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Abstract 
In this article we improve a goodness-of-fit test, of the Kolmogorov-Smirnov 
type, for equally distributed- but not stationary-strongly dependent data. The 
test is based on the asymptotic behavior of the empirical process, which is 
much more complex than in the classical case. Applications to simulated data 
and discussion of the obtained results are provided. This is, to the best of our 
knowledge, the first result providing a general goodness of fit test for non- 
weakly dependent data. 
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1. Introduction 

Kolmogorov-Smirnov (KS, for short, in the sequel) is one of the best-known 
goodness-of-fit tests for iid samples following a continuous distribution. For a 
small or moderate sample size, the critical values of the KS statistic, given the 
level of significance (or the p-value for a given KS statistic) can be computed ex-
actly [1]. For large sample sizes, the asymptotic behavior of the empirical process, 
which we will recall later on, provide an approximation to the critical values. 
Several extensions of KS-type tests from the classical iid case to weakly depen-
dent data have been developed and there are substantial recent contributions in 
this regard (see for instance, [2] [3]). However, the literature does not provide 
such a test for strongly dependent (and non-stationary) data, which is of deep 
interest for some applications, as we will see later on. 

In previous work, we have used a model for strongly dependent and non-sta- 
tionary data, that can be used in a wide series of fields, and that allows to develop 
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different techniques, such as High Level Exceedances [4], statistics on the mean 
of a random field [5], non-parametric regression [6], or asymptotic behavior of 
extremes [7]. 

The basic idea used in such a model is that data depends on two independent 
components, one of which is merely random noise iid and the other, which spe-
cifies the “state” of the system under observation, is categorical, but non-statio- 
nary and strongly dependent. For instance, if our data is the maximum wind 
speed in a given 10-minute period, different combinations of meteorological va-
riables define a finite possible number of “states” of the atmosphere. These states 
do not determine the wind speed, but have a clear influence on the maximum 
speed. In general, atmosphere states are not stationary and may present strong 
correlations with data from many years ago, while each year corresponds to 
52,560 periods of ten minutes, and therefore, a strong dependency structure 
must be taken into account. 

As mentioned before, the KS test, and other goodness of fit tests are based on 
the theory of empirical processes [8]. In particular, the statistic of the KS test 
leads to consistency against any fixed alternative, thanks to the first theorem 
concerning the asymptotic behavior of the empirical process for large sample 
size: the well-known Glivenko-Cantelli theorem. The computation of critical 
values for the KS test in the case of large sample sizes relies on the second fun-
damental theorem of the asymptotic theory of empirical processes, namely, the 
Donsker invariance principle [9]. Finally, for some more intricate asymptotic 
computations, the so-called Hungarian embedding [10] [11] [12] [13] [14] due 
to Komlós-Major-Tusnády (KMT for short, in the sequel) is a powerful tool. 

Let us know recall in more detail these fundamental results. Consider an iid 
sequence of real random variables 1, , ,nX X   such that 1X  follows the con-
tinuous distribution F, and denote nF  the empirical distribution of the sample 

1, , nX X  defined by 

( ) { }1

1 1 ,
i

n
n X tiF t t

n ≤=
= ∀ ∈∑  . 

The Glivenko-Cantelli theorem establishes that 

( ) ( ) . .sup 0a s
t n nF t F t∈ − →


.  

If we denote by b the Brownian bridge process, defined as the continuous, 
centered, Gaussian stochastic process of continuous parameter in [ ]0,1  charac-
terized by the covariance structure ( )s tE b b s st= − , 0 1s t∀ ≤ ≤ ≤ , then Dons-
ker invariance principle shows that ( ) ( )( ) ( )

w
n F tnn F t F t b− → , where “ w→ ” 

denotes weak convergence as a stochastic process (in Prohorov metric), which in 
turn implies that 

( ) ( )( )
( )( ) [ ]( ) ( )0,1

sup

sup sup : 0

t n

t uF t un

P n F t F t x

P b x P b x Q x x

∈

∈ ∈

− ≥

→ ≥ = ≥ = ∀ ≥





,  

where Q is the tail of the well-known Kolmogorov-Smirnov distribution, allow-
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ing to the computation of the critical values x, given a level of significance, for 
the KS test when n is large. 

Finally, KMT provides a sequence of Brownian bridges ( )m

m
b

∈
 and a finite, 

non-negative random variable C such that 

( ) ( ) ( ) ( )
m
F t

n n

b
F t F t R t

n
= + + , with ( )

( )log
supt n

n
R t C

n∈ ≤


. 

2. Main Result 

We shall consider the following model: 1, , ,nX X   will be our data, with 
( ),i i iX f Yξ= , where ( )i i

ξ
∈ , ( )i i

Y Y
∈

=  , independent among them, ( )i i
ξ

∈  
iid, and ( )i i

Y Y
∈

=   satisfying: 

{ }1, ,iY k i∈ ∀ ∈  , 

1, ,j k∀ =   there exists a random variable 0jτ >  such that 

(H1) ( ) { } ( ). .
1

1 1
i

n a s
n jY j njj Y

n
τ τ==

= →∑ , where 1 1k
jj τ

=
=∑ . 

Thinking of iY  as the state of the system at time i, even if the process Y is not 
stationary, assumption (H1) means that the observed frequencies of any state 
are convergent on average (which holds true under seasonal effects or mono-
tonous trends), but since Y also exhibits strong dependence, the corresponding 
limits are random variables. 

The empirical distribution of our sample is:  

( ) { } ( ){ }

( ){ } { }( )
,

1 1

,
1 1

1 11 1

1 1 1

i i i

ii

n n

n X t f Y t
i i

k n

Y jf j t
j i

F t
n n

n

ξ

ξ

≤ ≤
= =

=≤
= =

= =

 =   

∑ ∑

∑ ∑
                  (1) 

Let us define for any n∈  and 1, ,j k=  ,  

( ) ( ){ } { }( ),
1

1 1 1
ii

n

n Y jf j t
j

A j
n ξ =≤

=

= ∑                     (2) 

Let us call S to the space of all the sequences taking values in { }1, ,k . Con-
sidering (H1), the subset of S defined by:  

( ) ( ) { } ( )
1

1/ , : 1 1, ,
i

n

Y i n jy j ni
i

y S j y y j k
n

τ τ= →∞∈
=

 Ω = ∈ = → ∀ = 
 

∑


  

fulfills that, 

( ) ( ) 1Y
Y YP P YΩ = ∈Ω =                       (3) 

therefore by conditioning ( )nA j  to Y y= , with ( )i i
y y

∈
=



, we can assume 
that Yy∈Ω  and, in such a case, by the independence of ( )i i

ξ
∈  and Y:  

( )( ) ( ){ } { },1, ,
1 1, ,

1/ ~ 1 1
ii

n

n y jf j tj k
i j k

A j Y y
n ξ =≤=

= =

 =  
 
∑





            (4) 

Remark 1 
It is a key fact that the k subsamples ( )( ){ }:

,
i

i i y j
f jξ

=
, 1, ,j k=  , are inde-
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pendent and each one of size ( ),nn j yτ . 
If we call jF  to the distribution of ( )0 ,f jξ  and assume that jF  is con-

tinuous we have that:  

( ){ } { }
( )

( ) ( ){ } { }

( ) ( ) ( )

, ,
1 1

,

,1 11 1 1 1
,

,

i ii i

n

n n
n

y j y jf j t f j t
i in

j
n j y n

n j y
n n j y

j y F t

ξ ξ

τ

τ
τ

τ

= =≤ ≤
= =

=

=

∑ ∑
        (5) 

where ( ),n

j
j y nFτ  is the empirical distribution of the subsample j of Remark 1, 

with distribution jF , which are independent among them. Then, from Gliven-
ko-Cantelli  

( ) ( ) ( ) ( ) ( ). .
,, , 1, ,

n

a sj j
n jj y n nj y F t y F t t j kττ τ→ ∀ ∈ =          (6) 

and  

( ) ( ) ( ) ( ) ( ) . .
,sup , 0

n

a sj j
t n jj y n nj y F t y F tττ τ∈ − →


           (7) 

Then, applying Equations (1) to (6) we have that: 

( ) ( )( )
( ) ( )( ) ( )

( ) ( ) ( ) ( )( )( ) ( )

( ) ( ) ( ) ( )( ) ( )

1

1

,1

,1

sup 0

sup 0 / d

sup , 0 / d

sup , 0 / d

1

Y

nY

nY

k j
t n j nj

k j Y
t n j nj

k j j Y
t n jj y n nj

k j j Y
t n jj y n nj

P F t F t

P F t F t Y y P y

P j y F t F t Y y P y

P j y F t F t Y y P y

τ

τ

τ

τ

τ τ

τ τ

∈ =

∈ =Ω

∈ =Ω

∈=Ω

− →

= − → =

= − → =

≥ − → =

=

∑

∑∫

∑∫

∑∫









 

(since each value of the last integrator equals one by (7)). 
In conclusion we get: 
Theorem 1  
Under the previous hypotheses, 

( ) ( ) . .
1sup 0k a sj

t n j njF t F tτ∈ =
− →∑



 

Remark 2 
It should be noticed that  

( )1
k j

jj F tτ
=∑                          (8) 

is a random mixture of the distributions , 1, ,jF j k=  . 
Let us look more closely to a very simple case. Assume that 2k =  (therefore, 

2 11τ τ= − ), and that 1τ  takes values 0 or 1 with ( )1 0P pτ = = , ( )1 1 1P pτ = = − , 
where 0 1p< < . 

Then, with probability p, when 1 0τ =  the random mixture (8) equals ( )2F t , 
and with probability 1 p− , when 1 1τ =  the random mixture (8) equals ( )1F t  
and hence, (8) is just an ordinary mixture of 1F  and 2F . 

The preceding result shows that a KS-type test will be consistent under any 
given alternative in this context, but to improve the test, computing the critical 
value for a given significance level (or p-values), we need a refinement of Theo-
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rem 1, providing the asymptotic distribution of the test statistic. This will be ob-
tained in Theorem 2. 

Given 1, ,j k=   fixed, then the sequence ( )( ),i i
f jξ

∈
 is iid with distribu-

tion jF  and therefore, calling j
nF  to its corresponding empirical distribution, 

that is: 

( ) ( ){ },1

1 1
i

nj
n f j tiF t

n ξ ≤=
= ∑ , 

then, from KMT, there exists one sequence of Brownian bridges ( ),m j

m
b

∈
 such 

as: 

( ) ( ) ( ) ( )
,
j

n j
F tj j j

n n

b
F t F t R t

n
= + + , 

where ( ) log
sup j j

t n
n

R t C
n∈ ≤



 and jC  is a finite and non-negative random 

variable. 
Remark 3 
Since the sequence of bridges ( ),m j

m
b

∈
 is originated by ( )( ),i i

f jξ
∈

, it de-
pends on ( )i i

ξ
∈ , which is independent of ( )i i

Y Y
∈

=  , and therefore, it must 
be taken into account that all the bridges ( ),

, 1, ,

m j

m j k
b

∈ = 
 are independent of Y.  

Let us then consider 0x ≥  and compute:  

( ) ( )

( ) ( ) ( )

1

1

sup

sup / d
Y

k
j

t n j
j

k
j Y

t n j
j

P n F t F t x

P n F t F t x Y y P y

τ

τ

∈
=

∈Ω
=

 
− ≥  

 
 

= − ≥ =  
 

∑

∑∫





       (9) 

Now, given that ( )i i
Y y y

∈
= =



,  

( ) ( ){ } { }

( )
( ) ( ){ } { }

,
1 1

,
1 1

1 1 1

,
1 1

,

ii

ii

k n

n y jf j t
j i

k n
n

y jf j t
j in

F t
n

j y
n j y

ξ

ξ

τ
τ

=≤
= =

=≤
= =

=

=

∑∑

∑ ∑
              (10) 

But (10), as a stochastic process, has the same distribution as:  

( ) ( )
( )

( ){ }
,

,1 1

1, 1
,

n

j
i

i n j yk

n f j tj in

j y
n j y

τ

ξ
τ

τ

=

≤= =
∑ ∑  

where ( )j
i i
ξ

∈
 is iid with distribution equal to that of 0ξ  and such that, when 

j varies, the sequences ( )j
i i
ξ

∈
 are independent among them. 

If we now return to Remark 3, building the Hungarian embedding for each 

( )j
i i
ξ

∈
, we may assume that the KMT representation for the empirical distribu-

tion is valid with a sequence of Brownian bridges ( ),

, 1, ,

m j

m j k
b

∈ = 

, that are not 
only independent with respect to Y but also independent among them when j 
varies. Therefore, as keeping the distribution unchanged does not affect the 
probabilities, we have that (9) equals to: 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )

( ) ( )

,
1

, ,

,
1

sup , / d

sup ,
,

/ d

nY

n
j

nY

k
j j Y

t n jn j y
j

n j y j
k F tj j

t n n j y
j n

j Y
j

P n j y F t F t x Y y P y

b
P n j y F t R t

n j y

F t x Y y P y

τ

τ

τ

τ τ

τ
τ

τ

∈Ω
=

∈Ω
=

 
− ≥ =  

 
  
  = + +    


− ≥ =



∑∫

∑∫





  (11) 

Considering in (11) that the terms ( ),n

j
n j yR τ  are negligible and that, as indi-

cated above, the distribution as a process of the summation is not changed (and  
therefore neither does the probability) if instead of ( )( ),

1, ,

nn j y

j k
b τ

= 

 we put  

( )
1, ,

j

j k
b

= 

 Brownian bridges independent among them and with respect to Y 
(and therefore with respect to the ( ),.n jτ  and jτ ), we have that (11) equals to:  

( )( ) ( ) ( )

( )
( )

( )( ) ( ) ( )

( )

1 1

1 1

sup , d
,

sup

j

Y

j

j
k k F tj Y

t n j
j j n

j
k k F tj

t n j
j j n

b
P n j y F t x P y

j y

b
P n j F t x

j

τ τ
τ

τ τ
τ

∈Ω
= =

∈
= =

 
 − + ≥
 
 
 
 = − + ≥
 
 

∑ ∑∫

∑ ∑





   (12) 

If we take the limit for n tending to infinity in (12), under the additional hy-
pothesis. 

(H2) The sequence of random vectors  
( )( ) ( )11, ,

, ,w
n j knj k

n j D D Dτ τ
=

− → =


  where D is a random vector in k , 
degenerated (since 1 0k

jj D
=

=∑ ), but the vectors of 1k−  obtained by the 
suppression of one of any of the k coordinates of D are not degenerated, and 
where D is independent of the Brownian bridges ( )

1, ,

j

j k
b

= 

, we finally have that 
(12) tends to: 

( ) ( )
1 1sup

j
j

F tk kj
t jj j

j

b
P D F t x

τ∈ = =

 
 + ≥
 
 

∑ ∑


 

Therefore we have: 
Theorem 2  
Under the previous hypotheses, 0x∀ ≥ :  

( ) ( )

( ) ( ) ( )

1

1 1

sup

sup :
j

k
j

t n j n
j

j
k k F tj

t j
j j j

P n F t F t x

b
P D F t x T x

τ

τ

∈
=

∈
= =

 
− ≥ →  

 
 
 + ≥ =
 
 

∑

∑ ∑





 

Remark 4 
The expression of ( )T x  can be computed by Monte Carlo as will be seen in 

the next section. 
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Remark 5 
Obviously, for practical purposes, jD  and jτ  should be often replaced by 

their empirical estimations. 

3. A Model for Simulated Data 

For our simulations, we will use the model of Example 2 of [7], with some minor 
modifications. 

Consider ( )1σ , ( )2σ  independent, such that 

( )( )1 1P σ δ= = , ( )( )1 2 1P σ δ= = − , ( )( )2 1P σ η= = ,  

( )( )2 2 1P σ η= = − , 0 1δ< < , 0 1η< < , and δ η≠ . 

Let ( ) ( )( ) ( ) ( )( )1 11 , 2 , , 1 , 2 ,n nσ σ σ σ   iid with the same distribution as 
( ) ( )( )1 , 2σ σ , and consider a fixed random variable U independent of  
( ) ( )( ) ( ) ( )( )1 11 , 2 , , 1 , 2 ,n nσ σ σ σ  , such that 

( ) ( )1 , 2 1 , 0 1P U p P U p p= = = = − < <  

and define  

( ):i iY Uσ=                          (13) 

Then 2k = , and: 

( ) { }11

11 1
i

n
n Yin
τ ==

= ∑  

Hence 

( ) ( ){ }
. .

1 11

11 / 1 ~ 1
i

n a s
n niU

n στ δ==
= →∑  

(by the Strong Law of Large Numbers), and in a similar way 

( ) ( ){ }
. .

2 11

11 / 2 ~ 1
i

n a s
n niU

n στ η==
= →∑ , and then ( ) . .

11 a s
n nτ τ→ , 

with  

1

if 1
if 2

U
U

δ
τ

η
=

=  =
                       (14) 

On the other hand, 

( ) { }21

12 1
i

n
n Yin
τ ==

= ∑  

and 

( ) ( ){ }
. .

1 21

12 / 1 ~ 1 1 ,
i

n a s
n niU

n στ δ==
= → −∑  

and 

( ) ( ){ }
. .

2 21

12 / 2 ~ 1 1 ,
i

n a s
n niU

n στ η==
= → −∑  

and then ( ) . .
22 a s

n nτ τ→ , with  
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2

1 if 1
1 if 2

U
U

δ
τ

η
− =

=  − =
                    (15) 

and thus, by (14) and (15), (H1) is satisfied. 
Now consider the bivariate random vector ( )( ) 1,2n j j

n jτ τ
=

− .  
Then 

( ) ( )( )

( ){ } ( ){ } ( )

1 2

11 1 1 21 1

1 , 2 / 1

1 1~ 1 , 1 1
i i

n n

n n w
ni i

n U

n n Z
n nσ σ

τ τ τ τ

δ δ= == =

− − =

    − − − →    
    
∑ ∑

 

a bivariate Gaussian, centered, degenerated random vector with covariance ma-
trix  

( ) ( )
( ) ( )
1 1
1 1

δ δ δ δ
δ δ δ δ

 − − − 
 − − − 

                     (16) 

by the ordinary Central Limit Theorem, and using the fact that 

( ){ } ( ){ }1 1 1 21 1 1,
i i

iσ σ= =+ = ∀ ∈ . 

On the other hand, 

( ) ( )( )

( ){ } ( ){ } ( )

1 2

22 1 2 21 1

1 , 2 / 2

1 1~ 1 , 1 1
i i

n n

n n w
ni i

n U

n n Z
n nσ σ

τ τ τ τ

η η= == =

− − =

    − − − →    
    
∑ ∑

 

a bivariate Gaussian, centered, degenerated random vector with covariance ma-
trix  

( ) ( )
( ) ( )
1 1
1 1

η η η η
η η η η

 − − − 
 − − − 

                    (17) 

Therefore, setting:  

1

2

if 1
if 2

Z U
D

Z U
=

=  =
                      (18) 

then D is a centered degenerated bivariate random vector, whose distribution is 
a mixture of Gaussian laws, and where the suppression of any of its two coordi-
nates is a non-degenerated one-dimensional mixture of Gaussian distributions. 

Furthermore, if we write down ( )1 2,D D D= , then it is very easy to check that 

2 1D D= − , and that 1D  may be represented as ( ) ( )1 22 1U W U W− + − , with 

1 2,W W  independent among them and with respect to U, such that  

( )( ) ( )( )1 2~ 0, 1 , ~ 0, 1W N W Nδ δ η η− −             (19) 

and therefore, (H2) is satisfied. 
Finally, consider F1 and F2, two continuous distributions such that 1 2F F≠ , 

and two independent sequences ( ) ( )1 1 1
1 , , , ~nV V iid F  , ( ) ( )2 2 2, , , ~n nV V iid F   

and set: 
1) If ( ) 1i Uσ = , ( )1

i iX V=   
2) If ( ) 2i Uσ = , ( )2

i iX V=   
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Then, as seen before, Theorem 1 and Theorem 2 apply to ( )i i
X

∈  and there-
fore, we will simulate large samples of such type of data (for different choices of 
the couple 1 2,F F ), improve the test of the KS type given by Theorem 2, and 
discuss the results. 

4. Application to Simulated Data 

Following the model of the previous secction we simulated large samples where 
the KS-type test provided by Theorem 2 was performed. 

We have chosen the required parameters in the following way:  
0.3, 0.3, 0.6p δ η= = = . With this choice, and assuming as the true model the 

corresponding mixture with F1 a ( )0,1N  distribution, and F2 a ( )3,1N  dis-
tribution, we simulated 4000 independent samples of size 500n =  of the true 
model to compute p-values by MonteCarlo. 

We also simulated an extra independent sample, following the true model, to 
apply our test. 

We proposed for fitting (i.e. , as H0 in our test) a similar mixture model but 
taking as F1 a Cauchy distribution with location parameter 0 and scale parameter 
1, and as F2 a Cauchy distribution with location parameter 3 and scale parameter 
1. 

In this context, the corresponding critical value for the KS statistic (maximal 
difference between the empirical distribution and the proposed one) was 0.3311402 
and MonteCarlo computations leads to a -value 0.0285p = , what clearly implies 
rejection. 

Figure 1 shows the comparison between the empirical distribution of the si-
mulated sample of the true model used for testing, and the theoretical distribu-
tion of the proposed model. The difference between them is notorious and in  
 

 
Figure 1. Proposed distribution vs empirical distribution based on simulated data of the 
true model. 
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particular, it should be noticed that the distribution of the proposed model, for 
larger values of the argument, is always clearly below the empirical distribution 
of the true model. This reflects the fact that the proposed model is much more 
heavy-tailed than the true model. 

5. Conclusions & Further Work 

As seen in the previous section, a KS-type test may be performed for non-sta- 
tionary and strongly dependent samples of large size. Its performance, both in 
terms of statistical efficiency and computational complexity is satisfactory. A 
large variety of real data may be analyzed using this tool and other related ones. 

In particular, in a forthcoming paper by the same authors, this goodness of fit 
test plays a key role in the determination of the number of components and rela-
tive weights of a mixture of extremal distributions. The previous paper [7] shows 
that these types of mixtures are suitable for extremal analysis of many environ-
mental data where non-stationarity and strong dependence appear. 

Another direction of further work is the extension of this paper to other test-
ing tools based on the asymptotic behavior of the empirical process and related 
statistical procedures. 
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