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Abstract 
In this present paper, we introduce and investigate a new form of mappings 
namely; upper and lower M-asymmetric preirresolute multifunctions defined 
between M-structural asymmetric topological spaces. The relationships be-
tween the multifunctions in our sense and other types of precountinuous and 
preirresolute multifunctions defined on both symmetric and asymmetric to-
pological structures are discussed. 
 

Keywords 
Asymmetric-Preopen Sets, M-Space, M-Asymmetric Preopen Sets, Upper 
(Lower) Preirresolute Multifunctions, Upper (lower) M-Asymmetric  
Preirresolute Multifunctions 

 

1. Introduction 

The notion of continuity and multifunctions, the basic concepts in the theory of 
classical point set topology that plays a vital role not only in the realm of func-
tional analysis but also in other branches of applied science, such as; engineering, 
control theory, mathematical economics, and fuzzy topology has received con-
siderable attention by many scholars. In this regard, there have been various ge-
neralizations of the notion of continuity for functions and multifunctions both 
in topological and bitopological spaces using the weaker forms of sets such as 
semiopen, preopen, α-open, β-open, γ-open, ω-open and δ-open sets. 

In the realm of topological spaces, the concept of semiopen sets and semicon-
tinuous functions was first introduced by Levine [1] and the concept was then 
extended by Maheshwari and Prasad [2] to the realm of bitopological spaces. 
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Further, Bose [3] investigated several properties of semi-open sets and semi- 
continuity in bitopological spaces. On the other hand, Berge [4] introduced and 
investigated the notion of upper and lower continuous multifunctions and lately, 
this notion was generalized to the settings of bitopological spaces by Popa [5], in 
which he studied how the conserving properties of connectedness, compactness 
and paracompactness are preserved by multifunctions between bitopological 
spaces. Noiri and Popa [6] in 2000, then introduced and studied the concept of 
upper and lower M-continuous multifunctions as an extension of upper (lower) 
continuous multifunction and M-continuous function deal to Berge [4] and, 
Popa and Noiri [7] respectively. They observed that, upper (lower) continuity of 
multifunctions has properties similar to those of upper (lower) continuous func-
tions and continuous multifunctions on topological spaces. Recently, Matindih 
and Moyo [8] have generalized [6] ideas and studied M-asymmetric semiconti-
nuous multifunctions and showed that, these kinds of mappings have properties 
similar to those of upper (lower) continuous functions and M-continuous mul-
tifunctions between topological spaces, with the difference that, the semiopen 
sets in use are asymmetric. 

Mashhour et al. [9] in 1982, introduced and investigated a new form of open 
sets and continuity called preopen sets and precontinuous functions in the realm 
of topological spaces. They showed that, general openness and continuity im-
plies preopeness and precontinuity and the reverse does not generally hold. This 
concept of preopen sets and precontinuity was then generalized to the setting of 
bitopological spaces by Jelić [10] and Khedr et al. [11] respectively. And, as an 
extension to the results in [9], Min and Kim [12] have recently introduced and 
investigated some basic properties of m-preopen sets and M-precontinuity on 
spaces with minimal structures. On the other hand, Boonpok et al. [13] have 
gone further to extend the results by studying a new form of mapping namely; 
( )1 2,T T -precontinuous multifunctions in bitopological spaces and obtained 
several characterizations. 

Irresolute functions and their fundamental properties on the other hand, were 
first introduced and investigated by Crossley and Hildebrand [14] in 1972. They 
observed that, irresolute functions are generally not continuous and neither are 
continuous functions necessarily irresolute. Ewert and Lipski [15], on the other 
hand, extended this concept to upper and lower irresolute multivalued mappings, 
followed by Popa [16] who investigated some characteristics of upper and lower 
irresolute multifunctions in topological spaces and, extended the results to study 
upper and lower preirresolute multifunctions in [17]. However, Matindih et al. 
[18] have recently generalized the results deal to Popa [16], and investigated a 
new form of mappings the upper and lower M-asymmetric irresolute multifunc-
tions in bitopologgical spaces. They have shown that, upper and lower M-asym- 
metric irresolute multifunctions have properties similar to those of upper and 
lower irresolute multifunctions defined between topological spaces. Furthermore, 
they showed that, such mappings are respectively upper and lower M-asymme- 
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tric semicontinuous, but, the converse is not necessarily true. 
In this paper, we generalize the idea deal to Popa and et al. [17] to introduce 

and investigate a new form of mappings namely; upper and lower M-asymmetric 
preirresolute multifunctions defined on bitopological spaces satisfying certain 
minimal conditions. Furthermore, the relationships between these multifunc-
tions and other types of irresolute multifunctions will be discussed. 

The organization of this paper is as follows. Section 2 presents necessary pre-
liminaries concerning preopen sets, m-preopen sets and precontinuous and 
preirresulute multifunctions. In Section 3, we generalize the notions of upper 
and lower M-asymmetric irresolute multifunctions deal to Matindih et al. [18] 
and, upper and lower M-preirresolute multifunctions deal to Papa et al. [17] to 
minimal bitopological structured spaces. Section 4 outlines the concluding re-
marks. 

2. Preliminaries and Basic Properties 

We present in this section some important properties and notations to be used 
in this paper. For more details, we refer the reader to [2] [3] [8] [9] [10] [11] [16] 
[17] [19] [20] [21]. 

By a bitopological space ( )1 2, ,X T T , in the sense of Kelly ([20]), we imply a 
nonempty set X on which are defined two topologies 1T  and 2T  and the left 
and right topologies respectively. 

In sequel, ( )1 2, ,X T T  or in shorthand X will denote a bitopological space 
unless where clearly stated. For a bitopological space ( ), ,i jX T T , , 1,2i j = ; 
i j≠ , the interior and closure of a subset E of X with respect to the topology 

i j=T T  shall be denote by ( )
i

Int ET  and ( )
i

Cl ET  respectively. 
Definition 2.1. Let ( ), ,i jX T T , , 1,2i j = ; i j≠  be a bitopological space and 

E be any subset of X. 
1) E is said to be i jT T -open if i jE∈ ∪T T ; i.e., i jE E E= ∪  where 

i iE ∈T  and j jE ∈T . The complement of an i jT T -open set is a i jT T - 
closed set. 

2) The i jT T -interior of E denoted by ( )( )i j
Int Int ET T  (or i jT T - ( )Int E ) 

is the union of all i jT T -open subsets of X contained in A. Evidently, provided 
( )( )i j

E Int Int E= T T , then E is i jT T -open. 
3) The i jT T -closure of E denoted by ( )( )i j

Cl Cl ET T  is defined to be the 
intersection of all i jT T -closed subsets of X containing A. Note that asymmetr-
ically, ( )( ) ( )

i j i
Cl Cl E Cl E⊆T T T  and ( )( ) ( )

i j j
Cl Cl E Cl E⊆T T T .  

Definition 2.2. Let ( ), ,i jX T T , , 1,2i j = ; i j≠  be a bitopological space and, 
E and D be any subsets of X. 

1) A is said to be i jT T -preopen in X if there exists a iT -open set O such 
that ( )

j
E U Cl E⊆ ⊆ T , equivalently ( )( )i j

E Int Cl E⊆ T T . It’s complement is 
said to be i jT T -preclosed. A subset E is i jT T -preclosed if  

( )( )i j
Cl Int E E⊂T T . 

2) The i jT T -preinterior of E denoted by i jT T - ( )pInt E  is defined to be 
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the union of i jT T -propen subsets of X contained in E. The i jT T -preclosure 
of E denoted by i jT T - ( )pCl E , is the intersection of all i jT T -preclosed sets 
of X containing E. 

3) D is said to be a i jT T -pre-neighbourhood of x X∈  if there is some 

i jT T -preopen subset O of X such that x O D∈ ⊆ .  
The family of all i jT T -preopen and i jT T -preclosed subsets of X are will 

be denote by ( )i j pO X−   and ( )i j pC X−   respectively.  
Definition 2.3. [6] [19] A subfamily mX of a power set ( )XP  of a set 

X ≠ ∅  is said to be a minimal structure (briefly m-structure) on X if both ∅  
and X lies in mX. The pair ( ), XX m  is called an m-space and the members of 
( ), XX m  is said to be mX-open.  

Definition 2.4. Let ( ), ,i jX T T , , 1,2i j = ; i j≠  be a bitopological space and 
mX a minimal structure on X generated with respect to mi and mj. An ordered 
pair ( )( ), , ,i j XX mT T  is called a minimal bitopological space. 

Since the minimal structure mX is determined by the left and right minimal 
structures mi and mj, , 1,2i j = ; i j≠ , we shall denote it by ( )ijm X  (or simp-
ly ( )ijm X  in the sense of Matindih and Moyo [8], and call the pair ( ), ijX m ) a 
minimal bitopological space unless explicitly defined.  

Definition 2.5. A minimal structure ( )ijm X , , 1,2i j = ; i j≠ , on on X is 
said to have property (B ) of Maki [19] if the union of any collection of ( )ijm X
-open subsets of X belongs to ( )ijm X .  

Definition 2.6. Let ( ), ijX m , , 1,2i j = ; i j≠  be a bitopological space hav-
ing minimal condition. The , E a subset of X is said to be: 

1) ( )ijm X -preopen if there exists an mi-open set O such that ( )
jmE O Cl E⊆ ⊆  

or equivalently, ( )( )i jm mE Int Cl E⊆ . 
2) ( )ijm X -preclosed if there exists an mi-open set O such that ( )

jmCl O E⊆  
whenever E O⊆ , that is, ( )( )i jm mCl Int E E⊆ .  

We shall denote the collection of all mij-preopen and mij-preclosed sets in 
( )( ), ijX m X  by ( )ijm pO X  and ( )ijm pC X  respectively.  

Remark 2.7. Let ( )( ), ijX m X , , 1,2i j = ; i j≠  be a bitopological space hav-
ing a minimal condition. 

1) If i im = T  and j jm = T , the any ( )ijm X -preopen set is i jT T -preo- 
pen. 

2) Every ( )ijm X -open set is ( )ijm X -preopen, however, the converse is not 
necessarily true.  

It should be understood that, mij-open sets and the mij-preopen sets are not 
stable for the union. However, for certain mij-structures, the class of mij-preopen 
sets are stable under union of sets, as in the Lemma below. 

Lemma 2.8. Let ( )( ), ijX m X , , 1,2i j = ; i j≠  be an mij-space and  

{ }:Eγ γ ∈Γ  be a family of subsets of X. Then, the properties below hold: 
1) ( )ijE m pO Xγ

γ∈Γ
∈



 provided for all γ ∈Γ , ( )ijE m pO Xγ ∈ . 

2) ( )ijE m pC Xγ
γ∈Γ

∈


 provided for all γ ∈Γ , ( )ijE m pC Xγ ∈ . 
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Remark 2.9. It should generally be noted that, the intersection of any two mij- 
preopen sets may not be mij-preopen in a minimal bitopological space ( )( ), ijX m X . 

Definition 2.10. Let ( )( ), ijX m X , , 1,2i j = ; i j≠  be an mij-space. A sub-
set: 

1) N of X is an mij-preneighborhood of a point x of X if there exists an mij- 
preopen subset O of X such that x O N∈ ⊆ . 

2) U of X is an mij-preneighborhood of a subset E of X if there exists an mij- 
preopen subset O of X such that A O N⊆ ⊆ .  

Definition 2.11. Let ( )( ), ijX m X , , 1,2i j = ; i j≠  be an mij-space and E a 
non-empty subset of X. Then, we denoted and defined the mij-preinterior and 
mij-preclosure of E respectively by: 

1) ( ) ( ) ( ){ }: andij ijm X pInt E U U A U m pO X= ⊆ ∈


, 
2) ( ) ( ) ( ){ }: and \ij ijm X pCl E F E F X F m pO X= ⊆ ∈



.  
Remark 2.12. For any bitopological spaces ( )1 2, ,X T T : 
1) ( )i j pO XT T  is a minimal structure of X. 
2) In the following, we denote by mij a minimal structure on X as a generaliza-

tion of iT  and jT . For a nonempty subset A of X, if ( ) ( )ij i jm X pO X= T T , 
then by Definition 2.11: 

a) ( ) ( )ij i jm Int E pInt E= T T , 
b) ( ) ( )ij i jm Cl E pCl E= T T . 
Lemma 2.13. Let ( )( ), ijX m X , , 1,2i j = ; i j≠  be an mij-space and A and 

B be subsets of X. The following properties of mij-preinterior and mij-preclosure 
holds: 

1) ( ) ( )ijm X pInt E A⊆  and ( )ijm pCl E E⊇ . 
2) ( ) ( ) ( )ij ijm X pInt E m pInt B⊆  and ( ) ( ) ( )ij ijm X pCl E m pC B⊆  provided 

E B⊆ . 
3) ( ) ( )ijm X pInt ∅ =∅ , ( ) ( )ijm X pInt X X= , ( ) ( )ijm X pCl ∅ =∅  and  
( ) ( )ijm X pCl X X= . 

4) ( ) ( )ijA m X pInt E=  provided ( )ijA m pO X∈ . 
5) ( ) ( )ijA m X pCl E=  provided ( )\ ijX E m pO X∈ . 
6) ( ) ( ) ( )( ) ( ) ( )ij ij ijm X pInt m X pInt E m X pInt E= . 
And ( ) ( ) ( )( ) ( ) ( )ij ij ijm X pCl m X pCl E m X pCl E= .  
Lemma 2.14. Let ( )( ), ijX m X , , 1,2i j = ; i j≠  be an mij-space and E a non-

empty subset of X. For each ( )ijU m pO X∈  containing ox , U E∩ ≠∅  if and 
only if ( )o ijx m pCl E∈ .  

Lemma 2.15. Let ( )( ), ijX m X , , 1,2i j = ; i j≠  be an mij-space and E be a 
nonempty subset of X. The properties below holds: 

1) ( ) ( ) ( ) ( )( )\ \ij ijm X pCl X E X m X pInt E= , 
2) ( ) ( ) ( ) ( )( )\ \ij ijm X pInt X E X m X pCl E= .  
Lemma 2.16. Let ( )( ), ijX m X , , 1,2i j = ; i j≠  be an mij-space and E be a 

nonempty subset of X. The properties below are true: 

1) ( ) ( ) ( )( )i jij m mm X pCl E Cl Int E E= ∪ . 

2) ( ) ( ) ( )( )i jij m mm X pCl E Cl Int E=  provided ( )ijE m O X∈ . The converse to 
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this assertion is not necessarily true.  
Remark 2.17. For a bitopological space ( ), ,i jX T T , , 1,2i j = ; i j≠  the fam-

ilies ( )i jO XT T  and ( )ijm pO X  are all mij-structures of X satisfying property 
B . 

Lemma 2.18. Let ( )( ), ijX m X , , 1,2i j = ; i j≠  be an mij-space satisfying 
property B  and E and F be subsets of X. Then, the properties below holds: 

1) ( ) ( )ijm X pInt E E=  provided ( ) ( )ijE m X pO X∈ . 
2) ( ) ( )\ ijX F m X pO X∈  provided ( ) ( )ijm X pCl F F= .  
Lemma 2.19. Let ( )( ), ijX m X , , 1,2i j = ; i j≠  be an mij-space satisfying 

property B  and A be any nonempty subset of X. Then, the properties below 
holds: 

1) ( ) ( )ijE m X pInt E=  if and only if A is an ( )ijm X -preopen set. 
2) ( ) ( )ijE m X pCl E=  if and only if \X E  is an ( )ijm X -preopen set. 
3) ( ) ( )ijm X pInt E  is ( )ijm X -preopen. 
4) ( ) ( )ijm X pCl E  is ( )ijm X -preclosed.  
Lemma 2.20. Let ( )( ), ijX m X , , 1,2i j = ; i j≠  be an mij-space satisfying 

satisfying the property B  and let { }:Eγ γ ∈Γ  be an arbitrary collection of  
subsets of X. Then, ( )ijE m pO Xγ

γ∈Γ
∈



 provided ( )ijE m pO Xγ ∈  for every 

γ ∈Γ . 

Lemma 2.21. Let ( )( ), ijX m X , , 1,2i j = ; i j≠  be an mij-space with mij-sa- 
tisfy property B  and let A be a nonempty subset of X. Then: 

1) ( ) ( ) ( )( )i jij m mm X pInt E E Int Cl E= ∩ , and 

2) ( ) ( ) ( )( )i jij m mm X pCl E E Cl Int E= ∪  holds.  
And the equality does not necessarily hold if the property B  of Make is 

removed.  
Lemma 2.22. Let ( ), ijX m , , 1,2i j = ; i j≠  be an mij-space and U be any 

subset of X. Then, the properties below holds: 
1) ( ) ( ) ( )( )( ) ( )( )i j i jij m m ij m mm X pInt U Int Cl m pInt U Int Cl U⊆ ⊆ . 

2) ( )( ) ( ) ( )( )( ) ( ) ( )
i j i jm m m m ij ijCl Int U Cl Int m X pCl U m X pCl U⊆ ⊆ .  

Definition 2.23. [6] A multifunction is a point-to-set correspondence  
:F X Y→  between two topological spaces X and Y such that for each point x 

of X, ( )F x  is a none-void subset of Y. 
In the sense of Berge [4], we shall denote and define the upper and lower in-

verse of a non-void subset G of Y with respect to a multifunction F respectively 
by: 

( ) ( ){ } ( ) ( ){ }: and : .F G x X F x G F G x X F x G+ −= ∈ ⊆ = ∈ ∩ ≠∅  

Generally, F −  and F +  between Y and the power set ( )XP ,  
( ) ( ){ }:F y x X y F x− = ∈ ∈  provided y Y∈ . Clearly for a nonempty subset G 

of Y, ( ) ( ){ }:F G F y y G− −= ∈


 and also, 

( ) ( ) ( ) ( )\ \ and \ \F G X F Y G F G X F Y G+ − − += =  
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For any non-void subsets E and G of X and Y respectively, ( ) ( )
x E

F E F x
∈

=


 

and ( )( )E F F E+⊆  and also, ( )( )F F G G+ ⊆ . 

Definition 2.24. [15] [16] A multifunction ( ) ( ): , ,F X Y→T Q , between 
topological spaces X and Y is said to be: 

1) Upper irresolute at a point ox  of X provided for any semiopen subset G of 
Y such that ( )oF x G⊆ , there exists a semiopen subset O of X with ox O∈  
such that ( )F O G⊆  (or ( )O F G+⊆ ). 

2) Lower irresolute at a point ox  of X provided for any semiopen subset G of 
Y such that ( )oF x G∩ ≠∅ , there exists a semiopen subset O of X with ox O∈  
such that ( )F x G∩ ≠∅  for all x O∈  (or ( )O F G−⊆ ). 

3) Upper (resp lower) irresolute provided it is upper (resp lower) irresolute at 
all points ox  of X.  

Definition 2.25. [17] A multifunction ( ) ( ): , ,F X Y→T Q , between topo-
logical spaces X and Y is said to be: 

1) Upper preirresolute at a point ox  of X if for any preopen subset G of Y 
such that ( )oF x G⊆ , there exists a preopen subset O of X with ox O∈  such 
that ( )F O G⊆  (or ( )O F G+⊆ ). 

2) Lower preirresolute at a point ox  of X provided for any preopen subset G 
of Y such that ( )oF x G∩ ≠∅ , there exists a preopen subset O of X with 

ox O∈  such that ( )F x G∩ ≠∅  for all x O∈  (or ( )O F G−⊆ ). 
3) Upper (resp lower) preirresolute provided it is upper (resp lower) preirre-

solute at all points ox  of X.  

3. Upper and Lower M-Asymmetric Preirresolute  
Multifunctions 

In this section, we introduce and investigate a new form of multifunctions with 
the property that the inverse of an M-asymmetric preopen set is an M-asymme- 
tric preopen set. 

Definition 3.1. A multifunction ( )( ) ( )( ): , ,ij ijF X m X Y m Y→ , , 1,2i j = ;  
i j≠  between bitopological spaces satisfying certain minimal conditions, shall 
be called: 

1) Upper M-asymmetric preirresolute at a point ox X∈  provided for any 
( )ijm Y -preopen subset G such that ( )oF x G⊆ , there exists an ( )ijm X -preo- 

pen set O with ox O∈  such that ( )F O G⊆  whence ( )O F G+⊆ . 
2) Lower M-asymmetric preirresolute at a point ox X∈  provided for any 
( )ijm Y -preopen set G such that ( )oG F x∩ ≠∅ , there exists a ( )ijm X -preo- 

pen set O with ox O∈  such that ( )F x G∩ ≠∅  for all x O∈  whence  
( )O F G−⊆ . 

3) Upper (resp lower) M-Asymmetric irresolute provided it is upper (resp 
lower) M-Asymmetric irresolute at each and every point ox  of X.  

Remark 3.2. It should be understood that, upper M-asymmetric preirresolute 
and lower M-asymmetric preirresolute multifunctions are independent of each 
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other.  
We begin by investigating some characterizations for upper M-asymmetric 

preirresolute multifunctions. 
Theorem 3.3. A multifunction ( )( ) ( )( ): , ,ij ijF X m X Y m Y→ , , 1,2i j = ; i j≠  

with Y satisfies property B , is upper M-asymmetric preirresolute at a point 

ox  in X if and only if ( )( )( )i jo m mx Int Cl F G+∈  for every ( )ijm Y -preopen set 
G with ( )oF x G⊆ . 

Proof. Suppose F is upper M-asymmetric preirresolute at a point ox  in X. 
Let G be any ( )ijm Y -preopen set such that ( )oF x G⊆ . Then, there is some 

( )ijm X -preopen set O with ox O∈  such that ( )F O G⊆  and, giving  
( )( ) ( )

i jm mInt Int G G F O⊇ ⊇ . Since Y satisfies property B  and  
( )ijO m pInt O=  by Lemma 2.18 (1), then we have from Lemma 2.19 (3) that 

( )( )( ) ( )( ) ( )
i j i jm m m m ij oInt Cl F G Int Cl O m pInt O O x+ ⊇ ⊇ =   

Conversely, assume for any ( )ijm Y -preopen set G such that ( )oF x G⊆ , 
( )( )( )i jo m mx Int Cl F G+∈ . Then, by Lemma 2.14, we can find some ( )ijm X - 

preopen neighborhood O of ox  such that ( )O F G+⊆ . Since G is ( )ijm Y - 
preopen, we then have, ( )( ) ( )

i jm mInt Cl G G F O⊇ ⊇  and so, F is an upper M- 
asymmetric preirresolute at a point ox  in X.  

Theorem 3.4. A Multifunction ( )( ) ( )( ): , ,ij ijF X m X Y m Y→ , , 1,2i j = ; i j≠  
having Y satisfying property B  is upper M-asymmetric preirresolute at a 
point ox  in X if and only if for any ( )ijm X -preopen neighbourhood O of ox  
and any ( )ijm Y -preopen set G, with ( )oF x G⊂ , there is some ( )ijm X -open 
set GO  such that GO O⊆  and ( )GF O G⊆ . 

Proof. Suppose that, { }oxO  is a family of ( )ijm X -preopen neighbourhoods 
of a point ox . Then, for any ( )ijm X -preopen set O with ox O∈  and any 

( )ijm Y -preopen set G such that ( )oF x G⊆ , there exists an ( )ijm X -open  
subset GO  of O such that ( )GF O G⊆ . Put 

{ }xo

G
O O

U O
∈

=


, then U is mij-open,  

( )( )i jo m mx Cl Cl U∈  by Theorem 3.3 and ( )F U G⊆ . Put { }oW x U= ∪ , then 
( )( )i jm mU W Cl Cl U⊆ ⊆ . As a result, U is ( )ijm X -preopen, ox W∈ , W is 

( )ijm X -preopen and ( )F W G⊆  whence, ( )W F G+⊆ . Consequently, at the 
point ox  in X, the multifunctions F upper M-asymmetric preirresolute. 

Conversely, suppose F is upper M-asymmetric preirresolute at a point ox  in 
X. Let G be an ( )ijm Y -preopen set satisfying ( )oF x G⊆ , then by Theorem 3.3, 

( ) ( )( )( )i jo m mx F G Int Cl F G+ +∈ ⊆ . Thus, for any ( )ijm X -preopen neighbour-
hood O of ox , ( )F O G⊆ , giving ( )O F G+⊆  so that,  

( )( )( )i jm mInt Int F G O+ ∩ ≠ ∅ . But,  

( )( )( ) ( ) ( )( )( )i j i jm m m mInt Int F G F G Int Cl F G+ + +⊆ ⊆  and so, Lemma 2.14 im-

plies ( )( )( )i jm mInt Cl F G O+ ∩ ≠ ∅ . Put ( )( )( )i jm m GInt Int F G O O+ ∩ = . Then, 

GO O⊇ , ( ) ( )( )( )i jm m GF G Int Int F G O+ +⊇ ⊇  whence, ( )GG F O⊇ . Thus, 

https://doi.org/10.4236/apm.2023.135019


L. K. Matindih et al. 
 

 

DOI: 10.4236/apm.2023.135019 275 Advances in Pure Mathematics 
 

GO  is ( )ijm X -open.                                               

Remark 3.5. The preceding Theorem 3.4 generally states that, every upper 
M-asymmetric preirresolute multifunction is upper M-asymmetric preconti-
nuous, however, the converse is not necessarily true, as we shall clearly illustrates 
in Example 3.7.  

Theorem 3.6. Let ( )( ) ( )( ): , ,ij ijF X m X Y m Y→ , , 1,2i j = ; i j≠  with Y 
satisfying property B  be a multifunction and a point ox  in X. Then, the 
properties are equivalent: 

1) F is upper M-asymmetric preirresolute; 
2) The set ( )F G+  is ( )ijm X -preopen for any ( )ijm Y -preopen set G; 
3) The set ( )F K−  is ( )ijm X -preclosed, for any ( )ijm Y -preclosed set K; 
4) The set inclusion ( ) ( )( ) ( ) ( )( )ij ijF m X pCl E m Y pCl F E⊆  is true for any 

subset E of X; 
5) The set inclusion ( ) ( )( ) ( ) ( )( )ij ijF m Y pCl V m X pCl F V− −⊇  holds true 

given any subset V of Y; 
6) The results ( ) ( )( ) ( ) ( )( )ij ijF m Y pInt R m X pInt F R+ +⊆  holds, for any sub-

set R of Y.  
Proof. (1) ⇒  (2): Assume (1) holds. Let ox  be some point in X and G be a 
( )ijm Y -preopen set such that ( )oG F x⊇ , whence ( )ox F G+∈ . By hypothesis, 

there exists ( )ijm X -preopen set O with ox O∈  such that ( )F O G⊆ , whence 
( )O F G+⊆ . Thus, Theorem 3.3 implies ( )( )( )i jo m mx Int Cl F G+∈  and as a con-

sequence, 

( ) ( )( )( ) ( ) ( )( ).i jm m ijF G Int Cl F G m X pInt F G+ + +⊆ =  

Therefore, ( )F G+  is ( )ijm X -preopen by Lemma 2.13 and 2.18. 
(2) ⇒  (3): If (2) holds, let K be an ( )ijm Y -preclosed set. Then  
( ) ( )\ \F Y K X F K+ −=  and ( ) ( )\ \F Y K X F K− +=  since \Y K  is ( )ijm Y

-preopen. By Lemma 2.15 and Lemma 2.18, we have, 

( ) ( ) ( ) ( )( )
( ) ( )( )

( ) ( )( )

\ \ \

\

\

ij

ij

ij

X F K F Y K m X pInt F Y K

m X pInt X F K

X m X pCl F K

− + +

−

−

= =

=

=

 

As a consequence, ( ) ( ) ( )( )ijF K m X pCl F K− −=  and so, ( )F K−  is ( )ijm X - 
preclosed. 

(3) ⇒  (4): Suppose (3) holds. Then by the closure law, we have any subset E 
of X that, 

( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

( ) ( ){ }( )
( ) ( )( )( )

: and \

: and \

: and \

: and \

.

ij ij

ij

ij

ij

ij

m X pCl E N E N X N m pO X

F K E F K X F K m pO X

F K E F K F Y K m pO X

F K F E K Y K m pO Y

F m Y pCl F E

− − −

− − +

−

−

= ⊆ ∈

= ⊆ ∈

= ⊆ ∈

⊆ ⊆ ∈

=
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Hence, ( ) ( )( ) ( ) ( )( )ij ijF m X pCl E m Y pCl F E⊆ . 
(4) ⇒  (5): Suppose (4) holds. Since ( ) ( ) ( )ij ijm Y pCl V m pC Y∈ , for any 

subset V of Y, the closure definition of sets implies; 

( ) ( )( )
( ){ }( )

( ) ( ) ( ) ( ) ( ){ }
( ) ( ){ }

( ) ( )( )

: and \

: and \

: and \

.

ij

ij

ij

ij

ij

F m Y pCl V

F K V K Y K m pO Y

F K F V F K X F K m pO X

R F V R X R m pO X

m X pCl F V

−

−

− − − −

−

−

= ⊆ ∈

⊇ ⊆ ∈

= ⊆ ∈

=







 

And the implication follows. 
(5) ⇒  (6): Assume (5) holds. Since ( ) ( ) ( ) ( )\ \ij ijY m Y pCl Y R m Y pInt R=  

for any subset R of Y, Lemma 2.13 and 2.15 gives 

( ) ( )( ) ( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( )( )

( ) ( )( )

\ \

\

\

\

\

ij ij

ij

ij

ij

ij

X F m Y pInt R F Y m Y pInt R

F m Y pCl Y R

m X pCl F Y R

m X pCl X F R

X m X pInt F R

+ −

−

−

+

+

=

=

⊇

=

=

 

Consequently, the implication follows. 
(6) ⇒  (1): Let G be any ( )ijm Y -preopen neighborhood of ( )oF x  for some 

point ox  in X. If (6) holds, then (2) implies ( )F G+  is an ( )ijm X -preopen 
neighborhood of ox . Put ( )F G O+ = , then ( )F O G⊆ . Consequently, F is 
upper M-asymmetric preirresolute at a point ox .                     

Example 3.7. Define the asymmetric minimal structures on { }, , ,X a b c d=  
by ( ) { } { } { } { }{ }1 , , , , , , , ,m X X a c a d b c d= ∅ ,  

( ) { } { } { } { }{ }2 , , , , , , , ,m X X b d b d a b d= ∅  and on { }2, 1,0,1Y = − −  by  
( ) { } { } { } { }{ }1 , , 2 , 1 , 2,1 , 1,0,1m Y Y= ∅ − − −  and  
( ) { } { } { } { }{ }2 , , 1 , 2,0 , 2,1 , 2,0,1m Y Y= ∅ − − − . Let the multifunctions  

( ) ( )*, : , ,ij ijF F X m Y m→  be defined by: 

( ) { } ( ) { } ( ) { }1 , 2,1 , 0,1F a F b F d= − = − =  

and 

( ) { } ( ) { } ( ) { }* * *1 , 2,1 , 0,1 .F a F c F d= = − =  

Then, F is upper M-asymmetric preirresolute and so upper M-asymmetric 
precontinuous, but, even thought F' is upper M-asymmetric precontinuous it is 
not upper M-asymmetric preirresolute.  

Theorem 3.8. For an upper M-asymmetric preirresolute multifunction  
( )( ) ( )( ): , ,ij ijF X m X Y m Y→ , , 1,2i j = ; i j≠ , at a point ox  in X with Y sa-

tisfy property B , the following properties hold: 
1) The set ( )F R+  is an ( )ijm X -preneighbourhood of ox  for any arbitrary 
( )ijm Y -preneighbourhood R of ( )oF x . 
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2) There is some ( )ijm X -preneighbourhood T of ox  such that ( )F T R⊆  
for any ( )ijm Y -preneighbourhood R of ( )oF x .  

Proof. 
1) Let R be an ( )ijm Y -preneighbourhood of ( )oF x , with ox  being a point 

in X. There exits an ( )ijm Y -preopen set G such that ( )oF x G R⊆ ⊆ . Since F is 
upper irresolute, ( ) ( )ox F G F R+ +∈ ⊆ . Consequently, ( )F R+  is an ( )ijm X - 
preneighbourhood of ox  as ( ) ( )ijF G m pO X+ ∈ . 

2) Let R be any ( )ijm Y -preneighbourhood of ( )oF x  with ox  being a point 
in X. Set ( )T F R+= , then from (i), T is an ( )ijm X -preneighbourhood of ox  
and by the hypothesis, ( )F T R⊆ .                                    

We next investigate some properties for lower M-asymmetric preirresolute 
multifunctions. 

Theorem 3.9. A multifunction ( )( ) ( )( ): , ,ij ijF X m X Y m Y→ , , 1,2i j = ; i j≠  
with Y satisfies property B , is lower M-asymmetric preirresolute at a point 

ox  in X if and only if ( )( )( )i jo m mx Int Cl F G−∈  for every ( )ijm Y -preopen set 
G for which ( )oG F x∩ ≠∅ . 

Proof. Suppose that ( )oF x G∩ ≠∅  for an ( )ijm Y -preopen set G. By as-
sumption, Lemma 2.14 and 2.16, ( )( )( )i jo m mx Int Cl F G−∈ . By Definition 3.1, 
we can find some ( )ijm X -preopen neighborhood O of ox  such that for each 
x O∈ , ( )F x G∩ ≠∅  and, ( )F G O− ⊇ . Since ( )ijG m pO Y∈  then,  

( ) ( )ijF G m pO X− ∈  and so, we infer that, the multifunction F is lower M-asy- 
mmetric preirresolute at a point ox  in X. 

On the other hand, suppose the multifunction F is a lower M-asymmetric 
preirresolute at a point ox  in X. Then by the hypothesis, there exists an  

( )ijm X -preopen neighborhood O of ox  such that for any ( )ijm Y -preopen set 
G with ( )oF x G∩ ≠∅ , ( )F x G∩ ≠∅  for x in O whence, ( )x O F G−∈ ⊆ . 
Since ( )ijO m pO X∈ , we consequently have by Lemma 2.18 and 2.19 that  

( ) ( ) ( )( ) ( )( )( )i j i jij m m m mx O m X pInt O Int Cl O Int Cl F G−∈ = = ⊆ .            
Theorem 3.10. A multifunction ( )( ) ( )( ): , ,ij ijF X m X Y m Y→ , , 1,2i j = ; 

i j≠  having Y satisfy property B  is lower M-asymmetric preirresolute at a 
point ox  of X if and only if for any ( )ijm X -preopen neighbourhood O of a 
point ox  and any ( )ijm Y -preopen set G with ( )oG F x∩ ≠∅ , there is some 

( )ijm X -open set GO  such that GO O⊆  and for any other point Gx O∈ ,  
( )F x G∩ ≠∅ . 
Proof. Let { }oxT O=  be a family of ( )ijm X -preopen neighbourhoods of a 

point ox  in X. Then, for any O T∈  with ox O∈  and ( )ijm Y -preopen set G 
satisfying ( )oF x G∩ ≠∅ , we can find an ( )ijm X -open set GO  such that  

GO O⊆  and for each Gx O∈ , ( )F x G∩ ≠∅ . Put G
O T

U O
∈

=


, then U is  

( )ijm X -open, by Theorem 3.9 ( )( )i jo m mx Cl Cl U∈  and for each x U∈ ,  
( )F x G∩ ≠∅ . Let { }oZ U x= ∪ , then ( )( )i jm mU Z Cl Cl U⊆ ⊆ . Henceforth, 

( )ijU m pO X∈ , ox Z∈  and for all x Z∈ , ( )F x G∩ ≠∅ , whence ( )Z F G−⊆ . 
Consequently, the multifunction F is lower M-asymmetric preirresolute a ox  in 
X. 
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Suppose the multifunction F is lower M-asymmetric preirresolute at ox  in 
X. Let O be an ( )ijm X -preopen neighbourhood of ox  and ( )ijG m pO Y∈  
be such that ( )oF x G∩ ≠∅ . Then, ( ) ( )( )( )i jo m mx F G Int Cl F G− −∈ ⊆  by 
Theorem 3.9. Since, ( )O F G−⊆ , ( )( )( )i jm mO Int Int F G−∩ ≠ ∅ . But then,  

( )( )( ) ( )( )( )i j j im m m mInt Int F G Int Cl F G− −⊆ , and so,  

( )( )( )i jm mO Int Cl F G+∩ ≠ ∅ . Put ( )( )( )i jG m mO O Int Int F G−= ∩ , then  

GO O⊆ , GO ≠ ∅  and ( )F x G∩ ≠∅  for every point Gx O∈ . As a result, GO  
is an ( )ijm X -open set.                                          

Theorem 3.11. For a multifunction ( )( ) ( )( ): , ,ij ijF X m X Y m Y→  , 1,2i j = ; 
i j≠ , with Y satisfying property B , the following properties are equivalent: 

1) F is lower M-asymmetric preirresolute; 
2) The set ( )F G−  is ( )ijm X -preopen for every ( )ijm Y -preopen set G; 
3) The set ( )F K+  is ( )ijm X -preclosed for any ( )ijm Y -preclosed set K; 
4) For any subset V of Y, the inclusion  

( ) ( )( ) ( ) ( )( )ij ijF m Y pCl V m X pCl F V+ +⊇  holds; 
5) The set inclusion ( ) ( )( ) ( ) ( )( )ij ijF m X pCl U m Y pCl F U⊆  holds for any 

subset U of X; 
6) Given any subset W of Y, ( ) ( )( ) ( ) ( )( )ij ijF m Y pInt W m X pInt F W− −⊆  

holds true.  
Proof.  
(1) ⇒  (2): Assume (1) holds. Let ( )oF x G∩ ≠∅  for an ( )ijm Y -preopen 

set G and point ox X∈ . Then, ( )ox F G−∈  and by Theorem 3.9,  
( )( )( )i jo m mx Int Cl F G−∈ . Since ( )ox F G−∈  was arbitrarily chosen, it follows 

that ( ) ( )( )( )i jm mF G Int Cl F G− −⊆  as a result, ( ) ( )ijF G m pO X− ∈  by Defi-
nition 2.6 (1). 

(2) ⇒  (3): Supposed (2) holds. Let K be an ( )ijm Y -preclosed set, then 
\Y K  is ( )ijm Y -preopen. Applying Lemma 2.13 and Lemma 2.15 we have, 

( ) ( ) ( ) ( )( )
( ) ( )( )

( ) ( )( )

\ \ \

\

\

ij

ij

ij

X F K F Y K m X pInt F Y K

m X pInt X F K

X m X pCl F K

+ − −

+

+

= =

=

=

 

By Lemma 2.19, ( ) ( )( ) ( ) ( )ij ijm X pCl F K m X pC X+ ∈ , as a result  
( ) ( ) ( )ijF K m X pC X+ ∈ . 

(3) ⇒  (4): Assume (3) holds. By Lemma 2.19, ( ) ( ) ( )ij ijm Y pCl V m pC Y∈  
for any subset V of Y. By the assumption, ( ) ( )( ) ( )ij ijF m Y pCl V m pC X+ ∈  as a 
result, 

( ) ( )( )
( ) ( ) ( ) ( ) ( ){ }

( ){ }( )
( ) ( )( )

: and \

: and \

ij

ij

ij

ij

m X pCl F V

F K F V F K X F K m pO X

F K V K Y K m pO Y

F m Y pCl V

+

+ + + +

+

+

= ⊆ ∈

⊆ ⊆ ∈

=
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Consequently ( ) ( )( )ijm X pCl F V+  is a subset of ( ) ( )( )ijF m Y pCl V+ . 
(4) ⇒  (5): For any subset U ≠ ∅  of X, set ( )V F U= , whence ( )U F V+⊆ . 

Supposed (iv) holds, then ( ) ( )( )( )ijU F m Y pCl F U+⊆ . By Lemma 2.19,  
( ) ( )( ) ( )ij ijm Y pCl F U m pC Y∈  and our hypothesis,  

( ) ( )( )( ) ( )ij ijF m Y pCl F U m pC X+ ∈ . Hence, 

( ) ( )( )( )
( ) ( ){ }( )

( ){ }( )
( ) ( ) ( ) ( ) ( ){ }

( ) ( )( ) ( ) ( )

: and \

: and \

: and \

.

ij

ij

ij

ij

ij ij

F m Y pCl F U

F K F U K Y K m pO Y

F K V K Y K m pO Y

F K F V F K X F K m pO X

m X pCl F V m X pCl U

+

+

+

+ + + +

+

= ⊆ ∈

= ⊆ ∈

⊇ ⊆ ∈

= ⊇







 

Clearly, ( ) ( )( ) ( ) ( )( )ij ijm Y pCl F U F m X pCl U⊇ . 
(5) ⇒  (6): If (5) holds, then we have by Lemma 2.15 and from Definition 

2.23 for any arbitrary subset W of Y that, 

( ) ( )( ) ( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( )( )

( ) ( )( )

\ \

\ \

\ \

\ \

.

ij ij

ij

ij

ij

ij

F m Y pInt W F Y m Y pCl Y W

X F m Y pCl Y W

X m X pCl F Y W

X m X pCl X F W

m X pInt F W

− −

+

+

−

−

=

=

⊆

=

=

 

And the result follows. 
(6) ⇒  (1): Suppose ( )oF x G∩ ≠∅  for any arbitrary ( )ijm Y -preopen set 

G and point ox  in X. Then, Lemma 2.19 and Lemma 2.20 implies  
( ) ( )ijG m Y pInt G= . Assume (6) holds, then  
( ) ( ) ( )( ) ( ) ( )( )o ij ijx F G F m Y pInt G m X pInt F G− − −∈ = ⊆ . Thus, there exists an 

( )ijm X -preopen neighborhood O of ox  such that ( )F x G∩ ≠∅  for every 
x O∈ . Hence, ( ) ( )ijF G m pO X− ∈  as a results, the multifunction F is a lower 
mij-asymmetric preirresolute at ox  in X.                               

Theorem 3.12. Let ( )( ) ( )( ): , ,ij ijF X m X Y m Y→ , , 1,2i j = ; i j≠  with Y 
satisfying property B  be a lower M-asymmetric preirresolute multifunction at 
a point ox  in X. Then, ( )F G−  is ( )ijm X -preopen if and only if for every 

( )ijm Y -preopen set G, there exists an ( )ijm X -preopen set O such that ox O∈  
and ( )F x G∩ ≠∅  for all x in O. 

Proof. Supposed that ( )oF x G∩  whence ( )ox F G−∈  for a point ox  in X 
and an ( )ijm Y -preopen set G. By our hypothesis, there is some ( )ijm X -preo- 
pen neighborhood O of ox  such that for any other x O∈ , ( )F x G∩ ≠∅ . Put  

( )
( )

x F G

O F G−

−∈

=


, then ( ) ( )ijF G m pO X− ∈  by Lemma 2.8. 

On the others hand, let us assume that ( )oF x G∩ ≠∅ , whence  
( ) ( )o ijx F G m pO X−∈ ∈  for every ( )ijm Y -preopen set G and point ox  in X. 

Set ( )F G O− =  then, ox O∈ . Hence, by our hypothesis ( )F x G∩ ≠∅  for any 
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other x O∈ , giving ( )F O G⊆ .                                  
As a consequence to Lemma 2.22 and Theorem 3.11, we have: 
Theorem 3.13. Let ( ) ( )( ) ( ) ( )( ): , , , , , ,i j ij i j ijF X m X X m Y→T T Q Q , , 1,2i j = ; 

i j≠  with ( ) ( )( ), , ,i j ijX m YQ Q  satisfying property B  be a multifunction. 
Then, the statements that follows are equivalent: 

1) F is lower M-asymmetric preirresolute; 
2) The inclusion ( ) ( )( )( )i jm mF G Int Cl F G− −⊆  holds for any ( )ijm Y -preo- 

pen set G; 
3) The set inclusion ( )( )( ) ( )

i jm mCl Int F K F K+ +⊆  holds for any given 
( )ijm Y -preclosed set K; 

4) ( )( )( ) ( ) ( )( )i jm m ijF Cl Int U m Y pCl F U⊆  for any given subset U of X; 

5) ( )( )( ) ( ) ( )( )i jm m ijCl Int F V F m Y pCl V+ +⊆  given a subset V of Y; 

6) ( ) ( )( ) ( )( )( )i jij m mF m Y pInt W Int Cl F W− −⊆  for any given subset W of Y.  
Proof.  
(1) ⇒  (2): Suppose (1) holds. Then, for some ( )ijm X -preopen neighbor-

hood O of an arbitrary point ox  and for any ( )ijm Y -preopen set G, we have by 
Theorem 3.11 and Lemma 2.22 that, 

( ) ( ) ( ) ( )( )
( ) ( )( )( )( )
( )( )( )

j i

i j

o ij ij

m m ij

m m

x m X pInt O m X pInt F G

Int Cl m X pInt F G

Int Cl F G

−

−

−

∈ ⊆

⊆

⊆

 

giving ( ) ( )( )( )i jm mF G Int Cl F G− −⊆ . 
(2) ⇒  (3): Assume (2) holds. Then, given an ( )ijm Y -preclosed set K ≠ ∅ , 

we have from Lemma 2.22 that, 

( ) ( ) ( ) ( )( )
( ) ( )( )

( ) ( )( )
( )( )( )

\ \ \

\

\

\
j j

ij

ij

ij

m m

X F K F Y K m X pInt F Y K

m X pInt X F K

X m X pCl F K

X Cl Int F K

+ − −

+

+

+

= ⊇

=

=

=

 

As result, ( )( )( ) ( )
i jm mCl Int F K F K+ +⊆  by Theorem 3.11. 

(3) ⇒  (4): Let U ≠ ∅  be any given subset of X. Suppose (3) holds. Since 
( )( ) ( )( )( )( )i j i jm m m mCl Int U F F Cl Int U+⊆ , we obtain from Theorem 3.11 that, 

( )( )( ) ( ) ( )( )( )( )
( ) ( )( )( )( )

( ) ( )( )

i j i jm m m m ij

ij

ij

F Cl Int U F Cl Int m X pCl U

F F m Y pCl F U

m Y pCl F U

−

⊆

⊆

=

 

And the implication follows. 
(4) ⇒  (5): Lets us assume (4) holds and let V ≠ ∅  be any subset of Y. 

Then, from Lemma 2.22, 
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( ) ( )( )
( ){ }( )

( ) ( ) ( ) ( ) ( ){ }
: and \

: and \

ij

ij

ij

F m Y pCl V

F K V K Y K m pO Y

F K F V F K X F K m pO X

+

+

+ + + +

= ⊆ ∈

⊇ ⊆ ∈





 

( ) ( ){ }
( ) ( )( ) ( )( )( )

: and \

i j

ij

ij m m

H F V H X H m pO X

m X pCl F V Cl Int F V

+

+ +

= ⊆ ∈

= =



 

Hence, the result follows. 
(5) ⇒  (6): Assume (5) holds, then given a subset W ≠ ∅  of Y we obtain 

from Lemma 2.13 and Lemma 2.22 that 

( )( )( ) ( ) ( )( )
( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( )( )

( ) ( )( )

\ \

\ \

\ \

\ \

i jm m ij

ij

ij

ij

ij

ij

Int Cl F W m X pInt F W

X m X pCl X F W

X m X pCl F Y W

X F m Y pCl Y W

F Y m Y pCl Y W

F m Y pInt W

− −

−

+

+

−

−

=

=

=

⊇

=

=

 

Thus, the implication holds. 
(6) ⇒  (1): Assume (6) holds. Let G ≠ ∅  be any ( )ijm Y -preopen set such 

that ( )oF x G∩ ≠∅ , whence ( )ox F G−∈  for an arbitrary point ox  in X. Then 
( )( )( )i jo m mx Int Cl F W−∈ , by Theorem 3.9. Hence,  

( ) ( )( )( )i jm mF G Int Cl F G− −⊆  and so, ( ) ( )ijF G m pO X− ∈ . Therefore, the mul-
tifunction F is lower M-asymmetric preirresolute at ox  in X.           

Remark 3.14. Example 3.7 clarifies the concepts of Theorem 3.9. We note that, 
the multifunction F so defined is lower M-asymmetric preirresolute and so lower 
M-asymmetric precontinuous but, *F  is a lower M-asymmetric precontinuous 
but not lower M-asymmetric preirresolute.  

4. Conclusion 

We have introduced and investigated a new form of point-to-set mappings namely; 
lower and upper M-asymmetric preirresolute multifunctions defined on weak 
form of asymmetric sets satisfying certain minimal structural conditions. Some 
relations between lower and upper M-asymmetric preirresolute multifunctions 
and, lower and upper M-asymmetric precontinuous multifunctions were estab-
lished. 
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