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Abstract 
This paper discusses how the infinite set of real numbers between 0 and 1 
could be represented by a countably infinite tree structure which would avoid 
Cantor’s diagonalization argument that the set of real numbers is not counta-
bly infinite. Likewise, countably infinite tree structures could represent all real 
numbers, and all points in any number of dimensions in multi-dimensional 
spaces. The objective of this paper is not to overturn previous research based 
on Cantor’s argument, but to suggest that this situation may be treated as a 
definitional or axiomatic choice. This paper proposes a “non-Cantorian” 
branch of cardinality theory, representing all these infinities with countably 
infinite tree structures. This approach would be consistent with the Conti-
nuum Hypothesis. 
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1. Introduction 

In 1891, Georg F. L. P. Cantor published a diagonalization argument to contend 
that the set of real numbers is not countably infinite [1]. He started by positing 
that the set of reals had been put into a countably infinite list and then used di-
agonalization to argue that there is a real number that is not included in such a 
list. His argument, that the real numbers have a higher order of infinity than the 
natural numbers, has been the foundation of much work on “transfinite num-
bers” since then. 

This paper presents a counter-argument, discussing how the infinite set of real 

How to cite this paper: Jackson, P.C. (2023) 
The Infinity Tree: Representing Infinities of 
Real Numbers with Countably Infinite Tree 
Structures. Advances in Pure Mathematics, 
13, 198-205. 
https://doi.org/10.4236/apm.2023.134013 
 
Received: March 19, 2023 
Accepted: April 25, 2023 
Published: April 28, 2023 
 
Copyright © 2023 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/  

  
Open Access

https://www.scirp.org/journal/apm
https://doi.org/10.4236/apm.2023.134013
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/apm.2023.134013
http://creativecommons.org/licenses/by/4.0/


P. C. Jackson 
 

 

DOI: 10.4236/apm.2023.134013 199 Advances in Pure Mathematics 
 

numbers between 0 and 1 could be represented by a countably infinite tree 
structure (called an “infinity tree”) that would avoid Cantor’s diagonalization. 
This idea is then extended, to discuss how all the real numbers could be 
represented by a countable collection of infinity trees, and how infinity trees 
could represent all imaginary and complex numbers, and all points in any num-
ber of dimensions in multi-dimensional spaces. The cardinality of the nodes in 
this more elaborate combination of infinity trees would still be the countable in-
finity  .0 א

The objective of this paper is not to overturn previous research based on 
Cantor’s argument, but to suggest that this situation may be treated as a defini-
tional choice: If we define “countably infinite cardinality” as a property that can 
be represented by a countably infinite list of individual elements, each of count-
ably infinite length, then within this branch of cardinality theory we could pre-
serve and continue to develop the mathematics about different cardinalities of 
infinity that has been built on top of Cantor’s argument. 

On the other hand, if we define countably infinite cardinality as a property 
that can be represented by a data structure with a countably infinite number of 
elements, such as an infinity tree, then we have an opportunity to develop a 
non-Cantorian theory of infinity. 

2. A Thought Experiment 

Suppose we perform a thought experiment and construct an infinite tree struc-
ture as follows: 
• The root node has the label ●, representing a decimal point, implicitly pre-

ceded by 0. 
• Each node in the tree has pointers to 10 different nodes below it, labeled with 

the digits 0 through 9. The 10 nodes are unique to the node above them. No 
other node points to any of them. 

• The tree is not reentrant. No two nodes point to the same another node. 
There is no circular path between nodes. No node points to itself. 

This is just a simple infinite tree, with a branching factor of 10. Just a few of 
the nodes and branches of the first few levels of the “infinity tree” are shown in 
Figure 1. 

For the infinite tree, the following assertions hold: 
1) Every finite path from the root node to a descendant corresponds to a finite 

decimal number between 0 and 1. Therefore, every node below the root node 
also corresponds to a finite decimal number between 0.0 and 1.0, indicated by 
the path reaching it from the root node. 

2) The nodes in the tree are countably infinite, i.e., each node can be counted 
by a distinct, sequential natural number (1, 2, 3, …). This can be done by navi-
gating the tree breadth-first: The root node is counted 1. Its descendants are 
counted 2 through 11. The nodes at the next level down are counted 12 through 
111, and so forth, counting nodes breadth-first throughout the tree. Therefore,  

https://doi.org/10.4236/apm.2023.134013


P. C. Jackson 
 

 

DOI: 10.4236/apm.2023.134013 200 Advances in Pure Mathematics 
 

 
Figure 1. A simple infinity tree diagram. 

 
the set of all nodes in the infinite tree is countably infinite. 

3) The arcs in the tree are also countably infinite, in the same breadth-first 
manner since each node has exactly ten arcs going from it. 

4) For each non-root node N, there is a unique, finite path from the root node 
to node N. So, the number of finite paths to nodes in the tree is also countably 
infinite. 

5) Every infinite path descending from the root node of the tree corresponds 
to an infinite decimal fraction, from zero up to but not including 1. The tree can 
at most represent .99999999…and get infinitesimally close to 1. 

6) Every infinite decimal from 0 up to but not including 1 corresponds to an 
infinite path in the tree descending from the root node. 

7) So, a countably infinite set of nodes and arcs represents the infinite set of 
infinite paths from 0 downward through the tree. 

8) So, a countably infinite set of nodes and arcs in a tree represents the set of 
infinite decimals from 0 up to but not including 1. 

9) Therefore, the set of infinite decimals between 0 and 1.0 can be mapped to 
and represented by a countably infinite set of nodes and arcs. Any number be-
tween 0 and 1 can be reached to any desired degree of precision, with countably 
many nodes and arcs. 

To consider Cantor’s diagonalization in this context: The paths through the 
first n levels of the tree below its root node (which contains the decimal point) 
correspond to a list of all the decimals of length n, which would contain 10n 
rows. If we go through the first n rows of the list and diagonally choose a differ-
ent digit in each row, then the new sequence of digits that we have specified are 
somewhere in the remaining (10n − n) rows of the list. In effect, this jumps to a 
different row of the list. Cantor’s diagonalization does not show that a finite 
countable list does not contain all sequences of length n. It only shows that the 
first n rows of such a list cannot contain all sequences of length n. 

Cantor’s diagonalization does show that a hypothetical countably infinite list 
cannot contain every real number in the interval [0, 1) specified with all its digits 
completely. Even so, a countably infinite tree structure can contain every real 
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number in the interval [0, 1) specified with all its digits completely. 
One might argue that since the set of real numbers in this range is contained 

in the countably infinite set of nodes of the infinity tree, the set of real numbers 
in this range must therefore be countably infinite. 

If this argument cannot be proved or disproved, then we could treat this as a 
definitional choice, in different branches of cardinality theory: If we define 
countable cardinality as what can be represented by a countable list of individual 
elements, each element of perhaps infinite length, then within this branch of car-
dinality theory we would preserve and continue to develop the mathematics for 
different cardinalities of infinity that have been built on top of Cantor’s argument. 

If we define countably infinite cardinality as what can be represented by a data 
structure with a countably infinite number of elements, such as an infinity tree, 
then we have an opportunity to develop a non-Cantorian theory of infinity. 

Perhaps equivalently, we might treat this choice of definitions for countable 
cardinality as an axiomatic choice. 

3. Infinities of All Real Numbers and Multi-Dimensional 
Spaces 

The previous section focused on the interval [0, 1). Let us next consider the in-
finity of all real numbers, and the infinity of different multi-dimensional spaces. 
To begin, we suppose that the cardinality of the set of real numbers in the range 
[0, 1) is that of the natural numbers, which is conventionally represented by  .0 א
Symbolically, we would write: 

|[0,1)| =  0 א

More generally, for n ≥ 0: 

|[n, n + 1)| =  0 א

|(−n − 1, −n]| =  0 א

That is, we can envision a forest of infinity trees, with an infinity tree between 
each integer and its successor, and with each infinity tree being countably infi-
nite. Each tree in the forest can be uniquely indicated by the integer at the open 
boundary of the interval for the tree. For example, the tree representing the in-
terval [22, 23) can be indicated by 23. The tree representing the interval (−47, 
−46] can be indicated by −47. Since the number of nonzero integers is countably 
infinite, they together indicate a countably infinite forest of countably infinite 
trees. This forest of trees effectively represents the set of all real numbers. 

One might think that the cardinality of the forest must be greater than the 
cardinality of each infinity tree. Yet we could represent the forest with a combi-
nation of infinity trees, each containing a countably infinite number of nodes. 
And we could have another infinity tree to represent the possible axes for a mul-
ti-dimensional space of numbers, that could represent real numbers, imaginary 
numbers, complex numbers, etc. The cardinality of the nodes in this more ela-
borate, combination of infinity trees would still be the countable infinity  .0 א
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Figure 2 below illustrates this idea. Page space permits diagramming only two 
levels for each tree, though each infinity tree has as many levels as there are nat-
ural numbers.  

Let D be the number of dimensions for a multi-dimensional space. We first 
choose a number D ≥ 1 from an infinity tree for the countably infinite set of 
natural numbers. This involves taking any finite number of steps in the top in-
finity tree labeled Ω in Figure 2 to choose a value for D. For each dimension d 
such that 1 ≤ d ≤ D, we choose a specific, arbitrary integer coordinate value nd 
from either the infinity tree for the positive integers n ≥ 1 or the infinity tree for 
the negative integers n ≤ −1. This chooses an integer at the open boundary of an 
interval for the dimension d, i.e., either [nd − 1, nd ) or (nd, nd + 1], respectively. 
This also involves taking any finite number of steps in an infinity tree. These 
choices are illustrated by the tree labeled I in the middle of Figure 2. 

 

 
The above diagram shows infinity trees for representing spaces with any finite number of 
dimensions. The diagram uses a dashed line to show an option for choosing a space with 
0 dimensions. Similarly, the diagram could be altered to support specifying spaces with a 
negative number of dimensions, or a fractional number of dimensions. These are much 
less intuitive, yet might be useful in some contexts, e.g., considering ideas for dimensions 
of space within black holes or negative universes. 

Figure 2. Compound infinity tree diagram. 
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Finally, for each dimension d such that 1 ≤ d ≤ D, we choose a specific, arbi-
trary fractional coordinate value fd such that 0 ≤ fd < 1, from the infinity tree for 
the real numbers in the range [0, 1). This again involves taking any finite num-
ber of steps in an infinity tree. This choice is illustrated by the infinity tree la-
beled ● at the bottom of Figure 2. 

If nd ≥ 1, then we have effectively specified (nd −1 + fd) for dimension d. If nd ≤ 
−1, then we have effectively specified (nd + 1 − fd) for dimension d. The combi-
nation of finite paths that we have chosen through these infinity trees effectively 
specifies any point in any multi-dimensional space, to any finite desired degree 
of precision, using a finite number of steps. 

Since any location in these multi-dimensional spaces can be reached by navi-
gating an unlimited yet countable number of dimensions, and an unlimited yet 
countable number of locations in each dimension, the set of spatial locations in 
these multi-dimensional spaces is countably infinite. 

4. Relation to the Continuum Hypothesis 

Cantor advanced the Continuum Hypothesis in 1878, which states that “there is 
no set whose cardinality is strictly between that of the integers and the real 
numbers” [2]. Establishing the truth or falsity of the hypothesis was the first of 
Hilbert’s 23 problems [3]. Cantor was unable to prove or disprove the hypothesis 
during his lifetime, and it remains unproven to this date. In 1940, Gödel showed 
that the hypothesis is consistent with the axioms of set theory, including the 
Axiom of Choice [4]. In 1963, Cohen showed that the hypothesis “cannot be de-
rived from the other axioms of set theory, including the Axiom of Choice” [5]. 

The approach of this paper, which holds that the infinite cardinality of the real 
numbers can be represented by countably infinite tree structures, is actually 
consistent with the Continuum Hypothesis: there cannot be a set with cardinali-
ty between that of the integers and the real numbers if the set of integers and the 
set of real numbers have the same cardinality. 

5. Relation to Cantor’s 1874 Proof of Non-Denumerability 

In 1874, Cantor published a different proof [6] that the set of real numbers is not 
countably infinite, which did not use the diagonalization argument he published 
in 1891. He considered the set of all real algebraic numbers ω that are solutions 
to polynomial equations of the standard form 1

0 1 0n n
na a aω ω −+ + + = , where 

the coefficients are integers, the numbers n and a0 are positive, the coefficients ai 
do not have any common factors, and the equation is irreducible. 

Cantor showed that if the solutions to all these algebraic equations were put 
into an infinite ordered sequence, in one-to-one correspondence with the natu-
ral numbers, then the sequence would omit infinitely many transcendental real 
numbers that are not solutions of any algebraic equation. 

Cantor’s 1874 proof does not address or defeat this paper’s discussion regard-
ing an infinity tree providing a data structure with a countably infinite number 
of nodes that includes all the real numbers between 0 and 1. Nor does his 1874 

https://doi.org/10.4236/apm.2023.134013


P. C. Jackson 
 

 

DOI: 10.4236/apm.2023.134013 204 Advances in Pure Mathematics 
 

proof address or defeat this paper’s discussion in section 3 above, showing that a 
countably infinite collection of infinity trees each with a countably infinite 
number of nodes could include all the real numbers: The infinity tree for the 
range [0, 1) has the property that any node n at a level l of the tree has a counta-
ble infinity of nodes below it which represent all possible continuations of frac-
tions from node n. 

6. Historical Notes 

Some mathematicians (e.g., Kronecker, Poincare) resisted Cantor’s theory of 
transfinite numbers [7]. However, others (e.g., Hilbert) accepted Cantor’s theory 
[8], and by now it is widely accepted by mathematicians. 

I learned about Cantor’s diagonalization over 50 years ago and accepted it at 
the time. However, after watching a television program [9] one evening in 2022, 
I went to sleep and awoke in the middle of the night with the idea that a tree 
structure might be a possible way to avoid Cantor’s diagonalization. 

7. Conclusions 

The countably infinite set of nodes of an infinity tree can represent all the digits 
of all the decimal numbers between any integer and its successor, and a counta-
bly infinite collection of infinity trees can represent all the real numbers. So, it 
would be reasonable to have a “non-Cantorian” branch of cardinality theory 
with a definition of countability allowing the set of real numbers to be consi-
dered as countably infinite. 

This would be consistent with Cantor’s Continuum Hypothesis, which holds 
that “there is no set whose cardinality is strictly between that of the integers and 
the real numbers.” 

A higher-level infinity tree can provide a countably infinite representation for 
any number of dimensions in a multi-dimensional space. 

It does not appear that this paper’s non-Cantorian theory of infinity would 
have any consequences for the natural sciences or other branches of mathemat-
ics, even though concepts of infinity may play a role in theoretical physics and 
cosmology [10] [11]. It does not affect how calculations are performed, nor what 
results are obtained. 
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