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Abstract 
In this paper, firstly, we propose a new method for choosing regularization 
parameter λ for lasso regression, which differs from traditional method such 
as multifold cross-validation, our new method gives the maximum value of 
parameter λ directly. Secondly, by considering another prior form over model 
space in the Bayes approach, we propose a new extended Bayes information 
criterion family, and under some mild condition, our new EBIC (NEBIC) is 
shown to be consistent. Then we apply our new method to choose parameter 
for sequential lasso regression which selects features by sequentially solving 
partially penalized least squares problems where the features selected in earli-
er steps are not penalized in the subsequent steps. Then sequential lasso uses 
NEBIC as the stopping rule. Finally, we apply our algorithm to identify the 
nonzero entries of precision matrix for high-dimensional linear discrimina-
tion analysis. Simulation results demonstrate that our algorithm has a lower 
misclassification rate and less computation time than its competing methods 
under considerations.  
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1. Introduction 

Sparse high-dimensional regression (SHR) models arise in many important con-
temporary scientific fields. A SHR model is: 

0
1

, 1,2, ,
p

i j ij i
j

y x i nβ β
=

= + + =∑                    (1) 
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where the number of features p is much larger than the sample size n, and only a 
relatively small number of the βj’s are nonzero. Feature selection is crucial in the 
analysis of SHR models. Desboulets [1] pointed out that there are three main 
categories of variable selection procedures, they are test-based procedures, pe-
nalty-based procedures and screening-based procedures. Regularized regression 
approaches to the analysis of SHR models have attracted considerable attention 
of the researchers. A regularized regression approach selects the features and es-
timates the coefficients simultaneously by minimizing a penalized sum of squares 
of the form: 

( )
2

0
1 1 1

p pn

i j ij j
i j j

y x pλβ β β
= = =

 
− − + 

 
∑ ∑ ∑                 (2) 

where λ is a regulating parameter and pλ  is a penalty function such that the 
number of fitted nonzero coefficients can be regulated by λ; that is, only a cer-
tain number of βj’s are estimated nonzero when λ is set at a certain value. Vari-
ous penalty functions have been proposed and studied, including Lasso:  

( )j jpλ β λ β= , SCAD [2], which smoothly clips a 1L  penalty (for small jβ ) 
and a constant penalty (for large jβ ), adaptive Lasso [3]: ( )j j jpλ β λω β= , 
where jω  are given weights, and MCP [4], which smoothly approaches the 1L  
penalty from a constant penalty (for large jβ ’s) by an asymptote. 

Sequential methods have also received attention in recent decades for feature 
selection in SHR models. The traditional sequential procedures such as forward 
stepwise regression (FSR) were criticized for its greedy nature. However, it was 
discovered recently that the greedy nature is indeed a good one if the goal is to 
identify relevant features, see [5], especially, in the presence of high spurious 
correlations due to extremely high dimensionality of the feature space. A se-
quential procedure of a different nature called least angle regression (LAR) was 
proposed in [6]. The LAR continuously updates the estimate of the expected 
responses along a direction having equal angle with the features already selected 
and selects new features having the largest absolute correlation with the updated 
current residuals. Recently, Luo and Chen [7] identified the nonzero entries of 
the precision matrix by a sequential method called JR-SLasso proposed in [8]. 
Chen and Jiang [9] proposed a two-stage sequential conditional selection (TSCS) 
approach to the identification and estimation of the nonzeros of the coefficient 
matrix and the precision matrix. Sequential approach has also been considered 
for models other than SHR models. Besides their desirable theoretical properties, 
sequential approaches are computationally more appealing. They are more stable 
and less affected by the dimensionality of the feature space. 

Apart from variable seletion, model selection is also an important part for re-
gression analysis. In statistical modeling an investigator often faces the problem 
of choosing a suitable model from among a collection of viable candidates. Such 
a determination may be facilitated using a selection criterion, which assigns a 
score to every model in a candidate set based on some underlying statistical 
principle. The Bayesian information criterion (BIC) is one of the most widely 
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known and pervasively used tools in statistical model selection. However, as it 
was shown by [10] the ordinary Bayesian information criterion is too liberal that 
is the criteria select far more features than the relevant ones when the model 
space is large. Chen and Chen [10] proposed a family of extended Bayes infor-
mation criteria (EBIC) to better meet the needs of variable selection for large 
model spaces. 

Bsides regression, classification problem also receives widespread attention in 
statistical modeling. Classification problems with high-dimensional data rise in 
many important contemporary scientific fields such as genetics and medicine. 
The most popular method for classification is Fisher’s linear discrimination 
analysis (LDA). In a K-class classification problem, the LDA assumes that the 
predictor ( )T

1, , px x x= 
 given class G k=  follows the multivariate normal 

distribution ( ),kN u Σ , { }1, ,k K∈  . Let ( )Prk G kπ = =  and: 

( ) ( ) ( ) ( )T
2 ln ,kj k j k j k jd x x u u u u π π = − + Ω − +            (3) 

where 1−Ω = Σ  is the so-called precision matrix. The Bayes rule which is theo-
retically optimal classifies x into class k if and only if: 

( ) 0, for all .kjd x j k> ≠  

Since the Bayes rule cannot be realized in practice due to the unknown uk’s 
and Ω, the Bayes rule is estimated in the LDA by replacing uk’s and Ω with their 
estimates. If the dimension of predictor p (<n) is fixed, or diverges under certain 
conditions, it has been shown that the LDA is asymptotically optimal but that, if 
p > n, it is asymptotically as bad as a random guessing, where n is the sample 
size, see [11]. The failure of LDA in the case p > n is due to accumulated errors 
in the estimation of the unknowns, as argued in [12]. Thus, it is necessary to by-
pass the difficulties in the estimation of unknowns.  

In this paper, firstly, we propose a novel method to choose the regulariza-
tion parameter λ for lasso regression, traditional method such as multifold 
cross-validation chooses regularization parameter gradually, in details: for 
lasso regression, the larger regularization parameter λ is, the greater number of 
regression coefficients will be estimated zero, once λ exceeds the maximum 
value then there will be no features in the candidate model. Thus, it is impor-
tant to know the exact maximum value of regularization parameter. However, 
multifold cross-validation method doesn’t tell us the largest value of λ. Differ-
ing from multifold cross-validation, our method gives the exact maximum 
value of regularization parameter such that at least one of the βj’s will be esti-
mated nonzero. Thus, if you have the data, you can get the largest λ for lasso 
regression immediately by our method. Then we apply this method to choose 
parameter for a sequence of partially penalized least squares problems, which 
means that the features selected in an earlier step are not penalized in the sub-
sequent steps.  

Secondly, the re-examination of BIC and EBIC prompts us naturally to con-
sider other forms of prior over the model space in the Bayes approach. We pro-
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pose a new extended Bayes information criterion family, and under some mild 
conditions our new EBIC (NEBIC) is shown to be consistent. Then our NEBIC 
is used as the stopping rule for sequential lasso algorithm, we dub the proposed 
procedure as sequential lasso with NEBIC. After that, we apply our algorithm to 
classification problem, the numerical study demonstrates that our algorithm per-
forms well than its competing methods under consideration.  

The remainder of the paper is arranged as follows. In Section 2, we introduce 
the basic properties of sequential lasso and our new method for choosing the 
regularization parameter λ. In Section 3, the selection consistency of our NEBIC 
is established. In Section 4, the structure of our algorithm is given. In Section 5, 
we apply our algorithm to classification problems, then the main method and 
simulation results are introduced sequentially. 

2. Sequential Lasso Regression for Feature Selection 

Let ( )1 2, , , pX x x x=   be the n p×  design matrix, for 1, ,j p=  ,  

( )T
1 2, , ,j j j njx x x x= 

 be the observation vector of predictor j on n individuals, 
( )T

1 2, , , ny y y y=   be the response vector, and ,jx y  all have been standar-
dized, such that T1 0jx = , T1 0y = , and Ty y n= , T

jjx x n= . Thus, in model (1) 
the intercept 0β  can be omitted. Let ( )T

1 2, , , pβ β β β= 
, ( )T

1 2, , , n=     , in 
matrix notation, model (1) is expressed as: 

y X β= +                             (4) 

Let S denote the set of indices { }1,2, , p , let s be any subset of S. Denote by 
( )X s  the matrix consisting of the columns of X with indices in s. Similarly, let 
( )sβ  denote the vector consisting of the corresponding components of β . Let 
( )s  be the linear space spanned by the columns of ( )X s  and ( )H s  its 

corresponding projection matrix: 

( ) ( ) ( ) ( ) ( )
1T T .H s X s X s X s X s
−

 =    

At the initial step, sequential lasso minimizes the following penalized sum of 
squares: 

2
1 12

1

p

j
j

l y X β λ β
=

= − + ∑                      (5) 

Let { }
T

1 1,2, ,2max jj p x yλ ∈=


, from Theorem 1 we can prove that 1λ  is the 
largest value of the penalty parameter such that at least one of the βj’s,  

{ }1,2, ,j p∈  , will be estimated nonzero. The features with nonzero estimated 
coefficients are selected and the set of their indices is denoted by *1s . 

For 1k ≥ , let *ks  be the index set of the features selected until step k. At step 
1k + , sequential lasso minimizes the following penalized sum of squares: 

*

2
1 1 .

k

k k j
j s

l y X β λ β+ +
∈

= − + ∑


                 (6) 

From the proposition 1 we can prove that minimization of 1kl +  is equivalent 
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to the minimization of 

*

2

1 12 kk k jj sl y X β λ β+ + ∈
= − + ∑ 

  , 

where ( )*ky I H s y = −  , ( ) ( )* *k kX I H s X s = − 


 , ( )*ksβ β=  ,  

*
1

T2max
k

k j s jx yλ + ∈
=   , ( )*j k jx I H s x = −  , from Theorem 1 we can prove that 

1kλ +  is the largest value of the penalty parameter such that at least one of the 
βj’s, *kj s∈  , will be estimated nonzero. 

Next, we give the statements and proofs of proposition 1 and theorem 1. 
Proposition 1. For 1k ≥ , the minimization of 1kl +  is equivalent to the mi-

nimization of 1kl +
 . 

Proof: Differentiating 1kl +  with respect to ( )*ksβ , we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T1
* * * * * * *

*

2 2 2 .k
k k k k k k k

k

l X s y X s X s s X s X s s
s

β β
β

+∂
= − + +

∂
   

Setting the above derivative to zero, we obtain: 

( ) ( ) ( ) ( ) ( ) ( )1T T
* * * * * *

ˆ .k k k k k ks X s X s X s y X s sβ β
−   = −   

   

Substituting ( )*
ˆ

ksβ  into 2y X β−  we have: 

( ) ( ) ( ) ( )( )
( ) ( ) ( )

*

*

*

*

2
1 12

2

* * * * 1
2

2

* * * 1
2

2

1 12

ˆ

.

k

k

k

k

k k j
j s

k k k k k j
j s

k k k k j
j s

k j k
j s

l y X

y X s s X s s

I H s y X

y X

s

l

s

β λ β

β β λ β

β λ β

β λ β

+ +
∈

+
∈

+
∈

+ +
∈

= − +

= − + +

  = − − +   

= − + =

∑

∑

∑

∑ 














 

 
 

 
Theorem 1. { }1 1,2, ,

T2max j jp x yλ ∈=


 is the largest value of the regularization 
parameter such that at least one of the βj’s, { }1,2, ,j p∈  , will be estimated 
nonzero. 

Proof: this statement is equivalent to that 1λ  is the largest value of the regu-
larization parameter such that the minimization of 1l  will obtain nonzero solu-
tions. 

By the KKT condition, let 1 0l
β
∂

=
∂

 we have: 

( )T
1 1

ˆ ˆ2X y X β λ β− = ∂                      (7) 

In component form:  

( ) { }T
1

ˆ ˆ2 , 1,2, , .jjx y X j pβ λ β− = ∂ ∈ 
               (8) 

where ˆ
jβ∂  is a sub gradient of jβ  at ˆ

jβ , according to the value of ˆ
jβ , 

there are three situations: 

( )ˆ ˆ1,1 , when 0

ˆ ˆ1, when 0;

ˆ ˆ1, when 0.

j j

j j

j j

β β

β β

β β

∂ ∈ − =

∂ = >

∂ = − <  
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Then (8) is equivalent to: 

( ) 1
T ˆ ˆ2 , when 0jjx y X β λ β− = ± ≠                 (9.1) 

or 

( ) 1
T ˆ ˆ2 , when 0.j jx y X β λ β− < =                 (9.2) 

The statement “ 1λ  is the largest value of the penalty parameter such that the 
minimization of 1l  will obtain nonzero solutions.” is established by showing: 

(i) Let { }1 1,2, ,
T2max j jp x yλ ∈=



, 
2

11 12
min p

jj
p

j j jy xβ β λ β
= =

− +∑ ∑  will ob-
tain nonzero solutions. 

(ii) Let 1λ λ> , 
2

1 12
min p p

j j jj jy xβ β λ β
= =

− +∑ ∑  will only obtain zero so-
lutions. 

According to the proof by contradiction, we suppose that there are only zero 
solutions when { }1 1,2, ,

T2max j jp x yλ ∈=


. 
Substituting ˆ 0β =  into (9.2) we have: ( )T

12 0X y X λ− ∗ < , which means:  

{ }T
12 , 1,2, , .jx y j pλ< ∈   

This contradicts with { }1 1,2, ,
T2max j jp x yλ ∈=



, thus the supposition is wrong, 
(i) is proved. 

Now let us turn to (ii): 

Let 
2

1 12
min p p

j j jj jl y xβ β λ β
= =

= − +∑ ∑ , and let 0l
β
∂

=
∂

 we have:  

( )T

1
ˆ ˆ2X y X β λ β− = ∂                      (10) 

Then, the proof of (ii) is equivalent to prove this:  

( ) { }T2 0 , 1,2, ,jx y X j pλ− ∗ < ∈   

Substituting ˆ 0β =  into the left of (10) we have: 

( ) { }T T2 0 2 , 1,2, ,j jx y X x y j p− ∗ = ∈   

By { }1 1,2, ,
T2max j jp x yλ ∈=



 we have: T
12 jx y λ≤ , since 1λ λ> , then for all 

{ }1,2, ,j p∈  , we have: ( ) 1
T2 0jx y X λ λ− ∗ ≤ < , thus ˆ 0β =  solves equation 

(10), (ii) is proved. 
 

3. EBIC and New EBIC 

Suppose the dimension of model space S is P, denote Sj is the collection of all 
models with j covariates, so that the model space S can be partitioned into 

1

P
jj

S S
=

=


, such that models within each Sj have equal dimension. Let ( )jSτ  
be the size of Sj, we know that ( ) j

j PS Cτ = . For example, suppose the number of 
covariates under consideration is 1000P = , the class of models containing a 
single covariate is denoted by 1S , then { } { } { }{ }1 1 , 2 , ,S P=   has size  
( ) 1

1 1000PS Cτ = = , while the class of models containing two covariate is denoted 
by 2S , { } { } { }{ }2 1,2 , 1,3 , , 1, ,S P=    has size ( ) ( )2

2 1000 999 2PS Cτ = = × . 
We can see that the size of 2S  is much bigger than the size of 1S . Now let us 
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consider the prior distribution over S as follows. 
For s S∈ , we have ( ) ( ) ( )j jpr s pr S pr s S= ∗ , 1,2, ,j P=  , since models 

within each jS  have equal dimension, it is reasonable to assign an equal probability  

( ) ( )
1

j
j

pr s S
Sτ

=  for any js S∈ . The ordinary Bayesian information criterion  

assigns probabilities ( )jpr S  proportional to ( )jSτ , that is ( ) ( )j jpr S c Sτ∝ ∗ . 
However, this would cause unreasonable situation by large model space. For 
example, as we have discussed in the above paragraph, we can see that ( )2Sτ  is 
999/2 times bigger than ( )1Sτ , according to the constant prior by BIC, the 
probability assigned to 2S  is also 999/2 times that assigned to 1S . According to 
the knowledge of combinatorial number, the size of jS  increases as j increases 
to 2 500j P= = , so that the probability assigned to jS  by the prior increases 
almost exponentially. In other word, models with larger number of covariates, 
50 or 100 say, receive much higher probabilities than models with fewer cova-
riates. This is obviously unreasonable, being strongly against the principle of 
parsimony. 

Instead of assigning probabilities ( )jpr S  proportional to ( )jSτ , as in the 
ordinary BIC, Chen and Chen [10] assign ( )jpr S  proportional to ( )jSετ  for 

[ ]0,1ε ∈ . This results in the prior probability  
( ) ( ) ( ) ( ) ( )1

j j j jpr s pr S pr s S S Sε γτ τ− −= ∗ = = , 1γ ε= − . This prior distribu-
tion gives rise to an extended BIC family (EBIC). 

Notice that extended Bayesian information criterion is established by intro-
ducing the function ( )1,0 1x xε ε> < < , which aims to select models with fewer 
covariates. From the perspective of function, we know that ( )1,0 1x xε ε> ≤ ≤  
is a monotone increasing convex function, and the parameter ε is confined 
within [0, 1] to ensure upper convex property satisfied. Inspired by this, we  

consider other upper convex function like 
x

x a+
, and the parameter a can be  

any positive numbers. In other word, we assign ( )jpr S  proportional to  

( )
( )

j

j

S

S a

τ

τ +
, so that  

( ) ( ) ( ) ( )
( ) ( ) ( )

1 1j
j j

j j j

S
pr s pr S pr s S

S a S S a

τ

τ τ τ

 
 = ∗ = ∗ =
 + + 

, this type of prior 

distribution on the model space gives rise to a new EBIC family as follows: 

( ) ( ){ } ( ) ( )( )ˆ2ln ln 2ln , 0a n jBIC s L s v s n S a aθ τ= − + + + >      (11) 

where ( )ˆ sθ  is the maximum likelihood estimator of ( )sθ  given model s. Now 
let us investigate the properties of our new EBIC for feature selection in linear 
regression models. Under some mild conditions our new EBIC is shown to be 
consistent. 

Let ny  be the vector of n observations on the response variable, let nX  be 
the corresponding design matrix with all the covariates of concerns, and let β  
be the vector of regression coefficients. Assume that: 
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,n n ny X eβ= +                           (12) 

where ( )2~ 0,n ne N Iσ  and nI  is the identity matrix of size n. Let 0s  be the 
smallest subset of { }1, , np  such that ( ) ( )0 0n n nu Ey X s sβ= = , where ( )0nX s  
and ( )0sβ  are respectively the design matrix and the coefficients correspond-
ing to 0s . Let ( )0v s  be the number of components in 0s . We call 𝑠𝑠0 the true 
submodel and denote ( )0v s  by 0K , and K is an upper bound for 0K . Let the 
projection matrix of ( )nX s  be ( ) ( ) ( ) ( ) ( )

1T T
n n n n nH s X s X s X s X s

−
 =   . Define 

( ) ( ) 2
n n n ns u H s u∆ = − . 
The family of our new EBIC under model (12) is defined as: 

( )
( )( ) ( ) ( )( )

T

ln ln 2ln , , 0.n n n n
a j j

y I H s y
BIC s n v s n S a s S a

n
τ

 −
=   + + + ∈ >

 
 

(13) 

Under the asymptotic identifiability condition proposed by [10], the consis-
tency of our new EBIC is established. The asymptotic identifiability condition is 
as follows: 

Condition 1: asymptotic identifiability. Model (12) with true submodel 0s  is 
asymptotically identifiable if: 

( ) ( ) ( ){ }1
0 0lim min ln : , .nn

n s s s v s K−

→∞
∆ ≠ ≤ = ∞  

And other two lemmas proposed by [13] are also useful to our proof. 

Lemma 1: if ln
ln

j
p

δ→  as p →+∞ , we have: 

( ) ( ) ( )( )!ln ln 1 1 1 .
! !

p j p o
j p j

δ
 

= − +  − 
 

Lemma 2: let 2
kχ  denote a 2χ  random variable with degrees of freedom k. 

If m →+∞  and 0K
m
→ , then: 

( ) ( ) ( )( ) ( )( )2 12 21 2 e 1 1 ,
2

k m
kP m m o

k
χ − −≥ = +

Γ
 

uniformly for all k K≤ . 
We now state the consistency result as follows. 
Theorem 2. Assume that ( )k

np O n=  for some constant k. If 0a > , then 
under the asymptotic identifiability condition we have: 

( ) ( ){ } ( )0 0min : , 1,a apr BIC s v s j s s BIC s = ≠ > →   

for 1, ,j K=  , as n →+∞ . 
Proof: 

( ) ( )
( )( )
( )( ) ( ) ( )( )

( )( ) ( )( )0

0

T

0T
0

1 2

ln ln

2 ln ln

a a

n n n n

n n n n

j K

BIC s BIC s

y I H s y
n v s v s n

y I H s y

S a S a

T T

τ τ

−

 −
 = + −
 − 
 + + − + 
+

, say, 
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where: 

( )( )
( )( )

( )( ) ( )( )
( )( )

T

1 T
0

T T
0

T
0

ln

ln 1 ,

n n n n

n n n n

n n n n n n n n

n n n n

y I H s y
T n

y I H s y

y I H s y e I H s e
n

e I H s e

 −
 =
 − 
 − − −
 = +
 − 

 

( ) ( )( ) ( )( ) ( )( )02 0 ln 2 ln ln .j KT v s v s n S a S aτ τ = − + + − +   

Without loss of generality, we assume that 2 1σ = . 
Case 1: 0s s⊄ , 

First, we will show 1
lnln 1 C nT n
n

 ≥ + 
 

. We can write: 

( )( ) ( )( )
( )

( ){ }
0

T T 2
0 0

1
1 1 ,

n v s

n n n n n n n n j p
i

y I H s y e I H s e Z n o
−

=

− = − = = +∑  

where Zj’s are i.i.d. standard normal variables, we have: 

( )( ) ( )( )
( ){ } ( ){ } ( ) ( )

T T
0

T T T T
02

n n n n n n n n

n n n n n n n n n n n n n n

y I H s y e I H s e

u I H s u u I H s e e H s e e H s e

− − −

= − + − − +    (14) 

By asymptotic identifiability condition, uniformly over s such that ( )v s K≤ , 
we have: 

( ) ( ){ }1 Tln .n n n nn u I H s u− − →∞                   (I) 

Write  

( ){ } ( ){ } ( )T T ,n n n n n n n nu I H s e u I H s u Z s − = −   

where: 

( )
( ){ }
( ){ }

( )
T

T
~ 0,1 .n n n n

n n n n

u I H s e
Z s N

u I H s u

−
=

−
 

We hence arrive at 

( ){ }
( ){ } ( ){ }
( ){ } { }
( ){ }

T

T

T

T

max :

max :

2ln

n n n n j

n n n n j

n n n n p n

p n n n n

u I H s e s S

u I H s u Z s s S

u I H s u O p

o u I H s u

 − ∈ 

 ≤ − ∈ 

 ≤ − 

 = − 

             (II) 

where the last inequality follows the Bonferroni inequality, in detail we have: 

( ){ }( )
( ) ( )( ) ( ) ( )

( ) ( )

2
1

1 1

2

1

max : ,j

K K

j j
j j

K

j j
j

P Z s s S j K m

S P Z s m S P m

S P m

τ τ χ

τ χ

= =

=

∈ ≤ ≥

≤ ≥ = ≥

≤ ≥

∑ ∑

∑
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where 2 ln nm K p= . The last inequality comes from Lemma 2 that  

( ) ( )2 2
1 jP m P mχ χ≥ < ≥ . And according to Lemma 2, we can prove that  

( ) ( )2
1 0K

j jj S P mτ χ
=

≥ →∑ . 
Thus, we have  

( ) ( ){ } ( )( )
( )( ) ( ) ( )

Tmax : 1 1

2 ln 1 1 ln ln

n n n p

n p p n p

e H s e v s K m o

K p o O p O n

≤ = +

= + = =
           (III) 

We know the term ( )T
0n n ne H s e  is a 2χ -distributed statistic with a fixed 

degrees of freedom 0K . Then take (I), (II), (III) into (14) we have:  

( )( ) ( )( )

( ){ } ( ){ }
( ){ }

( )
( ){ }

( )
( ){ }

( ){ } ( )( )

T T
0

T T
T

T T

T
0

T

T

2
1

1 1 .

n n n n n n n n

n n n n n n n
n n n n

n n n n n n n n

n n n

n n n n

n n n n p

y I H s y e I H s e

u I H s e e H s e
u I H s u

u I H s u u I H s u

e H s e
u I H s u

u I H s u o

− − −

 −
= − + −

− −


+ 
− 

= − +

 

Under the asymptotic identifiability condition, we know that ( ){ }T
n n n nu I H s u− , 

which goes to infinity faster than ln n , is the dominating term in  
( )( ) ( )( )T T

0n n n n n n n ny I H s y e I H s e− − − . Thus, 

( )( ) ( )( )
( )( )

T T
0

T
0

ln ,n n n n n n n n

n n n n

y I H s y e I H s e C n
ne I H s e

− − −
≥

−
 

for any large constant C in probability, thus we have: 

( )( )
( )( )

T

1 T
0

lnln ln 1 .n n n n

n n n n

y I H s y C nT n n
ny I H s y

 −   = ≥ +  −   
 

Next, we will show ( ) ( )0a aBIC s BIC s− → +∞ , as n →+∞ . 
We know that: 

( ) ( )

( ) ( )( )

( )( ) ( )( )0

0 1 2

0
lnln 1 ln

2 ln ln

a a

j K

BIC s BIC s T T

C nn v s v s n
n

S a S aτ τ

− = +

 ≥ + + − 
 
 + + − + 

               (15) 

On the one hand, 

( ) ( )( )

( )

( ) ( )

0

0

0 0

lnln 1 ln

lnln 1 ln

ln lnln ln 1
ln

C nn v s v s n
n
C nn v s n

n
n C n nn v s v s
n n n

 + + − 
 
 ≥ + − 
 

  = + − −    

 

Let 
ln n
n a
n
= , we know that 1 0

na
→  as n →+∞ , so that 1 1ln 1 ~

n na a
 
+ 

 
. 
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Thus, the above equation can be expressed as  

( )

( )

( ) ( )

0

0

0

1 1ln ln 1

1 1ln

ln ln

n
n n

n
n n

a n C K
a a

a n C K
a a

n C K n C K

  
= + −  

   
 

≈ − 
 

= − > −

 

Which means: 

( ) ( )( ) ( )0
lnln 1 ln ln .C nn v s v s n n C K
n

 + + − ≥ − 
 

         (IV) 

On the other hand, 
According to Lemma 1 we have ( )( ) ( )ln ln lnj j nS a S j pτ τ+ ≈ ≈  as n →+∞ . 

Thus, we obtain: 

( )( ) ( )( ) ( )
0 02 ln ln 2 ln 2 ln .j K n nS a S a j K p K pτ τ + − + ≈ − > −    (V) 

Bring (IV), (V) into (15) we can see that choosing ( )2 1C K k> + , we obtain: 

( ) ( ) ( )( )0 ln 2 1 .a aBIC s BIC s n C K k− > − + → +∞  

Case 2: 0s s⊂ ,  
First, we will show: 

( )( )
( )( ) ( ){ }

T

1 T
0

ln 2 ln 1 1 .n n n n
n p

n n n n

y I H s y
T n j p o

y I H s y

 −
 = ≥ − +
 − 

 

In this case we have ( ){ } ( )0 0n n nI H s X s− = , thus  
( )( ) ( )( )T T

n n n n n n n ny I H s y e I H s e− = − . 
And  

( )( ) ( )( )

( ) ( )( ) ( )

T T
0

T 2
0

1
.

n n n n n n n n

j

n n n n i
i

e I H s e y I H s y

e H s H s e Z s
=

− − −

= − =∑
 

where ( ) ( )0j v s v s= − , ( )iZ s  are some independent standard normal ran-
dom variables depending on s. Let ( ){ }0ˆn n n ne I H s e= − , we obtain that: 

( )( )
( )( )

( )( ) ( )( )
( )( )

( )
( )

( )
( )

T
0

T

T T
0

T

2 2
1 1

T 2 T 2
1 1

ln

ln 1

ln 1 .
ˆ ˆ ˆ ˆ

n n n n

n n n n

n n n n n n n n

n n n n

j j
i ii i
j j

n n i n n ii i

y I H s y
n

y I H s y

e I H s e e I H s e
n

e I H s e

Z s Z s
n n

e e Z s e e Z s
= =

= =

 −
 
 − 
 − − −
 = +
 − 
  = + ≤ 

− −  

∑ ∑
∑ ∑

 

As n →+∞ , 1 T 2ˆ ˆ 1n nn e e σ− → = . And in case 1 we have shown that: 

( ) ( ) ( ){ }2

1
max , 2 ln 1 1 .

j

i n pv s
i

Z s s S j p o
=

 
∈ = + 

 
∑  
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Thus,  

( )
( ) ( )

( ){ }
( ) ( ){ } ( ){ }

2
1

T 2
1

max :
ˆ ˆ

2 ln 1 1
2 ln 1 1 .

2 ln 1 1

j
ii

v sj
n n ii

n p
n p

n p

n Z s
s S

e e Z s

nj p o
j p o

n j p o

=

=

  ∈ 
−  

+
≤ = +

− +

∑
∑

 

So, we can see that: 

( )( )
( )( ) ( ){ }

T
0

1 Tln 2 ln 1 1 .n n n n
n p

n n n n

y I H s y
T n j p o

y I H s y

 −
 = − ≥ − +
 − 

 

Consequently, uniformly in s such that ( ) ( )0v s j v s= + , we have: 

( ) ( )
( ){ } ( ) ( )( )

( )( ) ( )( )
( ){ } ( ) ( )( ) ( ) ( )( )
( ){ }

0

0 1 2

0

0 0

2 ln 1 1 ln

2 ln ln

2 ln 1 1 ln 2 ln

2 ln 1 1 ln 2 ln ln .

a a

n p

j K

n p n

n p n

BIC s BIC s T T

j p o v s v s n

S a S a

j p o v s v s n v s v s p

j p o j n j p j n

τ τ

− = +

≥ − + + −

 + + − + 

≈ − + + − + −

= − + + + =

 

Thus, we have: 
( ) ( )0 lna aBIC s BIC s j n− ≥ → +∞  as n →+∞ . The conclusion hence fol-

lows. 
 

4. The Structure of Our Algorithm 

Initial step:  
Standardize , , 1, ,jy x j p= 

, such that T1 0y = , T1 0jx = , Ty y n= ,  
T

jjx x n= , let { }1 1,2, ,
T2max j jp x yλ ∈=



, consider the following penalized sum of 
squares: 

{ }2
12 1min ,y X

β
β λ β− +  

the features with nonzero estimated coefficients are selected and the set of their 
indices is denoted by TEMPs , let *1 TEMPs s= . Compute ( )*1I H s−  and  

( )*1NEBIC s . 
General step:  
For 1k ≥ , compute j yx   for *kj s∈  , where ( )*ky I H s y = −  ,  

( )*j k jx I H s x = −  . Let 
*

1 2max
k

k jj s
x yλ + ∈

=   , consider the following penalized 
sum of squares: 

{ }2

12 1
min ,ky X
β

β λ β+− + 



  

the features with nonzero estimated coefficients are selected and the set of their 
indices is denoted by TEMPs , let * 1 *k k TEMPs s s+ =  . Compute ( )* 1NEBIC ks + , 
if ( ) ( )* 1 *NEBIC NEBICk ks s+ > , stop; otherwise, compute ( )* 1kI H s +−  and 
continue. 
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Suppose that the above procedure stops at * 1k +  step, then our algorithm 
outputs the index set of selected features which is denoted by **k

s . Then the 
parameters in the selected model are estimated by their least-square estimates: 

( ) ( ) ( ) ( ) ( )* * * * *

1
T T

* * * * *
ˆ ˆ, 0.

k k k k k
s X s X s X s y sβ β

−
 = = 

  

The NEBIC  for *ks , *1,2, ,k k=   in the above algorithm is given by: 

( )
( )( ) ( )

( )( )( )*

T
*

* *ln ln

2ln where 0

NEBIC

.
k

n n k
k k

v s

y I H s y
s n v s n

n

S a aτ

 −
 = +
 
 

+ + >

 

5. Application to High-Dimensional Classification 
5.1. Method 

As we have discussed before, it is necessary to give better methods to estimate 
the unknown uk’s and Ω for the small-n-large-p problem. In this paper, we apply 
our algorithm to identify the non-zero entries of precision matrix, and the esti-
mate of Ω is then obtained by the constrained maximum likelihood estimation. 
And we adopt the method proposed by [7] to estimate class means. The esti-
mated class means and precision matrix are finally used to construct the dis-
crimination rule. 

5.2. Procedure 

1) Constrained estimation for the class means 
The predictor components are first ordered according to the F-statistic for 

testing the significance of class effects, instead of being pairwise fused, the class 
means for each component are then clustered by a divisive hierarchical cluster-
ing procedure. The class means are estimated under the structure revealed by the 
clustering. For details, we refer the reader to [7]. 

2) Constrained estimation for the precision matrix 
The identification of non-zero entries in a concentration matrix has attracted 

considerable attention of the researchers, concentration matrix is the inverse of 
the covariance matrix of a random vector. A concentration matrix is closely re-
lated to an undirected graphical model. An undirected graphical model is speci-
fied by a vertex set V and an edge set E, and is denoted by ( ),G V E= . The ver-
tex set V represents a collection of random variables { }1, , pY Y . The edge set E 
describes the inter-relationship among the random variables: there is an edge 
connecting vertices iY  and jY  if they are dependent conditioning on all the 
remaining variables. Suppose that ( )1, , pY Y Y=   follows a multivariate normal 
distribution with concentration matrix ( )ijΩ = Ω . Then, there is an edge be-
tween Yi and Yj if and only if 0ij jiΩ =Ω ≠ . Thus, the detection of edges of G is 
equivalent to the identification of non-zero entries of Ω.  

In this paper, we adopt the method, which was proposed by [14], is based on 
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the relationship between entries of Ω and the coefficients of p regression models 
where each component of Y is regressed on the remaining p − 1 components. A 
non-zero entry of Ω corresponds to a non-zero regression coefficient in the re-
gression models. In other word, the detection and estimation of non-zero entries 
of Ω are then boiled down to the selection and estimation of non-zero coeffi-
cients in p regression models. According to this, we first apply our algorithm to 
identify non-zero entries of Ω, and the estimate of Ω is then obtained by the 
constrained maximum likelihood estimation. The details as follow. 

For an undirected graph ( ),G V E= , let V be modeled as the set of the com-
ponents of a random vector ( )1, , pY Y Y=  . We assume that Y follows a multi-
variate normal distribution ( ),N u Σ . Without loss of generality, assume that 

0u = . Let iY −  be the vector obtained from Y by eliminating component iY . 
Denote by i i− −Σ  the variance-covariance matrix of iY − , by 2

iσ  the variance of 

iY , and by ii−Σ  the covariance vector between iY  and iY − . We know that the 
conditional distribution of iY  given iY −  is still normal, with the following con-
ditional mean and conditional variance: 

( ) ( )1 2 1| , | .i i ii i i i i i i ii i i i iE Y Y Y Var Y Y σ− −
− − − − − − − − − −= Σ Σ = − Σ Σ Σ  

Let ijβ  be the jth component of 1
ii i i

−
− − −Σ Σ . We can then express the condi-

tional distributions in the form of the following regression models: 

( ), ~ 0, , 1, , ,i ij j i i i
j i

Y Y N D i pβ
≠

= + =∑                (16) 

where ( ) 12
i i ii i i i iD σ −

− − − −= − Σ Σ Σ . Without loss of generality, suppose that iY  is 
the first component of Y. Let the covariance matrix Σ be partitioned as: 

2
i ii

i i i i

σ −

− − −

 Σ
Σ =  

Σ Σ 
, let ( ) { }, 1, ,jl j l p

ω
∈

Ω =


, we can obtain: 

1 1 1
1

1 1 1 1 1 1 .ii i i

i i i i i i i i i i ii

i i

i i i i

D D
D D

− − −
− − − −

− − − − − −
− − − − − − − − − − −

 − Σ Σ
Ω = Σ =  

−Σ Σ Σ + Σ Σ Σ Σ 
 

By comparing the left upper block of Ω with 1
ii i i

−
− − −Σ Σ , we see that: 

1 ,ij ij
ij

ii iD
ω ω

β
ω−= − = −  

noting that 1
ii iD− = Ω . These connections establish the equivalence: 

0 0.ij ijω β= ⇔ =  

As we can see that the identification of non-zero entries of Ω reduces to the 
identification of the non-zero ijβ  in the above regression models. Thus, firstly, 
we apply our algorithm to model (16) to identify all the non-zero entries of Ω. 
Let ( ){ }, : 0jlj l ω= ≠ , according to our algorithm we have ̂ .  

Next, we summary our proposed approaches. First, we introduce some nota-
tion. Denote by iy  the standardized n-vector of observed iY , let iX  be the 

( )1n p× −  matrix consisting of all jy  with j i≠ . Here is our algorithm based 
on above data sets: 
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Algorithm for identifying   
Initial step: 
Let T2maxi i iX yλ = , let iβ  be ( )1p − -vector, for 1,2, ,i p=  . Consider 

minimizing following p penalized sum of squares separately: 

2

2 1

1min , 1,2, , ,
2i

i i i i iy X i p
β

β λ β− + =   

Let 1 1 1, , ps s∗ ∗
 denote the indices of features with nonzero estimated coeffi-

cients for the above p regression models respectively. Let { }1 1 1 1, , ps s s∗ ∗ ∗=  . 
Then compute ( )1NEBIC s∗  and ( )1 1I H s ∗−  for 1,2, ,i p=  . 

General step k + 1 (k ≥ 1): 
Let ( )( )T2maxi i i k iX I H s yλ ∗= −  for 1,2, ,i p=  . Consider minimizing 

following p penalized sum of squares separately:  
2

2 1

1min , 1,2, , .
2i

i i i i iy X i p
β

β λ β− + =






 

  

where ( )( )i i k iI Hy s y∗= − , ( )( )i i k iI HX s X∗= − , ( )i i i ksβ β ∗=  . Let iTEMPs  be 
the indices of features with nonzero estimated coefficients for the above ith re-
gression model, and 1i k iTEMP i ks s s∗ + ∗=   for 1,2, ,i p=  . Then let  

{ }1 1 1 1, ,k k p ks s s∗ + ∗ + ∗ +=  . Compute ( )1NEBIC ks∗ + . If  
( ) ( )1NEBIC NEBICk ks s∗ + ∗> , stop; otherwise, compute ( )1i kI H s ∗ +−  for  

1,2, ,i p=   and continue. 
Suppose the above algorithm stops at step 1k∗ + , then our algorithm output 

the index set { }1
, ,

k k p k
s s s∗ ∗ ∗∗ ∗ ∗

=  . 
The NEBIC for set ks∗  is given by the following formula: 

( ) ( )( ) ( )( ){ }2

*21
NEBIC ln ln 2ln

i k

p

k i k i i k s
i

s n I H s y s n S aτ
∗∗ ∗

=

 = − + + + ∑ . 

Estimation of precision matrix: 
From the above algorithm we identify all the non-zero entries of Ω̂ , let ̂  

be the set of all the indices. Then Ω̂  is obtained by the constrained maximum 
likelihood estimation as follows: 

( )
( ) ( ){ }10: ,

ˆ min trace ln det ,ˆ
jl j l

S
ω

λ
= ∈

Ω = Ω − Ω + Ω


 

where Ŝ  is the empirical covariance matrix. 
3) Discrimination rule 
The discrimination rule is constructed by replacing the unknowns in ( )kjd x  

by their estimates obtained above. Here ( )kjd x  is: 

( ) ( ) ( ) ( )T
2 ln .kj k j k j k jd x x u u u u π π = − + Ω − +   

Then we have ( )ˆ
kjd x : 

( ) ( ) ( ) ( )Tˆ ˆˆ ˆ ˆ ˆ2 ln .k j k j
kj k jd x x u u u u n n = − + Ω − +   

Classify x into class k if and only if: 

( )ˆ 0, for all .kjd x j k> ≠  
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5.3. Simulation Studies 

We compare our method with other methods available in the literature through 
numerical studies in this section. The methods considered for the comparison 
are: 1) linear discrimination with detected sparsity (LDwDS) in [7]. 2) The adap-
tive hierarchically penalized nearest shrunken centroid (ahp-NSC) and the adap-
tive L∞ -norm penalized NSC (alp-NSC) proposed in [15]. 3) Pairwise SIS (PSIS) 
in [16]. 

The performance of the methods is evaluated by the misclassification rate 
(MCR) and computation time. We have three simulation settings, repeat each 
setting 100 times. At each replicate under a simulation setting, we simulate a 
training data set and a testing data set. The training data set is used to construct 
discrimination rules with the methods, and the testing set is used to evaluate the 
MCR and record computation time. 

We design the simulation setting inspired by [7], consider 2K = , 400p = . 
The following single scheme for the class means is taken throughout: 

100
1 2

100

0, 0.5, ,0.5,0, ,0 .
p

u u
−

 
 = =
 
 







 

The covariance matrix is generated through the precision matrix. First, the 
nonzero positions of the precision matrix are decided in the following schemes: 

ES1: the non-zero entries of Ω is randomly determined with:  

( ) ( )Pr 0 1 Pr 0 0.99.ij ijω ω= = − ≠ =  

ES2: Ω is a diagonal block matrix with 10 blocks of size 10. 
ES3: Ω is a diagonal block matrix with 10 blocks of size 10, each block is a di-

agonal band matrix with 0ijω ≠  if 2i j− ≤ . 
For the nonzero values of the precision matrix, we first generate ijωΩ =   as 

follows: 1iiω = , ij jiω ω=   are generated as i.i.d. observations from the uniform 
distribution on [ ]0.3,0.7− . Then we take ( )( )min0.1 IλΩ = Ω + − Ω  . Eventual-
ly, take the common covariance matrix as the correlation matrix corresponding 
to 1−Ω . The training sample size 1 200n =  and the testing sample size 

2 1000n = . The covariance matrix is generated as a diagonal block matrix with 
four 100 × 100 identical blocks. The 100 × 100 block is generated by the same 
generating schemes above. The simulation results under these three settings are 
reported in Tables 1-3. 

From all three tables we can see that as for the MCR, the performance of our 
method is much better than the two NSC methods and PSIS. Although our me-
thod has the same MCR with LDwDS from Table 1 and Table 2, it takes shorter 
computation time than LDwDS. From Table 3 we find that our method per-
forms better than LDwDS both in misclassification and computation time. From 
[7] we notice that the misclassification rates of LDwDS are universally lower 
than all the other methods under consideration. Nevertheless, it is not without 
drawbacks. LDwDS takes longer computation time than other methods.  
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Table 1. Averaged misclassification rate (MCR) and computation time (in seconds) un-
der simulation ES1 (numbers in the parentheses are standard deviations). 

Method MCR Time 

LDwDS 0.005 (0.005) 14.339 (1.502) 

ahp-NSC 0.045 (0.026) 0.213 (0.049) 

alp-NSC 0.193 (0.050) 0.202 (0.026) 

PSIS 0.500 (0.006) 0.115 (0.009) 

our method 0.005 (0.005) 11.008 (0.962) 

 
Table 2. Averaged misclassification rate (MCR) and computation time (in seconds) un-
der simulation ES2 (numbers in the parentheses are standard deviations). 

Method MCR Time 

LDwDS 0.001 (0.003) 28.532 (3.524) 

ahp-NSC 0.147 (0.043) 0.205 (0.027) 

alp-NSC 0.291 (0.043) 0.199 (0.024) 

PSIS 0.500 (0.006) 0.114 (0.007) 

our method 0.001 (0.002) 10.684 (1.199) 

 
Table 3. Averaged misclassification rate (MCR) and computation time (in seconds) un-
der simulation ES3 (numbers in the parentheses are standard deviations). 

Method MCR Time 

LDwDS 0.017 (0.025) 20.852 (2.384) 

ahp-NSC 0.167 (0.049) 0.194 (0.007) 

alp-NSC 0.310 (0.041) 0.190 (0.009) 

PSIS 0.500 (0.006) 0.110 (0.004) 

our method 0.016 (0.023) 8.725 (0.709) 

 
Therefore, from the perspectives of computation time and misclassification, our 
algorithm performances better than its competing algorithms. 

6. Summary and Discussion 

In this paper, on the one hand, based on the characteristic of lasso regression we 
propose a novel method to choose the regularization parameter λ, which gives 
the exact maximum value of λ for lasso regression. On the other hand, since the 
ordinary Bayes information criterion is too liberal for model selection when the 
model space is large, inspired by [10] we propose a new EBIC (NEBIC). Com-
pared with EBIC the parameter in our new criterion doesn’t need to be restricted 
in a small range, what’s more, under some mild conditions our new EBIC is also 
shown to be consistent. Then, based on these two findings, we have a new algo-
rithm for feature selection. In detail, we apply our new method to choose regula-
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rization parameter for sequential lasso, and our NEBIC is used as the stopping 
rule. After that, we apply our algorithm to classification problem, the numerical 
study demonstrates that our algorithm performs better than its competing me-
thods under consideration. 

Further research may consider these two questions:  
Firstly, our method chooses the largest regularization parameter λ such that at 

least one of the βj's, { }1,2, ,j p∈  , will be estimated nonzero. A nature ques-
tion is that instead of solving the optimization problems can we obtain the in-
dices of those features with nonzero estimated coefficients by easier methods? 
Luo and Chen [17] pointed out that these indices are related to the choice of re-
gularization parameter λ under some conditions. However, these conditions are 
too strict. Further research may consider if there exist milder conditions to con-
nect our new method for choosing regularization parameter with the indices of 
non-zero estimated coefficients. 

Secondly, we choose the upper convex function , 0x a
x a

>
+

 as the prior  

function over the model space to extend EBIC, and our new EBIC is shown to be 
consistent. Subsequent research may consider if there exists a special function 
class for model space priors such that within this class the Bayes information 
criteria is consistent. 
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