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Abstract 
The present paper gives the proof of the set of primes as continuum and eva-
luates the analytical formula for the integral of the inverse of the primes over 
the distance. First it starts with the density of the primes, shortly recapitulates 
the prime-number-formula and the complete-prime-number-formula, the proof 
of the set of primes as continuum. The theoretical evaluation is followed in 
annexes by numerical evaluation of the theoretical results and of different con-
stants, which represent inherent properties of the set of primes. 
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1. Introduction 

For the integrability of the inverse of the primes it is a prerequisite, that the set 
of primes represents a continuum, meaning that the difference between adjacent 
primes relative to the value of the prime (distance from the origin) approaches 
zero. 

In order to prove this prerequisite condition all steps starting with the density 
of the primes, their number and their distribution is shortly repeated, with ref-
erence to more detailed evaluations. 

First the density of the primes as inverse of the logarithm of the distance is 
repeated using the fundamental identity of Riemann (see ref. [1]), followed by 
the approximation of the integral of the density by summation. The error of 
this approximation is compensated by a recursive formula (see ref. [2]). This 
involves the evaluation of a constant factor as inherent property of the set of 
primes. 

The next step is the prime-number-formula and the proof, that this formula 
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represents the low limit function of the number of primes, including its disper-
sion around of the exact value, which is evaluated with the recursive formula, 
given by the complete-prime-number-formula (see ref. [2]). The standard devia-
tion of the dispersion is proportional to the number of primes present up to the 
square root of the distance. The factor of proportionality is again an inherent 
property of the set of the primes. 

The difference between the exact number of the primes over the distance and 
the corresponding value of the prime-number-formula is proportional to the 
square of the number of primes present up to the square root of the distance. 
The factor of proportionality is a further inherent number of the set of the 
primes. 

The fact, that the primes represent a continuum is proved by the fact, that 
within an interval equal to the square root of the distance, at any distance there 
is at least one prime present. This is achieved by reflecting the sets of the primes 
over a point at any distance (see ref. [3]), resulting the double density of occupa-
tion by the series of multiples of the primes. This reflection is used in the above 
reference to prove Goldbach’s conjecture and the infinity of k-tuples of primes, 
including twin primes. 

Finally, the integral of the inverse of the primes is achieved using the analogy 
of the evaluation of the inverse of integers resulting Euler’s constant. The proof, 
that the set of the primes represents a continuum, rendering the integral of the 
inverse of the primes as variable is a very important fact in prime number 
theory. 

2. Density of Primes 

For the local density of positions meeting the requirement of the first constrain, 
the constrain of non-divisibility, the following lemma is formulated: 

Lemma 2.1: 
The density of primes at the distance (c) from the origin corresponds to the 

density of positions left free by the union of the series of multiples of the first 
( ( ) ( )R c cπ= ) primes, for long distances it is approaching the inverse of the 
logarithm of the distance: ( ( )c1 ln ). 

This lemma may be proven two ways: 
Proof 1: The series of multiples (arithmetic progression) of any prime ( ( )nP ) 

covers a subset of all positive integer positions, representing the (
( )
1

P n
)-th part 

of all integer positions. The share of integer positions not covered by the series 

of multiples of each of these primes is: (
( )
11

P n
− ). The share of free positions is  

multiplicative. Therefore, starting with the first prime, up to the ( ( )R c )-th 
prime the share, or density of the remaining free positions—which are not cov-
ered by the union of the series of multiples of all the first ( ( )R c ) primes—is 
given by the Euler product. For the primes this gives: 
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( )

( )

1

11
R c

n nP=

 
 −
  

∏                         (2.1) 

The fundamental identity of Riemann (see ref. [1]) gives, for ( 1s = ) the iden-
tity of Euler, with (n) running though all positive integers and considering, that 
at ( ( )nc P= ) only the first ( ( )( )nR P ) primes are covering formerly free positions 
is: 

( )

( )

( ) ( ) ( )

11

11 1

2

1 1 1lim 1 lim d

1 1 1
ln lnln e

R c cc

c c nn n

x
P n x

c ccγ

γ

γ δ

−−

→∞ →∞ ==

       − = = +          

= = =
+ ⋅⋅

∑∏ ∫
       (2.2) 

The constant above is the Euler’s constant ( 0.577215664901532γ = ). This 
gives the product density of free integer positions at the distance ( ( )c P n= ), 
written with the constant of Mertens ( 2 eγδ = ) as the Euler-product. 

( )

( )

( )

1

2
11 1

1 1 1 1lim 1 lim d
ln

R c cc

c c nj j

x
P n x c

δ γ
−

→∞ →∞ ==

       ⋅ − = − = ⋅ =          
∑∏ ∫     (2.3) 

Proof 2: The Euler-product may be evaluated with the following recursions 
formula: 

( )
( )

( )

_
1

11
R c

free Eu
j j

D c
P=

 
 = −
  

∏ ; 
( )0_ 1free EuD = ; 

( ) ( )
( )

1_ _
11

n nfree Eu free Eu
n

D D
P−

 
 = ⋅ −
  

(2.4) 

This recursions formula may be written as follows: 

( ) ( )
( )

( )

( )
1

d
d

n

n n n

free

free free free free

D
D D D x x D x

x x+

 = + ⋅ ∆ = − ⋅ ∆ 
 

 if ( ) ( )1n nx P P+∆ = −

(2.5) 

The total density of occupation by the union series of multiples (arithmet-
ic progression) of all primes—following the location of the (n + 1)-th prime—is 
equal to the density of occupation by the series of multiples of all primes up 
to the location of the (n)-th prime plus the rise of the average density of oc-
cupation by the series of multiples of the (n)-th prime, if the prime ( ( )nP 1+ ) is 
reached. 

What is the analytical representation of the local density of free positions fol-
lowing the (n)-th prime in explicit form? To answer this question, the above re-
cursions formula must be transformed into a differential equation and solved. 

By this transformation the discrete integer variable ( ( )nP ) must be replaced by 
the continuous (real) variable (x) covering the set of all positive real numbers. 
The density of occupation by the series of multiples of the (n)-th prime is (1/x).  

The density of free positions decreases by ( ( )nfreeD
x

x
∆ ) if the next primes is 

reached. The transformed recursions formula is the following: 
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( ) ( )2
d
d

free
free

D x
D x x x

x x
  ⋅ ∆ = − ⋅ ∆ 
 

                (2.6) 

The differential equation of the local density of tree positions is herewith: 

( )
( ) ( )2

1 d d 1 1
d dfree

freefree

D x
x x D x xD x

− −  = = 
 

             (2.7) 

Integrated, the following solution for the logarithmically distributed “primes” 
is obtained: 

( )
d 1 1
d freex D x x

− −
= ; ( ) ( )

1
lnfreeD x

x C
=

+
; 1C =  for best fitting   (2.8) 

Equations (2.3) and (2.8) correspond to the lemma, concluding the proof. 

3. The Number of Primes 

De la Valée Poussin proved 1899, (ref. [1]), that the number of primes up to the 
distance (c) is given by the integral of the logarithmic density, which may be 
written as sum over all integers: 

( ) ( ) ( ) ( )2

1 d
ln

c

c Li c O c c
c

π = + ≈ ⋅∫ ; ( ) ( )2

1
ln

c

appr
n

c
c

π
=

≈ ∑       (3.1) 

This above sum may be written as summing up first over all integers within 
the sections of the length ( c ) and then summing up over all the ( c ) sections 
of the length ( c ). Taking the average value over each section and summing up 
over the sections is a first simplification (see Annex 2 and Annex 3), in the fol-
lowing used as sum over all sections: 

( ) ( ) ( )( ) ( )2 2 11

1 1
ln ln ln

j cc c c

appr
n j jn j c

cc
c n j c

π
⋅

= = == − ⋅

 
≈ = ≈ 

⋅  
∑ ∑ ∑ ∑        (3.2) 

The well proven prime-number-formula PNF results from a second simplifi-
cation of the above approximation by taking for each of the sections the smallest 
value of the density at ( j c= ): 

( ) ( ) ( ) ( ) ( )
1 1 lnln ln

c c

PNF
j j

c c cc S c
cj c c c

π
= =

> = = =
⋅ ⋅

∑ ∑       (3.3) 

The difference between the first simplification of the number of primes and 
the value resulting from the PNF, (ref. [2] [3]), is proportional to  
( ( ) ( )22R c S c= ), the square of the number of primes up to the distance ( c ): 

( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1 1

2

1

1
lnln ln ln

ln

c c c c

j j j j

c

c
j

c c c c
cj c c c j c

c S c R c
j c

γ

= = = =

=

− = − ⋅
⋅ ⋅ ⋅

= − = ⋅
⋅

∑ ∑ ∑ ∑

∑
     (3.4) 

because the value ( cγ ) quickly and asymptotically converges to a constant value 
(Annex 2): 
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c R c j c

c
c

R c j c

c c
R c j c

γ
=

=

=

 
 = ⋅ −
 ⋅ ⋅ 

 
 = ⋅ −
 ⋅ ⋅ 

 
 = ⋅ −
 ⋅ 

∑

∑

∑

             (3.5) 

Thus, the error of the second simplification resulting the PNF at the distance 
(c) is proportional to ( ( )2R c ), the square of the number of primes present at 
( c ). The factor of proportionality is ( 0.28313cγ = ). 

The relation between the error of the PNF at (c) and the square of the number 
of primes up to ( c ) is invariant. The constant factor of proportionality ( cγ ) is 
an inherent propriety of the number of primes. 

The systematic error of the PNF may be corrected by recursive application of 
a correction, resulting the complete-prime-number-formula (CPNF) below, eva-
luated and demonstrated in ref [2]: 

( ) ( )

1
1 12

1

1
2

1
1 1 1

2
ln

ln

m m

m

c c c
m

appr sec
j m j

c cc
j c

j c

π γ

 
  + + 

+

 
 
 

 
= = =  

 

 
 
 
 = + ⋅

  ⋅
  ⋅
    

∑ ∑ ∑       (3.6) 

This formula converges very fast: two steps with ( 2m = ) are already suffi-
cient. 

The factor ( 0.036765secγ = − )—as an inherent property of the set of primes—is 
evaluated in Annex 3. 

4. The Set of Primes as Continuum 

The proof of the fact, that the set of primes represents a continuum is based on 
the proof, that within an interval equal to the square root of the distance to the 
origin there is always at least on prime present. If this is the case, then the dif-
ference between consecutive primes is smaller than the double value of the in-
terval and—relative to the size of the distance—its value approaches zero with 
the distance growing. 

For the proof, that within an interval equal to the square root of the distance 
there is always a prime present, the double density of occupation by the union of 
the series of multiples of the primes (arithmetic progression) is introduced. This 
double density of occupation is—as it is explained below—symmetric over the 
point of reflection. Consequently, if within the first interval of the length equal 
to the square root of the distance (c) there are primes present, then the same 
amount is present within the last interval of the same length just below ( 2 c⋅ ). 

Reflecting the series of multiples of any prime over a point at the distance (c) 
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from the origin results the double density of occupation by this prime if the 
prime is a relative prime to (c). This, because the positions covered by the 
straight and the reflected series of multiples are mutually exclusive, if (c) is 
equal to a prime. The integer positions remaining free by the double density of 
occupation represent equidistant primes to the point of reflection, composing 
diads (see ref. [2]). If any of the primes is dividend of the distance of the point 
of reflection (c), then the reflected series of multiples of this specific prime does 
not cover additional positions: The double density of occupation—with (c) as a 
prime—represents the minimum of positions left free by the double density of 
occupation. 

The local density of free positions left by the density of occupation by the 
straight series of multiples of primes at the distance (d, 2 d c< < ) below the  

point of reflection is (
( )

1
ln c d−

), by the reflected series it is (
( )

1
ln c d+

). The  

combined local density of free positions is evaluated in ref. [2] yielding with the 
constant ( 2 1.320324δ = ) having the double value of the twin prime constant 
(C2) defined by G. H. Hardy and John Littlewood, see ref. [4]: 

( ) ( ) ( ) ( )
2 2

2,
ln ln ln

localD c d
c d c d c

δ δ
= >

− ⋅ +
            (4.1) 

Similarly to the evaluation of the number of primes as simplification of the 
integral of the local logarithmic density of primes in (3.1), the best estimate of 
the local density of the diads results as simplification of the integral of the above 
density by taking the sum over all integers (this same generalization from the 
primes to the twins, respectively to the k-tuples was made already by Hardy and 
John Littlewood): 

( ) ( ) ( )
2

_
1 ln ln

c

diads appr
n

c
c d c d

δπ
=

≈
− ⋅ +∑               (4.2) 

This above sum may be written as summing up first over all integers within 
the sections of the length ( c ) and then summing up over all the ( c ) sections 
analogue to (3.2). Taking the average value over each section and—as a first 
simplification—summing over the sections gives the best estimate value of the 
number of diads: 

( ) ( ) ( )( )

( ) ( )

2
_

1 1

2

1

ln ln

ln ln 2

j cc

diads appr
j n j c

c

j

c
c n c n

c
j c c j c

δ
π

δ

⋅

= = − ⋅

=

=
− ⋅ +

⋅
≈

⋅ ⋅ ⋅ − ⋅

∑ ∑

∑
           (4.3) 

Similarly, to the second simplification in case of the primes in (3.3), the low 
limit of the best estimate number of diads results with the density taken for all 
sections of the length ( c ) at the upper limit of the sections at ( j c= ) the di-
ads-number-formula (DNF): 

( ) ( ) ( ) ( ) ( )
2 2

_ _ 2
1 lnln ln 2

c

diads appr low DNF
j

c cc c
cc c c c c

δ δ
π π

=

⋅ ⋅
= = =

⋅ ⋅ ⋅ − ⋅
∑  (4.4) 
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This function represents the absolute low limit of the best estimation of the 
number of diads at (c). This corresponds with the fact, that the standard devia-
tion of the dispersion of the effective number of diads around its best estimate 
value, divided by ( ( )R c )—the number of primes up to ( c )—converges to a 
constant value (see ref. [2]): 

( ) ( ) ( )

( )

2
_ _

_
1lim lim 0.018035diads appr c diads eff c

relc c c
SD c

c R cπ

π π
∆→∞ →∞

− 
= ⋅ =  

 
∑    (4.5) 

Therefore, the dispersion of the effective number of diads grows proportional 
to ( ( )2R c ). 

It is known, that at the distance (c) the difference between the effective num-
ber of primes ( ( )cπ ) and the PNF is proportional to the square of the number 
of primes up to ( c ), see (3.4) and ref. [2]: 

( ) ( ) ( )

2

ln
appr c

cc S c
c

π γ
 
 − = ⋅
 
 

 with the constant ( 0.28313cγ = )    (4.6) 

This identity allows to state, that the difference between the best estimate 
number of diads and the DNF is greater, than the distance (c) divided by the 
square of the logarithm of the distance ( ( )2ln c ), multiplied by a constant  
( 24 1.49524cδ λ⋅ ⋅ = ): 

( ) ( ) ( )

( ) ( ) ( )

_ _

2 2
2

1 lnln ln 2

diads diads appr diads low

c

j

c c c

c c
cc c j c

π π π

δ δ
=

∆ = −

⋅ ⋅
> −

⋅ ⋅ − ⋅
∑

          (4.7) 

Because of symmetry of the double density of occupation and with (4.2) follows: 

( ) ( ) ( ) ( ) ( ) ( )
( )

2 2 2 2
2 2

1ln lnln lnln

c

diads appr
j

c ccc c
c cc cj c

δ δ δ δ
π π

=

⋅ ⋅
∆ = − = ⋅ −

⋅
∑   (4.8) 

With (4.7) follows:  

( ) ( ) ( ) ( )( )
( )

( ) ( ) ( ) ( )

22 2
2

22 2
22 2 2 2

ln ln

4
ln ln ln ln

diads c

c
c

c S c R c
c c

cc c c
c c c c

δ δ
π γ

γ δδ δ
γ δ

∆ = ⋅ + ⋅ −

 ⋅ ⋅⋅ ⋅
 = + − = ⋅ ⋅ ⋅
 
 

     (4.9) 

The DNF (4.4) taken at (
2
c ) gives the number of diads within the first sec-

tion of the length ( c ). Because of symmetry in case of the double density of 
occupation the same amount of diads is present within the last section at 

( 2
2
cc⋅ − ) of the same length and they are growing to infinity: 

( )
2

2
_ _ 2 2

22

ln ln
2 4

diads appr last

c
cc

c c

δ δ
π

⋅ ⋅ ⋅
= =

   
      
   

           (4.10) 
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If in case of the double density of occupation at ( 2 c c⋅ − ) the number of 
free positions within the last section of the length ( c ) is rising without limit to 
infinity, then this is certainly the case as well within the larger distance of the 
length () and even more in case of the single density of occupation. 

The same is the case within the section of the length ( 2 c⋅ ) following ( 2 c⋅ ), 
respectively within the section of the length ( 2 c⋅ ) following (c). This, because 
the first free position covered by the series of multiples of the smallest possible  
prime greater then ( ( )( )R cP ), equal to ( ( )( )1R cP + ) is already greater than ( c c+ ). 

This smallest prime must be ( ( )( )1 1R cP c+ ≥ + ) in case ( ( )( )R cP ) and ( ( )( )1R cP + ) 

are twins. In this case ( ( )( )1 1R cP c+ ≥ + ) and the square of this smallest possible 

prime is already over ( c c+ ): 

( )( ) ( )( ) ( )( ) ( )( )

( ) ( )

2 2 2

1

2

1 4 4

1 4 1 4

2 1 4 4 4

2 1

R c R c R c R cP P P P

c c

c c c

c c c c

+
     = + = + ⋅ +
     

≥ − + ⋅ − +

= − ⋅ + + ⋅ − +

= + ⋅ + > +

        (4.11) 

Herewith the low limit of free positions left within the section of the size ( c ) 
following (c) is not smaller, than the number of free positions within the last 
section of the same size just below (c). 

It follows, that the set of the primes up to ( ( )( )R cP ) normed with this last prime 
represent—as limit—is a continuum, since for any prime within the set the fol-
lowing limit is valid: 

( ) ( )

( )

( ) ( ) ( )

( )

( )

( ) ( )

11 2 1 2 1 3p p p pp p

p p p p

P P P PP P

P P P P
++

+ ⋅ + − ⋅ +−
< = <      (4.12) 

( )

3lim 0
p

pP→∞
=  and herewith: ( ) ( )

( )

1lim 0p p

p
p

P P

P
+

→∞

−
=  

The knowledge of the function of the exact value of the number of the primes 
allows for the evaluation of the standard deviation of the effective number of the 
primes around the exact function, given in ref [2]. From the constancy of the 
relative value of the standard deviation follows the integrability on the inverse of 
the primes. 

Additionally, the following facts prove the infinity of the number of primes 
within the last section: 

One of the proofs of the infinity of the number of primes states, that there is 
always a new prime, since the product of all known primes plus one is certainly 
not divisible by any of the known primes. 

But the number equal to the product of all known primes less one is certainly 
another prime too. The two neighboring positions to the product of all known 
primes are twin primes. Their number is therefore infinite as well. 
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5. The Integral of the Inverse of the Primes 

With (4.12) the set of the series of multiples of all primes up to ( ( )( )R cP ) normed 
with even this last prime represents—as limit—a continuum. As an analogy for 
the integrability of the inverse of the primes the integral of the inverse of the in-
tegers giving the formula of Euler may be taken: 

( ) ( )
e

1 1

1 1lim d ln e ln
qq

q n
x q q

n x

γ

γ γ
⋅

→∞ =

= ⋅ = ⋅ = +∑ ∫ ; 0.5772156649015329γ =    (5.1) 

The value of the Euler constant accounts for the surface difference between 
the analytical function and the stair function corresponding to the summation, 
as shown in the figure below, with (q) an integer and (x) a real variable. The 
surface below the lower stair function of the harmonic series is obviously always 
smaller than the surface below the analytical function (1/x) see Figure 1. This 
difference accounts for ( γ ). 

In case of the primes a similar corresponding relation may be evaluated. 
Compared with the harmonic series, the surface between two primes the surface 
is smaller: 

( ) ( )

( )

( )( ) ( )( )
1

1
1

1 1 ln ln
p

p

P

p p
r Pp

P P
P r

+

+
=+

< < −∑                (5.2) 

Thus (
1
r

) must be replaced by (
( )

1
lnr r⋅

) in the integral. Relation (5.1) may 

be written for the primes—with the constant ( Pγ )—as follows: 

( ) ( )
( )

( )

( )( )( )

( )( )( ) ( )( )( )

1

11

1 1 d ln ln
ln

ln e ln ln ln

P

PP

Pp

P p
pp Ppp

e
p p

r P
P r r

P P

γ

γγ

γ
 
  

=

= = +
⋅

= ⋅ =

∑ ∫
          (5.3) 

The constant ( 1.261503Pγ = ) is evaluated in Annex 6, again an inherent 
property of the set of primes. 
 

 

Figure 1. Comparison of the contribution of the surface between two consecutive primes 
to the integral of the inverse of the real variables, resp. of the inverse of the primes. 
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The sum of the inverse of the primes approaches slowly a final value. The dis-
persion is decreasing with the distance, but for the evaluation of its standard 
deviation a larger set of primes should be used, as in the present paper. 
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Annexes 
Annex A1: Definition of Vectors and Variables for the Numeric  
Evaluation 

First some general functions and values are defined: Based on the requirement of 
the constrain of non-divisibility by all smaller primes, a set of consecutive primes 
is evaluated and written to a file. From this file they are read:  
( ( )READPRN "Primes _ large.prn"P = , ( )0 1P = ). 

The number of the primes in the set and their numbering are:  
( ( ) 1PN rows P= − , 5003713PN = , 1,2, , Pn N=  ). 

The complete-prime-number-formula CPNF is evaluated with the following 
routine (floor and ceil stand for round down and round up): 

( )exp_ : eXx = ; 0.036765secγ = − : ( ) 1
1_ exp , : exp_

2mc c m +
 =  
 

   (A1.1) 

πappr_ c( ) m 1←

S

1

floor c( )

j

c

ln j c⋅( )∑
=

←

∆ m( ) γsec.( )m

1

floor c_exp c m, ( )( )

j

floor
c_exp c m, ( )

ln j c_exp c m, ( )⋅( )




∑

=

⋅←

break ∆ m( ) 1<if

S S ∆ m( )−←

m m 1+←

m c<while

S ceil S( )←

:= *

 
For the evaluation of the number of the next smaller prime to the distance (c) 

the routine ( ( ),next lastn c n ) resulting the index (n) of the prime next to any integ-
er is needed ( ( ) ( )1n nP c P +≤ < ). The evaluation starts either at the last evaluated 
index ( lastn ), or at the index resulting from the complete-prime-number-for- 
mula (see A1.1 and ref. [2]). This, to shorten some of the evaluation processes. 
In case ( ( )nP ) is greater than the distance, the index is lowered. In case it is 
smaller, the index is risen until the corresponding prime is just smaller, or equal 
to the distance: 

nnext c nlast, ( )
n floor πappr_ c( )( )← nlast 1=if

n nlast← otherwise

Res n← c P n( )=if

n n 1−←

Res n←

P n( ) c>while P n( ) c>if

n n 1+←

Res n 1−←

P n( ) c<while P n( ) c<if

c 0≠if

Res 0← otherwise

:= *

       (A1.2) 
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Further functions are the formula evaluating the index of the next smaller 
prime to any distance and to the square root of any distance. 

( ) ( ),1eff nextS c n c= ; ( ) ( ),1eff nextR c n c= ; ( ) ( )ln
cS c
c

= ; ( ) ( )ln
cR c
c

= (A1.3) 

For the visualization of the results of the analysis the functions will be taken at 
sparse values, at distances corresponding to multiples of the square root of the 
largest prime considered. 

( )( )Psp Nfloor P∆∆ = ; ( ) 2PN
limit

sp

P
k floor

 
= − 

∆∆  
; 

1,2, , limitk k=  ; 
( )ksp spc k= ⋅ ∆∆                 (A1.4) 

The vectors of the indexes of the primes next smaller to these sparse distances 
(

( )
( )

( )1
k

sp spk k
spn n

P c P
+

   
   
   

< < ), respectively to their square root  

(
( )

( )
( )1

k
sp spk k

spn n
P c P

+
   
   
   

< < ), are evaluated as ( ( )spn c ) respectively as ( ( )spn c ). 

They are evaluated once and written to files. They are read from these files: 

( ) ( )
,1

k ksp next spn cπ  =
 

; 
( ) ( )_ ,1
k ksqr sp next spn cπ  =   

         (A1.5) 

( )WRITEPRN "index_distance_sp.prn" spπ= ; 

( )REDPRN "index_distance sp.prn"spπ = −  

( ) _WRITEPRN "index_distance_sqr_sp.prn" sqr spπ=  

( )_ REDPRN "index_distance sqr_sp.prn"sqr spπ = −  

Annex A2: Evaluation of the Number of Primes as Sum over  
Sections 

The number of primes as sum over sections is evaluated with (3.2) as a first sim-
plification: 

( ) ( )
( )

_
1 ln

floor c

sec appr
j

cc
j c

π
=

=
⋅

∑                 (A2.1) 

The number of primes resulting from the second simplification (3.3) results 
the PNF. The difference between the first and the second simplification results 
the error of the PNF. At the instance (c) it is proportional to ( ( )2R c ), the square 
of the number of the series of multiples of primes, which are covering positions 
at the distance (c). The factor of proportionality is evaluated over the distance as 
follows: 

( ) ( ) ( )
( )

( ) ( )
( )

( )

_ _
_ _ 2

1

ln 1
lnln

sec appr
c appr

c

j

c S c
c

R c

cc c
c R ccj c

π
γ

=

−
=

 
 = − ⋅ ⋅
 ⋅ 
∑  
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( )
( ) ( )1

ln 1
2ln

c

j

c c
R cj c=

 
 = − ⋅
 ⋅ 
∑  

( )

( )( )
( )( )

( )( ) ( )

( )

_ _
1

ln1 1
2ln

sp k
k

k k

k k

ceil c
sp

c appr sp
j

sp sp

c
c

R c j c
γ

 
 
 

=

 
 

= ⋅ − 
⋅ 

 

∑     (A2.2) 

The factors are evaluated once and written to a file. They are read from this 
file:  

( ) _ _WRITEPRN "gamma_c_appr_sp.prn" c apprγ=  

( )_ _ REDPRN "gamma_c_appr_sp.prn"c apprγ =  

The factors are approaching a constant value:  

( )_ _ _ 0.28313
limitc appr c appr kγ γ= =  

as illustrated in Figure A2.1. 
The approximating function is evaluated at sparse distances, respectively at 

the next smaller prime to these distances (
( )

( )
( )1

k
sp spk k

spn n
P c P

+
   
   
   

< < ) with (2.2).  

They are evaluated as well at the square roots of these distances. The evaluation 
at the next smaller prime corresponding to each distance assures, that the eva-
luated numbers of the primes correspond exactly to the distances considered: 

( )
( )

_ _ _k
sp k

sec appr sec appr P
π

γ γ  
  

 
=  

  
; 

( )_
_ _ _

sqr sp k
sqr sec appr P

π
γ  

  

 
 
  

     (A2.3) 

They are evaluated once and written to files. They are read from these files: 

( ) _WRITEPRN "pr_sec_appr_sp_t.prn" sec apprπ= ;  

( )REDPRN "index_distance sp.prn"spπ = −  

( ) _ _WRITEPRN "pr_sqr_sec_appr_sp_t.prn" sqr sec apprπ=  

( )_ _ REDPRN "pr_sqr_sec_appr_sp_t.prn"sqr sec apprπ =  

 

 

Figure A2.1. Relation of the error of the prime-number-formula to the square of the 
number of the series of multiples of primes, which are covering positions, over the dis-
tance. 
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Annex A3: Evaluation of the Factor of Correction of the First  
Simplification 

The result of the first simplification (3.2) giving the sum over the sections of the 
density of primes has an error. This error is proportional to the number of 
primes up to ( c ). The error relative to ( ( )cπ ) results the factor of correc-
tion. Assuming the factor of correction ( secγ ) is constant over the distance (c), it 
may be evaluated as relation of the average error to the effective number of 
primes ( ( ) ( )kspcπ π= ). The average error is: 

( ) ( ) ( )_k k ksec sec appr spπ π π∆ = − ; 
( ) ( )_

1

1
k k

k

sec av sec
jk

π π
=

 ∆ = ⋅ ∆
 ∑     (A3.1) 

The value of the factor of correction is herewith: 

( ) ( )
( )

_sec av
sec

c
c

c

π
γ

π

∆
= ; 

( )

( )

( )

_

_
_ _

2
k

k
k

sec av

sec
sqr sec appr

π
γ

π

⋅ ∆
= ; 

( )._ 0.036765
k limitsec secγ γ= = −  

(A3.2) 

Figure A3.1 shows the independence of the factor of correction ( secγ ) from 
the distance. The averaging process (A3.1) to evaluate the factor of correction is 
therefore justified. This factor ( 0.036765secγ = − ) is invariant, an inherent prop-
erty of the prime numbers. It is important because it is applied in the recursive 
formula of the complete-prime-number-formula CPNF. 
 

  

Figure A3.1. Convergence of the relation of the average relative error of the first simpli-
fication (3.2) to the final constant value ( secγ ). 

Annex A4: Evaluation of the CPNF and the Error of the Second  
Simplification 

The results of the CPNF are evaluated with (A1.1) once at sparse values of the 
distance (

( )kspc ), written to a file are read from this file: 

( )
( )

_k
sp k

appr appr P
π

π π  
  

 
=  

  
                (A4.1) 

( )WRITEPRN "Pi_appr_sp.prn" apprπ= ; ( )REDPRN "Pi_appr sp.prn"apprπ = −  

Figure A4.1 indicates that the standard deviation of the dispersion of the ef-
fective number of primes around its approximation is rising proportionally to 
( ( )R c ), the number of the series of multiples of primes, which are covering in-
teger positions at this distance (c). The dispersion of the evaluated values relative 
to the effective number of primes at ( c ) is about constant over the distances 
up to (c): There is no systematic error. 
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Figure A4.1. The relative dispersion of the difference between the effective number of 
primes and its value evaluated with the complete-prime-number-formula (CPNF) and the 

relation of the error of the PNF to ( ( )2R c ). 

 

( )

( ) ( )

( )

_
k k

k

k

appr sp

appr rel

eff spR c

π π
π

−
∆ =

 
 

                (A4.2) 

With the results of the CPNF the factor of the proportionality ( _c apprγ ) of the 
error of the PNF relative to the square of the number of primes present up to 
( c ) evaluated in (A1.2) with (3.4), is reevaluated with the more exact differ-
ence as illustrated in Figure A4.1: 

( ) ( ) ( )
( )2

appr
c

c S c
c

R c

π
γ

−
= ; 

( )

( )
( )

( )

2

k
sp k

k

sp k

appr c

c

c

S

R

π
γ

 
  

 
  

−

= ; 
( )_ 0.28313
klimit

c cγ γ= =  (A4.3) 

Annex A5: Evaluation of the Standard Deviation of the Dispersion  
of the Effective Number of Primes around the CPNF 

The standard deviation SD of the relative dispersion (4.5) is evaluated as follows: 

( )

( ) ( )

( )

2

_ _ 2
1

1 j j

k

j

k appr sp

appr rel
j

eff sp

SD
k R c

π

π π
∆

=

 −
 = ⋅

 
 

∑             (A5.1) 

The results are evaluated once and written to a file. They are read from this 
file: 

( ) _ _WRITEPRN "SD_ prime_sqr_appr_rel.prn" appr relSD π∆∆ =  

( )_ _ REDPRN "SD_ prime_sqr_appr_rel.prn"appr relSD π∆ = ∆  

The average of the relation of the standard deviation converges to a final val-
ue, to the factor of proportionality (). This factor is evaluated as follows: 

( ) ( )_ _ _ _ _
1

1
k k

k

appr rel av appr rel
j

SD SD
kπ π∆ ∆

=

= ⋅∑             (A5.2) 

The results are evaluated once and written to a file. They are read from this 
file: 

( ) _ _WRITEPRN "SD_ prime_sqr_appr_rel_av.prn" _appr relSD avπ∆∆ =  

( )_ _ _ REDPRN "SD_ prime_sqr_appr_rel_av.prn"appr relSD avπ∆ = ∆  

The constant factor is equal to the final average value of the standard devia-
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tion at large distances. The figure below illustrates that the standard deviation is 
about constant over the distance. This fact rectifies taking the average over the 
whole distance for the evaluation: 

( )1_ _ _ _ 0.160989
klimitSD appr rel avF SDπ π −∆ ∆= =           (A5.3) 

Figure A5.1 indicates that the standard deviation of the dispersion of the ef-
fective number of primes around its approximation is rising proportionally to 
( ( )R c ), the number of the series of multiples of primes, which are covering in-
teger positions at this distance (c). The factor of proportionality ( _SDF π∆ ) is 
again an inherent property of the prime numbers. 
 

 

Figure A5.1. Dispersion of the standard deviation of the dispersion of the number of 
primes around its average, the resulting constant value ( _SDF π∆ ) 

Annex A6: Evaluation of the Constant of Integration and of the  
Dispersion of the Sum of the Inverse of the Primes around Its  
Approximation 

The value of the constant ( Pγ ) is evaluated the following way with the sum of 
the inverse of the primes: 

( )
( )1

1
n

n

inverse
p pP

π
=

= ∑ ; 
( )0_ _ 1sum P inverseS = ; 

( ) ( )
( )

1_ _ _ _
1

n nsum P inverse sum P inverse
n

S S
P−

= +

(A6.1) 

The results are evaluated once and written to a file. They are read from this file: 

( ) _ _WRITEPRN "sum_prime_inverse.prn" sum P inverseS=  

( )_ _ REDPRN "sum_prime_inverse.prn"sum P inverseS =  

The sum of the inverse of the primes gives for the largest prime considered 
( ( )PNP ) the value of the constant ( Pγ ): 

( ) ( )_ _ ln ln 1.261503
N PPP sum P inverse NS Pγ   = − =            (A6.2) 

For the graphical representation the evolution over the distance of the con-
stant at sparse indexes is: 

2,102, , Pnn N=  ; 
( ) ( ) ( )_ _ _ ln ln
nn nnP sum P inverse nnS Pγ   = −         (A6.3) 

The value of the constant ( Pγ ) converges in fact to a final value, as illustrated 
in the Figure A6.1 below. 
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Figure A6.1. The difference of the sum of the inverse of the primes and its approxima-
tion, resulting the constant of the integral. 
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