical by 
the central symmetry of the center of the circle, let { 3

6∆ , 6∆ , 1
6
−∆ } we have, 

for the product, only negative coefficients. 

{ } { }
( ) ( ) ( )

3 1 3 1
6 6 6 6 6 6

3 1
6 6 6

a b c d e f

ad bf ce ea bd cf af eb cd

− −

−

∆ + ∆ + ∆ ∗ ∆ + ∆ + ∆

= ∆ − − − + ∆ − − − + ∆ − − −
 

By continuing this reasoning we can return to the product of two complex 
numbers and with two points of the plane of respective coordinates (a, b) and (c, 
d) we have:  

( ) ( ) ( )4 4 4a b c d ac bd bc ad+ ∆ ∗ + ∆ = − + ∆ + , what we already knew. In addi-
tion we have: 

{ } { } ( ) ( )2 2 2
4 4 4 4 4 4a b c d bd ac ad bc∆ + ∆ ∗ ∆ + ∆ = ∆ − + ∆ − −  

which seems to define a new product of complex numbers, which will give fractals 
with the same symmetry as the traditional product of complex numbers. Because it 
will be understood that the square given by the first product above is symmetrical 
whether it is (±)ib, i.e. the product is the same for the vector { 0

4∆ , 4∆ } and { 0
4∆ , 

3
4∆ }, therefore the Mandelbrot fractal is symmetrical along the real line. 

{ } { } ( )3 3 3
4 4 4a b c d ac bd bc ad+ ∆ ∗ + ∆ = − + ∆ +  

And the product for vectors 
{ }2

4 4a b∆ + ∆  and { }2 3
4 4a b∆ + ∆  are the same in the same way.  

{ } { } ( )
( ) ( )

2 3 2 3
4 4 4 4 4

2 3
4 4

a b c d ac bd ad bc

bd ac ad bc

∆ + ∆ ∗ ∆ + ∆ = − + ∆ +

= ∆ − + ∆ − −
 

The real line is the axis of symmetry of the figure when the building uses the 
square. 

The inverse of n in the delta is also a solution. 
The points of the unit circle are full symbols that indicate the sign. 
In dimension 3, the connexity of Julia and Mandelbrot fractals [2] depends on 
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the supercomplex product we choose, according to the number of occurrence of 
minus one within the supercomplex product considered. 

Figure 2 is illustrating the calculations. 
The circumscribed triangle can be a circumscribed circle if there is no ambi-

guity with other mathematical symbols. 
The 360˚ of the circle corresponds to (delta360)360 = +1, the same for grades or 

gradians (delta400)400 = +1. 
360

360 1∆ = +  
400

400 1∆ = +  

In these last cases the numbers are written base ten is implied, or one can add 
a point A if one has the place. 

4. Geometry of Regular Polygons 

Throughout the centuries, the geometry of the regular polygons inscribed in the 
circle of radius r has been established [3]. 

The sum of the internal angles between 2 faces in radians, of the regular poly-
gon of n faces, is equal to ( )2n − ∗π . 

The sum of the external angles between 2 faces, of the regular polygon of n 
faces, is equal to ( )2n + ∗π . 

These sums hold true for irregular convex polygons. 

For regular polygons, the perimeter is equal to 2 sinnr
n
π

. 

The area is equal to 2 sin cosnr
n n
π π

, knowing that sin 2 2sin cosx x x= , the 

area is also equal to 

2 2sin

2

nr
n
π

. 

 

 
Figure 2. The even regular polygons and the triangle. 
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Obviously we know that these 2 functions respectively tend to 2 rπ∗  and 
2rπ∗  when n tends to infinity. 

It is noticed that Euler’s characteristic theorem [4] adds to Euclid’s Elements 
the equation which links vertices V, edges E and faces F of any polyhedron ac-
cording to 2V E F− + = . 

5. Conclusions 

It is regretted that modern school education too often forgets the geometry of 
polygons and regular polygons, seeing students remember the particular value of 
a famous function, namely the sum of the internal angles of a triangle is worth π, 
but ignoring its general value as the sum of the interior angles of a convex poly-
gon ( )2n − π . 

The Theory of Differential Calculus should restructure entirely around stable 
groups for the operation of derivation. 

The mathematical imagery of fractals in 3 dimensions, made possible by su-
percomplex products, must certainly be very spectacular. 

Recall 

( ) ( )
( )

2

0

1
cos

2 !

k k

k

x
x

k

∞

=

−
= ∑  

( ) ( )
( )

2 1

0

1
sin

2 1 !

k k

k

x
x

k

+∞

=

−
=

+∑  

( ) ( )
( )

3

0

1
3 !

k k

k

x
ga x

k

∞

=

−
= ∑  

( ) ( )
( )

3 1

0

1
3 1 !

k k

k

x
fa x

k

+∞

=

−
=

+∑  

( ) ( )
( )

3 2

0

1
3 2 !

k k

k

x
zu x

k

+∞

=

−
=

+∑  
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