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Abstract 

In this paper we study the function ( ) ( )( ) 11
0

: 1 exp dzG z y y y
∞ −−= +∫ , for z∈C . 

We derive a functional equation that relates ( )G z  and ( )1G z−  for all z∈C , 

and we prove: 1) that G and the Riemann zeta function ζ  have exactly the 

same zeros in the critical region ( ){ }: : 0,1D z z= ∈ ℜ ∈C ; 2) the Riemann 

hypothesis, i.e., that all of the zeros of G in D are located on the critical line 
{ }: : 1 2z D z= ∈ ℜ = ; and that 3) all the zeros of the Riemann zeta function 

located on the critical line are simple. 
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1. Introduction and Summary 

The proof of the Riemann hypothesis is a problem that many mathematicians 
consider to be the most important problem of mathematics. Indeed, it is one of 
at most seven mathematics problems for which the Clay Institute has offered a 
million dollars for its solution. To this end, the pdf publication [1] of Bombieri 
presents an excellent summary—along with references, to papers and books, to 
connections with prime numbers, to Fermat’s last theorem, and to the work of 
authors who have shown that the first 1.5 billion zeros of the zeta function listed 
with increasing imaginary parts are all simple—all of which are related to the 
mathematics of this subject. Similarly Wikipedia of the web [2] offers an excel-
lent summary along with references about this subject. The magazine Nature re-
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cently published a related article about a discovery by Y. Zhang, of a conjecture 
(see [1]) on the spacing of prime numbers np  with increasing size [3]. Physic-
ists have also published results on the Riemann hypothesis: in [4], Meulens 
compares data about the Riemann hypothesis with solutions of two dimensional 
Navier Stokes equations, while others [5] have compared eigenvalues of 
self-adjoint operators with zeros of the Riemann Zeta function. Several papers 
about solutions to the Riemann hypothesis have also appeared. To this end, the 
papers of Violi [6], Coranson-Beaudu, [7], Garcia-Morales, [8], and Chen [9] are 
similar to ours, in that their proof of the Riemann hypothesis are for functions 
that are different from the zeta function, but which have the same zeros in D as 
the zeta function. 

Castelvecchi, author of the article [3] makes the comment: “The Riemann 
hypothesis will probably remain at the top of mathematicians wish lists for many 
years to come. Despite its importance, no attempts so far have made much 
progress.” 

We wish of course to disagree with Castelvecchi’s comment at the end of the 
above paragraph, since we believe that we have indeed proved the Riemann hy-
pothesis in this self-contained paper, in which we accomplish the following: 

1) In §2, defining the function G and showing in detail that G has exactly the 
same zeros, in the critical strip, { }: : 0 1D z z= ∈ <ℜ <C , including multiplicity, 
as the zeta function;  

2) Proving the positivity of [ ] ( )2mG σℜ  for ( )0,1σ ∈  and the negativity of 
[ ] ( )2 1mG σ+ℜ  for ( ]1 20,σ ∈ , where 

[ ] ( ) ( )

[ ] ( )( ) ( )

2
2

2 1
2 1

:

, : ;

m
m

m
m

G it G it

iG it i G it

σ σ
σ

σ σ
σ

+
+

∂ ℜ + = ℜ ℜ + ∂ 
 ∂ ℜ − = ℜ − +   ∂  

           (1.1) 

3) Introducing the Schwarz reflection principle in §3, which the functions 
[ ]2mG  and [ ]2 1miG +−  of Equation (1.1) satisfy in D;  
4) In §4, proving the Riemann hypothesis by contradiction, by use of results 

developed in §2, and in §3, of this paper, and by use of the trapezoidal and mi-
dordinate rules, [10], i.e., by proving that G (and ζ ) have no zeros in the region 
D\L, where L denotes the critical line, { }: : 1 2L z z= ∈ ℜ =C ; and  

5) Proving by contradiction, via use of results developed in §2 and in §3 and 
by use of the trapezoidal and midordinate rules that all of the zeros of G, (i.e., all 
of the zeros of the zeta function) on the critical line L are simple.  

Let ( ): 0,+ = ∞R , and let ( ),0− = −∞R . In this paper we thus derive results 
about the function G defined by the integral, 

( )
1

: d , 0,
e 1

z

y
yG z y z

−

+= ℜ >
+∫R                    (1.2) 

which is related to the well-known integral for the Riemann zeta function, de-
fined by 
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( ) ( )
11: d , 1,

e 1

z

y
yz y z

z
ζ +

−

= ℜ >
Γ −∫R                  (1.3) 

where Γ  denotes the gamma function. 
The operations of Schwarz reflection, the evaluation of Gℜ  and Gℑ  on 

important intervals of R , and the operations of trapezoidal and midordinate 
quadrature can be readily applied to the Fourier transform representation of G, 
which is gotten from Equation (2) defined for 0zℜ > , whereas an explicit 
Fourier transform of ζ defined by Equation (1.3) for 1zℜ >  does not seem 
to be available. 

2. Fourier Integral Representation of G, via κ 

The function ζ has many other representations, with the best known of these 
given by: 

( )

( ) ( )

( ) ( ) ( ) ( ) ( )

1
1

1

1

1: , 1,

1
: , 0, and

( ) : : 1 2 , .

z
n

n

z
n

z

z z
n

z z
n

G z z z z z z

ζ

η

η ζ

∞

=

−∞

=

−

= ℜ >

−
= ℜ >

= Γ = − Γ ∈

∑

∑

C

           (2.1) 

By setting exy =  and z itσ= +  in (2.1), we get the Fourier integral repre-
sentation of G, namely, 

( ) ( ): , e d ,ixtG it x xσ κ σ+ = ∫R                   (2.2) 

where ( )0,1σ ∈ , t∈R , and where κ  is defined by 

( ) ( )
e, : .

1 exp e

x

x
x

σ

κ σ =
+

                    (2.3) 

2.1. Properties of κ, ζ and G 

In this section we use the definition of G given in Equation (1.2) and the identi-
ties of Equation (2.1) to derive a functional equation for G, and to derive addi-
tional properties of κ and G. We also show in detail, that ζ and G have exactly 
the same zeros in D, including multiplicity, that ( ) ( ), ,x xκ σ κ σ− −  is positive 
for all ( ) ( ], 0,1 2xσ +∈ ×R  and strictly decreasing as a function of σ, for  

( ]1 20,σ ∈ , and we determine ranges of values of ( )mGℜ , ( )mGℑ  and their de-
rivatives on the real line. 

Let us next assign notations for the left and right half of the complex plane, 
the critical strip(s), and the critical line. 

Definition 2.1 Let −C  denote the left half of the complex plane, i.e.,  
{ }: : 0z z− = ∈ ℜ <C C , and let { }: : 0z z+ = ∈ ℜ >C C  denote the right half. Let 

the critical strip be defined by { }: 0 1D z z= ∈ <ℜ <C , and let the negative and 
positive critical strips D  be defined as follows: { }: : 0D z D z− = ∈ ℑ ≤ , and  

{ }: : 0D z D z+ = ∈ ℑ ≥ . The critical line is defined by { }: : 1 2L z D z= ∈ ℜ = .  
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2.2. Relevant Gamma Function Relations 

We shall require the use of the following lemma: 
Lemma 2.2 (i.) Replacement of z with z/2 in the duplication formula for the 

Gamma function, to get: 

( ) ( ) ( )( ) ( )1 2 1 22 2 1 2 2 ;zz z z− −Γ = Γ + Γπ  

(ii.) Both ( )1 2 ixΓ +  and ( )1 ixΓ +  are bounded by 1 2π  for all x∈R , by 
Equations (6.1.30) and (6.1.31) of [11]; and  

(iii.) That the function ( )1 zΓ  is an entire function [11]; Γ  is analytic in 
C  except for simple poles at z n= −  ( 0,1,2,n =  ).  

Proof. Item (i.) is just Equation (6.1.18) of [11] with z replaced by z/2;  
Items (ii.) follow from Equations (6.1.30) and (6.1.31) of [11]; and  
Item (iii.) is just a restatement of a result found in Chapter 16. of [11].  

2.3. Bounds on κ 

The next lemma describes some asymptotic bounds on the function κ, which are 
obtained by inspection of Equation (2.2). 

Lemma 2.3 For any ( ) ( )0, 0,1 fε σ∈ ⊂  and for x real, we have 

( )
( )( )

( )( )( )1

e , ,
,

exp e , .

x

x

x
x

x x

σ ε

ε
κ σ

σ

−

−

 → −∞= 
− →∞






             (2.4) 

Hence the integral ( ) ( ), dQ x x xκ σ∫R  is finite for any polynomial Q.  
Proof. The bounds of κ given in (2.4) follow by inspection of the function κ as 

defined in (2.2).  

2.4. Analyticity Definition of Multiplicity 

Definition 2.4 Let 0z ∈C , let m denote an integer, and let f be analytic in a 
neighborhood of 0z .  

(a.) The function f is said to have multiplicity m at 0z  if 
 

( ) ( )
0 0lim m

z z f z z z c→ − = , with finite c;  
(b.) If the multiplicity of f at 0z  is m, and if 0c ≠ , then we shall more spe-

cifically say that f is of exact multiplicity m at 0z ;  
(c.) If f is of exact multiplicity m at 0z , then 0z  is said to be a zero (resp., a 

pole) of f of multiplicity m if 0m >  (resp., if 0m < ). In particular, if 1m = , 
(resp., if 1m = − ,) then 0z  is said to be a simple zero (resp., a simple pole) of f.  

2.5. Functional Equations for ζ and G 

An important identity of the Riemann zeta function is the well known functional 
equations for ζ:  

( ) ( )( ) ( ) ( ) ( )1 2 21 2 1 2 .z zz z z zζ ζ− − −Γ − − Γπ=π            (2.5) 

This functional equation for the Riemann zeta function has many important 
uses, including, e.g., the analytic continuation of the zeta function to all of C . 
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The function G also possesses a functional equation which is given in Lemma 
2.5 below, which plays a similar role as the functional equation for ζ. the func-
tional equation for G  is gotten by substituting the right-hand-side of the third 
equation of (2.1) into (2.5), and by use of Lemma 2.2: 

Lemma 2.5 Let z∈C , and let G be defined as in (2.2). Then, a functional 
equation for the function G, valid for all z∈C  is: 

( ) ( )
( )

( )
( )

1

1
22

2 1 2 11 : .
11 1 44 22

z z

zz
G z G z

zz

−

−

− −
− =

+   + − ΓΓ     
π

 
π

        (2.6) 

This equation can also be written in the form: 

( ) ( ) ( )1 : ,G z K z G z− =                      (2.7) 

where K is given by 

( ) ( )

( )
1 2

1

1 1
22 1: 4 ,

12 1
2

z
z

z

z

K z
z

−

−

 + −
Γ 

−  =
+− 

π
Γ 

 

              (2.8) 

and where K is non-vanishing in D.  
Proof. That K is non-vanishing on D follows from Lemma 2.2.  

2.6. Zeros of G and ζ in D 

We prove here the G and ζ have the same zeros with the same multiplicity in D 
and that these zeros are isolated. 

Lemma 2.6 (i.) The functions G and ζ have exactly the same zeros in D, in-
cluding multiplicity; and  

(ii.) All zeros of G in C  are isolated.  
Proof. (i.) By inspection if the third equation of (2.1) we get, if 0z D∈  is a 

zero of G of multiplicity 1k ≥ , then we have the identity ( )∗   
( ) ( ) ( )G z w z zζ= , where the function ( ) ( ) ( )1: 1 2 zw z z−= − Γ  is analytic and 

non-vanishing in D, so that 0z  is also a zero of ζ of multiplicity 1k ≥ . In addi-
tion, by taking the nth derivative of ( )∗ , with non-negative integer, n, we get, 

( ) ( ) ( ) ( ) ( ) ( ) ( )
0

1 .
nnn n j j

j

n
G z w z z

j
ζ−

=

 
= −  

 
∑             (2.9) 

Hence, if 0z +∈Ω  is a zero of ζ of multiplicity 1m ≥ , then by applying in-
duction with respect to 0,1,2, ,n m=   to Equation (2.9), we conclude that the 
multiplicity of the zero 0z  of G is also m; 

(ii.) Suppose that there exists a cluster of zeros { } 1j j
z

∞

=
 of G in D with a 

sub-sequence that has a limit point z. If z D∈ , then G would have to vanish, by 
Vitali’s theorem. If z is on the line { }0zℜ = , then, since D +⊂C , and since G is 
analytic in +C , it follows by use of the functional equation of G, that  

( ) ( )0 1G z G z= = −  where the point 1 z−  is now located on the line  

{ }: 1z z∈ ℜ =C , i.e., we are back to the previous case of the convergence of such 
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a sub-sequence to a point on the interior of the right half plane, where ( )G z  is 
analytic and bounded, so that ( )G z  would again have to vanish identically in 
C .  

2.7. Definitions of κ  , ( )mG  and [ ]mG  

Definition 2.7 Let G and κ be defined as in Equation (2.2), and let us define 
( ), xκ σ  as follows: 

( ) ( ), , ,
, :

0, .
R

R
x x

x
x

κ σ
κ σ

+

−

 ∈
= 

∈


                  (2.10) 

If for brevity, we write κ   for ( ), xκ σ , C and S for ( )cos xt  and ( )sin xt , 
and ∫  for +∫R , then Equation (2) yields the following definitions for ( )2nG  
and for ( )2 1nG + , where n denotes a non-negative integer: 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

2 2

12 1 2 1

1 d ,

1 d .

nn n

nn n

G it x C i S x

G it x S i C x

σ κ κ κ κ

σ κ κ κ κ

− + − +

++ + − + − +

+ = − + − −

+ = − + + −

∫

∫
    (2.11) 

Let [ ]mG  be defined for any non-negative integer m by  

[ ] ( ) ( )
m

mG it G itσ σ
σ
∂ + = + ∂ 

, so that by the Cauchy-Riemann equations,  

( ) ( ) ( ) ( ) [ ] ( )
m

n mm mG it i G it i G it
it

σ σ σ
 ∂

+ = + = +  ∂ 
, where these functions are  

readily shown to exist, by Lemma 2.3. 
In addition, by Equation (2.1), the functions [ ]mK  and [ ]mG  are related by 

the following identity: 

[ ] ( ) ( ) [ ] ( ) [ ] ( )
0

1 1 .
mmm m j j

j

m
G z K z G z

j
−

=

 
− = −  

 
∑            (2.12) 

Lemma 2.8 Let the functions [ ]mG  be defined as in Definition 2.7. Then, for 
all 0,1,2,m =  , and for all ( )0,1σ ∈ , ( )mG  is analytic on the right half plane, 
and hence also in D. In particular given any 0ε > , ( ) ( )mG z  is uniformly bounded 
in the region { }:z D z ε∈ ℜ ≥ .  

Proof. This result follows directly by inspection of Equation (2.2 and Lemma 
2.3. We omit the straight-forward proofs.  

2.8. Restricting the Domain of ( )mG 2 1+ℑ  

The following lemma restricts the domain of some of our inequalities: 
Lemma 2.9 Let Δ be defined by ( ) ( ) ( ), : , ,x x xσ κ σ κ σ− +∆ = − , where the 

functions κ   are defined in Definition 2.7. Then ( ), 0xσ∆ >  for all  
( ) ( ], 0,1 2xσ +∈ ×R , and moreover, ( ), xσ∆  is a strictly decreasing function of 

( ]1 20,σ ∈  for any fixed x +∈R .  
Proof. We have 

( ) ( ) ( )( ), , , ,x x x xσ κ σ κ σ
σ

− +∂
∆ = − +

∂
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which shows ( ), xσ∆  is a strictly decreasing function of ( ]1 20,σ ∈  for all fixed 
x +∈R . By making the one-to-one transformation 2e xy −=  of ( )0,1+ →R  in 
the above expressions for ( ), xσ∆ , and setting ( )( )2 21: 1 e 1 ey yW = + + , we get 

( ) ( )
( ) ( )( ) ( )( )2 2 2 2

, : , ,

, : 1 exp 1 1 1 exp .

x y W

y y y y yσ σ

σ δ σ

δ σ

∆ =

= + − +
 

Since 1/W is positive on ( )0,1 +×R , and since ( ), xσ∆  is a strictly decreas-
ing function of ( ]1 20,σ ∈  for all fixed x +∈R , we need only prove that 
( ) 01 2, yδ >  for all ( )0,1y∈ . To this end we have, by use of Taylor series ex-

pansions, that 

( ) ( ) ( ) ( )

( )( )( ) ( )

2 21

2 1 2 1
2 2

3

1 2

1 2

, 1 e 1 1 e , 0,1

11 1 1 2 0, 0,1 .
!

y y

n n

n

y y y y

y yy y y y y
n

δ

− −∞

=

= + − + ∈

−
= − + + − + > ∈∑

 (2.13) 

By way of proceeding from the first to the second line of Equation (2.13) we 
used the following relations, which are valid for all ( )0,1y∈ : 0 1 1y y< < < . 
The right hand side of Equation (13) then shows that ( ) 01 2, yδ >  for all 

( )0,1y∈ , i.e., that ( ), 0xσ∆ >  for all ( ) ( ], 0,1 2xσ +∈ ×R .  

2.9. Inequalities for ( ) ( )mG σ  

The following lemma summarizes values of ( ) ( )mG σ  that have been estab-
lished. 

Lemma 2.10 Let m denote a non-negative integer. Then:  
(i.) ( ) ( ) ( ) [ ] ( )2 21 0m m mG Gσ σ− ℜ =ℜ >  for all ( )0,1σ ∈ ;  
(ii.) ( ) ( ) ( ) [ ] ( )2 1 2 11 0m m mG Gσ σ+ +− ℑ =ℜ <  for all ( ]1 20,σ ∈ ; and  

(iii.) ( ) ( ) [ ] ( ) [ ] ( ) ( ) ( )2 2 12 2 1 0m mm mG G G Gσ σ σ σ++ℑ = ℑ = ℑ =ℜ =  for all  
( )0,1σ ∈ .  

Proof. Item (i.) The proof of this Item follows by inspection of Equation 
(2.11);  

Item (ii.) The proof of this Item follows by Lemma 2.9 and by inspection of 
Equation (2.11); and  

Item (iii.) The proof of this item follows by inspection of Equation (2.11).  

3. Schwarz Reflection 

We present the Schwarz reflection principle, which we define as follows: 
Definition 3.1 Let f be analytic in D, and real on ( )0,a , for some [ ),11 2a∈ . 

Then f can be continued analytically (i.e., reflected) across ( )0,a  from D  to 
D±  by means of the formula 

( ) ( )f z f z= .                        (3.1) 

Remark 3.2 The Schwarz reflection principle enables analytic continuation 
from D  to all of D. For example, if n denotes a non-negative integer, so that 
the functions ( ) ( ) ( )2: nf z G z+ +=  and ( ) ( ) ( )2 1: ng z iG z++ += −  are given for  
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z it Dσ+ + += + ∈ , then by Lemma 2.10, and by Equation (2.8), ( )f σℜ  is a 
non-vanishing function of σ  on ( )0,1 , while if ( ]1 20,σ ∈ , then ( )g σℜ  is 
a non-vanishing function of σ , ( )G itσℑ +  changes sign as t changes sign, 
while ( )G itσℜ +  does not change sign as t changes sign.  

4. Proof of the Riemann Hypothesis 

Short proofs of all of all of the results which stated in the abstract of this paper 
are made possible by means of two well-known methods of quadrature (see e.g., 
[10]), which are defined by the following lemma. 

Lemma 4.1 Let f be a real-valued function that is continuous on a finite in-
terval [ ],a b  of R , and twice differentiable in ( ),a b , let ( ): 2h a b= + , and 
let us set 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ): d , : , : 2 2 .
b

a
I f f x x T f h f a f b M f hf a b= = + = +∫  (4.1) 

Then there exist points Tξ  and Mξ  in ( ),a b , such that 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

3

3

2
:

12
2

: .
24

T

M

h
I f T f f

h
I f M f f

ξ

ξ

′′− = −

′′− =

                 (4.2) 

The first equation of (4.2) denotes the simplest trapezoidal rule, while the 
second denotes the simplest midordinate rule. 

Theorem 4.2 Every zero of G in the critical strip { }: 0 1D z z= ∈ <ℜ <C  is 
located on the critical line { }1 2:z D z∈ ℜ = , and it is a simple zero.  

Proof. We shall now carry out the proof of Theorem 4.2 by means of the 
proof of the two lemmas, which follow.  

Lemma 4.3 If 1 1 1z it Dσ= + ∈ , with 1 1 2σ ≠  and with 1t ∈R , then  
( )1 0G z ≠ .  
Proof. Let 1 1 1:z itσ= + , with ( )1 1 20,σ ∈  and with 1t ∈R , and let us set  

2 1:z z= , 3 1: 1z z= − , and 4 3:z z= . If for 1,2,3j = , and 4, ( )jG z  vanishes at 
one of these points, then by the functional equation of Lemma 2.5, and by 
Schwarz reflection, ( )jG z  vanishes at all of them. 

If we assume that ( )1G z  vanishes then ( )1G zℜ  and ( )4G zℜ  vanish, so 
that we have, by integration of Gℜ  over ( )1 4,z z , that 

( ) ( ) ( ) ( )1

1 4 1

1
1,

: d d .
z z

I G G z z G s it s
σ

σ

−
ℜ = ℜ = ℜ +∫ ∫



          (4.3) 

Thus, in the notation of Definition 2.7 and Lemma 4.1, with ( )11 2 2h σ= − , 
and for some Tσ  and ( )1 1,1Mσ σ σ∈ − , we get, 

( ) ( ) ( ) [ ] ( )

( ) ( ) ( ) [ ] ( )

3
2

1

3
2

1

2
0

12
2

0.
24

M

M

h
I G T G G it

h
I G M G G it

σ

σ

ℜ − ℜ = − ℜ + =

ℜ − ℜ = ℜ + =

          (4.4) 

By taking the difference between the two equations of (4.4), forming the aver-
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age of this difference and its complex conjugate, noting that ( ) 0T Gℜ = , and 
that [ ] ( ) [ ] ( )( ) [ ] ( )2 2 21 3 2 T M AG G Gσ σ σ− ℜ +ℜ = −ℜ , a weighted average for 
some ( )1 1,1 2Aσ σ σ∈ − , we get, 

( ) [ ] ( )2312 .2 Ah G h G σℜ = − ℜ                 (4.5) 

However, this is a contradiction, since the left and right hand side of Equation 
(4.5) are different in sign, by Lemma 2.10. 

Hence we cannot allow the vanishing of ( )1G zℜ , i.e., of ( )1G z , so that our 
above assumption of the vanishing of ( )1G z  is false. 

This completes the proof of Lemma 4.3.  
Remark 4.4 The Riemann hypothesis is true, by Lemma 4.3.  
Lemma 4.5 If 0 01 2z it= +  is a zero of G on the critical line, then 0z  is a 

simple zero of G.  
Proof. (i.) Let us assume that ( )0G z  vanishes with multiplicity 2 2n + , 

where n denotes an arbitrary finite non-negative integer, and let us apply the 
trapezoidal rule of Lemma 4.1 to the integration of ( )2 1nG +ℑ  over ( )0 0,z z . 
We then have 0h t= , and since by Definition 2.4, both ( ) ( )2

0
nG z  and ( ) ( )2 1

0
nG z+  

must vanish, ( ) ( )( )2 1
0

nI G z+ℑ  and ( ) ( )( )2 1
0

nT G z+ℑ  must also vanish. We thus 
get, for some ( )0 0,Tt t t∈ − , that 

( ) ( ) ( )
3

2 32
0 .2

12
1n

T

h
G it+= − ℑ +                   (4.6) 

By averaging of this equation and it’s complex conjugate, thus eliminating the 
possible imaginary part on the right hand side, we get 

( ) ( ) ( )
3

2 32
0 2 .

12
1nh

G += − ℑ                     (4.7) 

Since the left hand side of Equation (4.7) vanishes whereas, by Lemma 2.10, 
the right hand side does not, this equation provides a contradiction, which tells 
us that we cannot allow the vanishing of ( )0G zℜ , i.e., of ( )0G z , with multip-
licity 2 2n + , where n denotes an arbitrary finite non-negative integer. 

(ii.) Similarly, if ( )0G z  vanishes with multiplicity 2 1n + , with arbitrary fi-
nite positive integer n, then both ( ) ( )2 1

0
nG z−  and ( ) ( )2

0
nG z  must vanish, so 

that, by proceeding as we did to arrive at Equation (7), we get 

( ) ( ) ( )
3

2 22
0 2 .

12
1nh

G += − ℜ                    (4.8) 

The left hand side this equation vanishes whereas by Lemma 2.10, the right 
hand side does not, so that Equation (4.8) presents a contradiction. Together 
with our conclusion for Equation (4.7), this proves that we cannot allow the va-
nishing of ( )0G z  with multiplicity 1m > , with m denoting an arbitrary posi-
tive integer. 

It was shown in [12] that the Riemann Zeta function has an infinite number of 
zeros on the critical line L, and by Lemma 4.3 above there are no zeros of G in 
D\L. It thus follows, that every zero 0z  of D must be a simple zero on L.  
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