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Abstract 
There exists a property “structural stability” for “4-dimensional canards” 
which is a singular-limit solution in a slow-fast system with a bifurcation pa-
rameter. It means that the system includes the possibility to have some criti-
cal values on the bifurcation parameter. Corresponding to these values, the 
pseudo-singular point, which is a singular point in the time-scaled-reduced 
system should be changed to another one. Then, the canards may fly to 
another pseudo-singular point, if possible. Can the canards fly? The structural 
stability gives the possibility for the canards flying. The precise reasons why 
happen are described in this paper. 
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1. Introduction 

In the beginning of bifurcation problem, R. Thom developed catastrophe theory, 
which stands on a statical model, that is, it consists of multi-variable real func-
tions with parameters ([1] [2] [3]). Shortly, in some equivalent classes, Hessian 
matrix on non-degenerate critical points is classified like as “fold”, “cusp”, 
“swallow’s tail”, … It is originally based on the behavior of differential equations 
keeping structural stability, and then the potential function is used as the statical 
model. Notice that it is of multi-variables essentially. 

Although there are many books written on “bifurcation problem”, “Catastro-
phe Theory and its Applications” by T. Poston and I. Stewart [4] is recom-
mended for many readers, because it is written from a geometrical point of view 
without rigorous proof. 

In the slow-fast system with parameters, we took up the pseudo-singular point 
having structural stability. It means the catastrophe is caused on a dynamic model 
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directly. In fact, when analyzing a concrete example, the constrained surface 
( 0ε = ) in the slow-fast system reduces the Thom’s function classified. Through-
out this paper, we shall describe the structure precisely. In our previous paper 
[5], it becomes clear that if the system has “symmetry”, there exist two cases. 
One is the pseudo-singular point is structurally stable and the other case is un-
stable. In the unstable case, we showed computer simulations since it depends on 
a parameter. In the stable case, however, there was nothing but giving short 
comments since it is independent. Note that the canard turns to another one by 
the parameter. 

When the parameter value changes from negative sign to positive one, even if 
the pseudo singular point satisfies the conditions of canard, it is confirmed that 
the unstable pseudo-singular point is vanished. In other words, the canards are 
vanished. Then, the canards on the stable pseudo-singular point just appear. We 
call it “canards flying”. Since “canard” is a singular-limit solution ( ε  tends to 
zero) in the slow-fast system, the behavior of the orbit is very complicated when 
ε  takes nearly equal to zero. It gives us a new structure as “dynamical catastro-
phe”. 

2. Slow-Fast System with Bifurcation Parameter  

Consider the following system:  

( )

( )

d , ,
d

d , ,
d

x h x y
t

y g x y b
t

ε ε =

 =


                       (1) 

where ε  is infinitesimal, b is any constant and  

( ) ( )2 2
1 2 1 2, , , ,x x x R y y y R= ∈ = ∈  

( ) ( )4 2 4 2
1 2 1 2, : , , : .h h h R R g g g R R= → = →  

Assume that ( ) ( ), , ,g x y b g x by= , for the simplicity, and the origin is a sin-
gular point. 

Furthermore we assume that the System (1) sastisfies the following conditions 
(A1)-(A6): 

(A1) h is of class 1C  and g is of class 2C .  
(A2) The slow manifold ( ) ( ){ }4, , ,0 0S x y h x y= ∈ =R  is a two-dimensional 

differential manifold and intersects the set  

( ) ( )4, det , ,0 0hT x y x y
x

 ∂ = ∈ =  ∂  
R                (2) 

transversely, where  

1 1

1 2

2 2

1 2

h h
x xh
h hx
x x

∂ ∂ 
 ∂ ∂∂  =
 ∂ ∂∂
 ∂ ∂ 

                       (3) 
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Then, the pli set  

( ){ },PL x y S T= ∈ ∩                         (4) 

is a one-dimensional differentiable manifold.  
(A3) Either the value of 1g  or that of 2g  is nonzero at any point of PL.  
Note that the pli set PL devides the slow manifolds S\PL into three parts  

depending on the signs of the two eigenvalues of ( ), ,0h x y
x
∂
∂

. 

First consider the following reduced system which is obtained from (1) with 
0ε = :  

( )

( )

0 , ,0
d , ,
d

h x y
y g x y b
t

 =



=

                          (5) 

By differentiating ( ), ,0h x y  with respect to t, we have  

( ) ( ) ( )d, ,0 , ,0 , , 0
d

h x hx y x y g x y b
x t y
∂ ∂

+ =
∂ ∂

               (6) 

Then (4) becomes the following:  

( ) ( ) ( )

( )

1d , ,0 , ,0 , ,
d
d , ,
d

x h hx y x y g x y b
t x y
y g x y b
t

− ∂ ∂ = −   ∂ ∂ 
 =

              (7) 

where ( ), \x y S PL∈ . To avoid degeneracy in (6), we consider the time-scaled- 
reduced system:  

( ) ( ) ( ) ( )

( ) ( )

1 1

1

d det , ,0 , ,0 , ,0 , ,
d

d det , ,0 , ,
d

x h h hx y x y x y g x y b
t x x y

y h x y x y bg
t x

− −

−

  ∂ ∂ ∂    = −     ∂ ∂ ∂       


  ∂  =    ∂    

     (8) 

The phase portrait of the System (8) is the same as that of (7) except the region  

where ( )det , ,0 0h x y
x
∂  = ∂ 

, but only the orientation of the orbit is different. 

Definition 1. A singular point of (8), which is on PL, is called a pseudo sin-
gular point of (1). The set of pseudo singular points is denoted by PS. 

(A4) ( )rank , ,0 2h x y
x
∂  = ∂ 

, ( )rank , ,0 2h x y
y

 ∂
= ∂ 

 for any ( ), \x y S PL∈ .  

From (A4), the implicit function theorem guarantees the existence of a unique 
function ( )y xϕ=  such that ( )( ), ,0 0h x xϕ = . By using ( )y xϕ= , we obtain 
the following system:  

( )( ) ( )( ) ( )( ) ( )( )
1 1d det , ,0 , ,0 , ,0 , , .

d
x h h hx x x x x x g x x b
t x x y

ϕ ϕ ϕ ϕ
− − ∂ ∂ ∂    = −    ∂ ∂ ∂     

 (9) 

(A5) All singular points of (8) are non-degenerate, that is, the linearization of 
(8) at a singular point has two nonzero eigenvalues.  
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Now, let us introduce a definition of “symmetry”. It is a key word through this 
paper. 

Definition 2. If ( ) ( )1 1 2 1 2 2 2 1 2 1, , , , , , , ,h x x y y h x x y yε ε= , and  
( ) ( )1 1 2 1 2 2 2 1 2 1, , , , , , , ,g x x y y b g x x y y b= , then the system is “symmetric” for the 

subspace ( ){ }1 2 1 2 1 2 1 2, , , | ,I x x y y x x y y= = = .  
(A6) I intersects PL transversely.  
Definition 3. Let 1 2,λ λ  be two eigenvalues of the linearization of (8) at a 

pseudo singular point. The pseudo singular point with real eigenvalues is called a 
pseudo singular saddle point if 1 20λ λ< <  and a pseudo singular node point if 

1 2 0λ λ< <  or 1 2 0λ λ> > .  
The following Theorems 1 and 2 are established in [5] and [6], respectively. 
Theorem 1. Let ( )0 0,x y  be a pseudo singular saddle or node point. If  

( )0 0trace , ,0 0h x y
x
∂  < ∂ 

, then there exists a solution which first follows the at-

tractive part and the repulsive part after crossing PL near the pseudo singular  
point.  

Remark 1. The solution in Theorem 1 is called “canard”.  

Theorem 2. If ( )det 0,0 0f
x
∂  = ∂ 

, and ( )trace 0,0 0f
x
∂  < ∂ 

, then canards  

near the subspace I has a centre manifold.  

Remark 2. The condition ( )0 0trace , ,0 0h x y
x
∂  < ∂ 

 implies that one of eigen-

values of ( )0 0, ,0h x y
x
∂ 
 ∂ 

 is equal to zero and the other one is negative. Notice  

that the system has two kinds of vector fields: one is 2-dimensional slow and the 
other is 2-dimensional fast one. The condition provides the state of the fast vec-
tor field.  

Remark 3. The singular solution in Theorem 1 is called a canard in 4R  with 
2-dimensional slow manifold. As a result, it causes a delayed jumping. The study 
of canards requires still more precise topological analysis on the slow vector 
field.  

Remark 4. On the subspace I, the following system is established for some b. I 
is an invariant manifold.  

( )

( )

1
1 1 1

1
1 1 1

d , ,
d

d , ,
d

x h x y
t

y g x y b
t

ε ε =

 =


( )1 1 2 1 2, , , ,g x x y y b =               (10) 

Remark 5. On the set PL, det 0h
x
∂  = ∂ 

 is satisfied and at ( )0 0,x y PS∈  the  

following equation is established:  

( )( ) ( )( ) ( )( ) ( )( ) ( )( )1 2 1 2
0 0 0 0 0 0 0 0 1 0 0

1 2 2 1

, ,0 , ,0 , ,0 , ,0 , , 0.h h h hx x x x x x x x g x x b
x x x x

ϕ ϕ ϕ ϕ ϕ
 ∂ ∂ ∂ ∂

− = ∂ ∂ ∂ ∂ 
  

(11) 
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Note that there exists ( )y xφ=  because of assuming rank 2h
y

 ∂
= ∂ 

.  

3. Structural Stability 

When and why does the pseudo singular point have structural stability? A geo-
metrical point of view to make it clear is shown in this section.  

Lemma 1. The matrix h
x
∂ 
 ∂ 

 is symmetric.  

Proof. Because the system is symmetric for the set I, it is obvious from ele-
mentary calculus.                                                  □ 

From (A6), the subspace I intersects PL transversely. Lemma 1 ensures that 
cI  also intersects PL transversely, where cI  is the orthogonal complement of  

I. Since the matrix h
y

 ∂
 ∂ 

 is also symmetric, for the sake of simplicity, suppose 

that h
y

 ∂
 ∂ 

 is identity without loss of generality. 

Using Remark 5, the following lemma is established in [5]. 
Lemma 2. Let ( )0 0,x y PS∈  be on I PL∩ , then it depends on the parame-

ter b. On the other hand, on cI PL∩ , it is independent of b.  
From Lemma 2, we establish the following thorems. 
Theorem 3. There exists a pseudo singular point ( )0 0,x y PS∈ , which is one 

of a coupled points near the subspace I, when satisfying 0 0b b> > . When 

0 0b = , it is just on I.  
Theorem 4. Let ( )0 0,x y PS∈  be a saddle or node point. Then, if  

( )0 0, cx y I PL∈ ∩ , the pseudo singular point is structurally stable. If  
( )0 0,x y I PL∈ ∩  it is structurally unstable.  

The next theorem is the main result. 
Theorem 5. Let a critical value 0 1

inf kk N
b b

≤ ≤
=  be positive, where each  

( )1,2, ,kb k N=   is also a critical value and N is the hyperfinte number. If the 
structurally stable pseudo-singular point for 0b <  and the unstable pseudo- 
singular point satisfy the canard conditions in Theorem 1, then there exists the 
canard flying.  

Proof. If 0 0b b> > , then the pseudo-singular point on I is unstable by Lem-
ma 2. If 0b < , the pseudo-singular point on cI  is stable and saddle or node 
because of the conditions in Theorem 1. Suppose the canard conditions in 
Theorem 1, then the other unstable point is vanishing, that is, the canard is fly-
ing.                                                              □ 

Theorem 5 plays a central role to establish canards flying under Theorems 3 
and 4 which are already shown in K-T [5]. 

4. Concrete Example 
4.1. Modefied Coupled FitzHugh-Nagumo Equations 

Consider the following typical example of modefied coupled FitzHugh-Nagumo 
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equations. See [7] for more details.  

( )

( )

3
1 1

2 1

3
2 2

1 2

1
1 1

2
2 2

d
d 3
d
d 3

d 1
d
d 1
d

x xx y
t
x xx y
t

y x by
t c
y x by
t c

ε

ε


= + −


 = + −

 = − +

 = − +


                      (12) 

The next equation is the time-scaled-reduced system corresponding to (19).  

( )

( )

2 1 1
12

2
21

2 2

1
1d .

1d 1

x by fxx c f
ft x x by

c

 − +  − −  
 = − =   − −      − + 
 


          (13) 

There exsist pseudo singular points ( )0 0,x y PS∈  of the System (9) which are 
obtained by the following. If ( ) ( )0 0 01 02 01 02, , , ,x y x x y y=  exists on neighborhood 
of I PL∩ , then 1 2 1x x =  holds. 

Remark 6. In the previous paper [5], the definition of the function f in p.605 
is incorrect. As the sign of “f” is negative, Equation (13) is correct. 

Remark 7. Notice that in Lemma 2, if ( )0 0,x y I PL∈ ∩ , then the critical value  

0
3
2

b b= =  holds. When 0
30
2

b b< < = , the corresponding pseudo singular  

points are on neighborhood of I but not on I. 
If ( )0 0, cx y I PL∈ ∩ , then 1 2 1x x = −  holds. Therefore,  

01

02
3
01

01 02

3
02

02 01

1
1

3

3

x
x

xy x

xy x

= ±
 =

 = −


 = −




                       (14) 

Remark 8. The solution of (14) is structurally stable. Then  

( ) ( )1 2, 1, 1

1 1
1 1x x

h
x = −

− ∂  =    −∂   
                  (15) 

and  

( ) ( )1 2, 1, 1

81 1
1 3 .

81 1
3

x x

b
f
x c b= −

 − − ∂   = − ∂   − − 
 

           (16) 

Then,  

( ) ( )1 2, 1, 1

1 1
trace trace 2.

1 1x x

h
x = −

− ∂  = = −   −∂   
          (17) 

Therefore, the assumptions of Theorem 1 are satisfied and a canard exsits. On 
the other hand, the characteristic equation is  
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( )
2

2 81 1 0.
3

bλ  + − + = 
 

                   (18) 

The solution of (18) is  
81 1 .
3

bλ  = − ± + 
 

                      (19) 

Therefore, if 3
4

b < − , then the psudo singular point is saddle. On the other 

hand, if 3 0
4

b− < < , then it is node. 

4.2. Stochastic Differential Equations 

Let us consider a stochastic differential equation for a slow-fast system with a 
Brownian motion ( )B t  as the random noises modifying the slow fast System 
(1): For [ ]0, , 0t T T∈ >   

( )
( )

d , , d

d , , d d

x h x y t

y x y t Bg

ε ε

ε σ

 =


= +
                   (20) 

where 1 2

2

B
B R

B
 

= ∈ 
 

 is a 2-dimensional standard Brownian motion and 0σ >   

is a positive constant which gives a standard deviation for the Brownian motion 
( )B t . 
When the system (12) is disturbed by ( )B t , which gives small noises, the ca-

nard solution changes to another orbit. 
Anderson [8] showed that the Brownian motion is described by step functions 

using non-standard analysis on a hyper finite time line by the following defini-
tion. 

Definition 4. Let , 0t
tN t T
t

= ≤ ≤
∆

 and TN N= . Assume that a sequence  

of i.i.d. random variables { }, 1, ,kB k N∆ =   has the distribution  

{ } { } 1
2k kP B t P B t∆ = ∆ = ∆ = − ∆ =                (21) 

for each 1, ,k N=  . An extended Wiener process ( ){ }, 0B t t ≥  is defined by  

( )
1

, 0 .
tN

k
k

B t B t T
=

= ∆ ≤ ≤∑                    (22) 

Rewriting the System (20) via step functions on the hyper finite time line, the 
following System (23) is obtained.  

( ) ( ){ }

( ) ( ){ }

( ) ( ) ( )

( ) ( ) ( )

3
1

1 1 1 2 1

3
2

2 2 1 1 2

1 1 1 1 1 1 1

2 2 1 2 2 2 2

3

3
1

1

k k

k k

k k k

k k k

xx t x t x y t

xx t x t x y t

y t y t x by t B
c

y t y t x by t B
c

ε

ε

σ

σ

−

−

−

−

  
− = + − ∆  

 
  
 − = + − ∆ 

 


− = − + ∆ + ∆

 − = − + ∆ + ∆

           (23) 
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where  

( ) ( )1 1 1 1
1 1

, .
t tN N

k k
k k

B t B B t B
= =

= ∆ = ∆∑ ∑  

When 1 2 0σ σ= = , the System (23) is the nonstandard form of (12). For more 
details of the stochastic slow fast system, see [9]. 

4.3. Simulation Results 

In Figures 1-8, 0.01ε = , 1c =  and 0.0001t∆ =  in (23). The curves, which 
satisfy 1 2 1x x =  and 1 2 1x x = − , respectively, are Pli set. 

Figure 1 1 2 0σ σ= = . 
Figure 1 shows an orbit of ( ) ( )( ){ }1 2, , 0 7x t x t t T≤ ≤ =  satisfying Equation 

(23) with 1 2 0σ σ= = , 0.6b = −  and starting from ( )1.1, 1.2−  near the pseudo  
 

 
Figure 1. b = −0.6, (x1(0), x2(0)) = (1.1, −1.2). 
 

 
Figure 2. b = −0.6, (x1(0), x2(0)) = (1.1, −1.2). Enlarged orbit of Figure 1. 
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Figure 3. b = −0.8, (x1(0), x2(0)) = (0.99, −1). 
 

 
Figure 4. b = −0.8, (x1(0), x2(0)) = (0.99, −1). Enlarged orbit of Figure 3. 
 
singular point (1, −1). At the pseudo singular point (1, −1), the eigenvalue λ  in 
(18) is negative and it is node. 

Figure 2 Enlarged orbit of Figure 1. 
Figure 2 shows an enlarged orbit of Figure 1. The orbit starts at ( )1.1, 1.2−  

and goes up near the pseudo singular point (1, −1). After that, it jumps out to-
wards right direction from the neighborhood of (0.87, −0.9). 

Figure 3 1 2 0σ σ= = . 
Figure 3 shows an orbit of ( ) ( )( ){ }1 2, , 0 7x t x t t T≤ ≤ =  satisfying Equation 

(23) with 1 2 0σ σ= = , 0.8b = −  and starting from ( )0.99, 1−  near the pseudo 
singular point (1, −1). At the pseudo singular point (1, −1), the eigenvalue λ  in 
(18) is positive and it is saddle. 

Figure 4 Enlarged orbit of Figure 3. 
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Figure 5. b = −0.6, (x1(0), x2(0)) = (1.1, −1.2), σ1 = σ2 = 0.001. 
 

 
Figure 6. b = −0.6, (x1(0), x2(0)) = (1.1, −1.2), σ1 = σ2 = 0.001, Enlarged orbit of Figure 1. 
 

Figure 4 shows an enlarged orbit of Figure 1. The orbit starts at ( )0.99, 1−  
and passes through near the pseudo singular point (1, −1). After that, it jumps 
out towards right direction from the neighborhood of (1.012, −1).  

Figure 5 1 2 0.001σ σ= = . 
Figure 5 starting at ( )1.1, 1.2−  shows an orbit of ( ) ( )( ){ }1 2, , 0 7x t x t t T≤ ≤ =  

satisfying Equation (23) with 1 2 0.001σ σ= = , 0.6b = − . The orbit of Figure 5 
is similar to Figure 1. But the orbit starts at ( )1.1, 1.2−  and goes up near the 
pseudo singular point (1, −1) according to the Brownian motion B. 

Figure 6 Enlarged orbit of Figure 5. 
Figure 6 shows an enlarged orbit of Figure 5. 
Figure 7 1 2 0.001σ σ= = . 
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Figure 7. b = −0.8, (x1(0), x2(0)) = (0.99, −1), σ1 = σ2 = 0.001. 
 

 
Figure 8. b = −0.8, (x1(0), x2(0)) = (0.99, −1), σ1 = σ2 = 0.001, Enlarged orbit of Figure 3. 
 

Figure 7 starting at ( )0.99, 1−  shows an orbit of ( ) ( )( ){ }1 2, , 0 7x t x t t T≤ ≤ =  

satisfying Equation (23) with 1 2 0.001σ σ= = , 0.8b = − . 

Figure 8 Enlarged orbit of Figure 8. 
Figure 7 shows an enlarged orbit of Figure 8.  

5. Conclusions 

The slow-fast system with a bifurcation parameter gives us structural stability 
under the key notion “symmetry”. In our previous paper published in Advances 
in Pure Mathematics, vol.12 (2022), it has been confirmed, then we emphasize 
that the stability for the pseudo singular point plays an important role. 

In economic models [9] [10], regarding [9] the second fast equation in (18), 
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(19) is mistyped: ( )11 n−  is 1n . In that system, when 1 2 1 2, , ,n n m m  taking as 
parameters, one of the pseudo singular points is structurally stable. Then cor-
responding multi-variable functions are complicated ones. Some special cases 
may satisfy Thom’s functions classified. 

When being 0ε = , the constrained surface describes something like a poten-
tial function because of holding (A4). On the invariant manifold, it is “fold” in 
Thom’s function: only domestic case has such a function, and the two-region 
model has a multi-variable one much complicated. Especially, take a note that 
the pseudo singular point has no structural stability due to no bifurcation para-
meter in the original system [10]. It may be “elementary catastrophe”, which 
depends on a parameter not on time. In general, however, it is not established.  

The orbit ( ε  tends to “zero”) after passing through near the pseudo singular 
point jumps out with delay, that is, the state itself is jumping and the behavior is 
complicated as “dynamical catastrophe”. 
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