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Abstract 
Sums of convergent series for any desired number of terms, which may be in-
finite, are estimated very accurately by establishing definite rational polyno-
mials. For infinite number of terms the sum infinite is obtained by taking the 
asymptotic limit of the rational polynomial. A rational function with second- 
degree polynomials both in the numerator and denominator is found to pro-
duce excellent results. Sums of series with different characteristics such as al-
ternating signs are considered for testing the performance of the proposed 
approach. 
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1. Introduction 

In his well-known book Methodus Differentialis [1] Stirling (1692-1770) made 
substantial contributions to summation of infinite series, interpolation, and qu-
adrature calculations. By a novel approach, a given series is re-arranged to yield 
the remaining sum after a definite number of terms. More importantly, the 
transformed series converges much more rapidly and if used for calculation of 
the remaining sum after the first ten or twenty terms the convergence becomes 
even faster. Methodus Differentialis treats quite a number of special series and in 
the same vein presents the derivation of now famous Stirling formula for esti-
mating !n  for large values of n. 

Christiaan Huygens (1629-1695) was probably the first to use the idea of 
extrapolation to the limit for estimating π. Much later, in the early 20th century, 
Richardson [2] introduced a similar concept for accelerating the convergence 
rate in finite-difference solution of definite problems involving differential equa-
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tions. Richardson and Gaunt [3] put the method on firmer mathematical grounds 
and termed it the deferred approach to the limit. In essence, the method assumes 
that numerically computed derivatives with different step-sizes at a point may be 
expressed as an analytical function and then obtains the most accurate value 
corresponding to zero step-size by a limiting process. This approach requires the 
selection of a definite function, typically a polynomial. Bulirsch and Stoer [4] 
used this idea together with rational polynomials to establish a numerical inte-
grator which gives accurate results for relatively large step sizes for the solution 
of ordinary differential equations. 

Nyengeri et al. [5] produced economized series truncated at relatively lower 
orders by the use of power series together with Chebyshev polynomials and then 
applied this approach to the solution of ordinary differential equations via Fro-
benius and Taylor methods. Abrarov et al. [6] introduced a method to approx-
imate the Fourier transform of a function as rational polynomials. 

The present work employs rational polynomials for predicting sums of series 
in a novel way by establishing a function to be used at discreet integer values 
which correspond to the number of terms. Accordingly, an appropriate rational 
polynomial is made to satisfy exactly the sums of a given series for a few selected 
number of terms and then this function is used to estimate the sums for any de-
sired number of terms, which may tend to infinity. Presently, only two different 
rational polynomials are employed to test the reliability of estimates for a variety 
of series. The rational polynomial composed of second-degree polynomials both 
in the numerator and denominator is found to produce estimates typically accu-
rate to the five or six decimal places. 

2. Rational Polynomials 

A rational polynomial is a function constructed by diving a polynomial to another 
polynomial: 
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where 0 1, , , na a a  and 0 1, , , mb b b  are coefficients of the polynomials ( )nP x  
and ( )mQ x , respectively. Rational polynomials typically have vertical and hori-
zontal asymptotes. Wherever the denominator ( )mQ x  is zero, there is a vertical 
asymptote and the rational polynomial ( )n

mR x  approaches either +∞  or 
−∞ . A horizontal asymptote is a horizontal line that the rational polynomial 

( )n
mR x  approaches as x tends to +∞  or −∞ . For the purpose of the present 

work it is essential that the rational polynomial used has a nonzero finite positive 
horizontal asymptote as x → +∞ . A necessary but not sufficient condition to 
achieve this is to equate the highest powers of polynomials in the numerator and 
denominator. Accordingly, the rational polynomials used here is of the form 
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so that 
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Before proceeding further an important detail must be clarified. Obviously, 
both the numerator and denominator of a rational polynomial may be divided 
by any nonzero quantity without incurring any change on the functional values 
of the rational polynomial. This indicates that not all coefficients expressing the 
rational polynomial can be selected as desired. Instead, out of 2 2n +  coeffi-
cients we can freely determine 2 1n +  coefficients. To implement this condition 
we divide the numerator and denominator of (2) by nb : 
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where the divided coefficients k na b  for 0, ,k n=   and k nb b  for  
0, , 1k n= −  are all denoted as ka  and kb  for the sake of convenience. Note 

that the asymptotic value of (4) for x → +∞  is simply na . Equation (4) is the 
general form of the rational polynomials to be used in this work and once the 
coefficient na  is determined the summation of the series for infinite number of 
terms is obtained. 

3. Rational Polynomial Formulations for Sums of Series 

Rational polynomials are now used as functions of discrete integers N instead of 
a continuously changing argument x. For a given number of terms of a series, 
say N, a corresponding definite sum S is assigned. Thus, for the argument N, 
which is an integer, the rational polynomial is expected to yield the sum S. For 
the present purposes two different rational polynomial formulations with high-
est powers of one and two; namely, ( )1

1R N  and ( )2
2R N , are considered. 

3.1. Rational Polynomial ( )R N1
1  

Following the general expression in Equation (4) we propose a rational poly-
nomial of the simplest form 

( )1 0 1
1

0

a a N
R N

b N
+

=
+

                       (5) 

to represent the sum of a given series for a given number of terms, N. As the ap-
proach is ultimately a curve-fitting process there are several choices to determine 
the coefficients 0a , 1a , and 0b  by the use of given data. Cooper [7] presents 
an excellent work on rational polynomial fitting and determination of coeffi-
cients by a number of different algorithms. Here, for demonstration purposes 
only we follow the simplest possible method and determine the coefficients by 
exactly satisfying three different data pairs. This approach may also be called the 
collocation method, where definite points are satisfied exactly as in the approx-
imate solution of differential equations. 
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Supposing that we are to satisfy the data pairs ( )1 1,N S , ( )2 2,N S , and 
( )3 3,N S , which represent the number of terms taken in the series under consid-
eration and the corresponding summation, we then have 

0 1 1 0 1 2 0 1 3
1 2 3

0 1 0 2 0 3

, , ,
a a N a a N a a N

S S S
b N b N b N
+ + +

= = =
+ + +

           (6) 

for the collocation points ( )1 1,N S , ( )2 2,N S , and ( )3 3,N S . Solving the above 
set of equations yields 
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3.2. Rational Polynomial ( )R N2
2  

A much better approximation can be achieved by taking a second-order poly-
nomial both in the numerator and denominator: 
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It is now possible to satisfy five different collocation points ( )1 1,N S , ( )2 2,N S , 

( )1 1,N S , ( )2 2,N S , ( )3 3,N S  and the coefficients are expressed as 
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where 
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It is also possible to try rational functions such as  
( ) ( ) ( )0 1 0 1e ee N N

eR N a a b bα β= + +  but the results are not as good as those ob-
tained from rational polynomials. Therefore, only the rational polynomials are 
considered. 

4. Applications to Special Series 

The rational polynomial approximations, ( )1
1R N  and ( )2

2R N , to estimate se-
ries summations are now applied to four different special series taken from the 
classic studies. 

4.1. Zeta Function 

The first application is to the well-known series introduced by Euler (1707-1783) 
([8], p. 139). This series was extended to imaginary domain by Riemann and 
now known as Riemann's zeta function: 
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where p is an integer. For even powers 2,4,6,p =  , Euler obtained the sums 
in closed forms: 
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We now use ( )1
1R N  and ( )2

2R N  to obtain estimates for ( )2 Nζ . To estab-
lish the approximate function ( )1

1R N  it is necessary to select three collocation 
points, which are taken as 1 1N = , 2 7N = , and 3 15N =  with corresponding 
summations 1 1S = , 2 2

2 1 1 2 1 7 1.511797S = + + + = , and  
2 2

3 1 1 2 1 15 1.580440S = + + + = . Satisfying these three pairs exactly yields 

0 0.07957289a = − , 1 1.64538a = , and 0 0.5657849b =  as can be obtained from 
equation (7). The rational polynomial is then 

( )1
1

0.07957289 1.645358
0.56567849

NR N
N

− +
=

+
               (13) 

which gives ( )1
1 1 1R = , ( )1

1 7 1.511797R = , and ( )1
1 15 1.580440R =  as imposed. 

The selection of collocation points is arbitrary, in particular the first point need 
not be the first term in series but using it fixes the rational polynomial to the ex-
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act starting value. Making the selection with the first 15 - 20 terms evenly as is 
done here is usually enough for obtaining quite good estimates for sums. How-
ever, depending on the characteristics of the series considered, use of the same 
arbitrarily selected points would not give equally good results, especially for 

( )1
1R N , which satisfies only three points exactly. A separate work on optimal 

determination of coefficients by employing different approaches such as the 
least-squares should be useful. 

Figure 1 shows the numerically computed exact sums, the sum of infinite 
number of terms, which is termed here as the sum infinite, and the estimated 
sums from ( )1

1R N . The asymptotic limit of ( )1
1 1 1.645358R a∞ → = , which is 

the estimate for the sum infinity, compares well with Euler’s exact result 
( ) 2

2 6 1.644934ζ ∞ =π=  given in equation (12). Rational polynomial ( )1
1R N , 

the simplest possible function, shows and good agreement with exact sums over 
the entire range of terms from 1N =  to N →∞ . Since small differences can-
not be distinguished from Figure 1, Table 1 lists the exact sums up to a definite 
number of terms ( )2 Nζ  as obtained numerically and the corresponding esti-
mates predicted by ( )1

1R N  for nine different N values including N →∞ . Rel-
ative error percentage is computed as ( ) ( ) ( )1

2 1 2100 N R N Nζ ζ ⋅ −   and collo-
cation points, for which the errors are zero, are shown in red. 

 

 
Figure 1. Sum infinite ( )2ζ ∞  (blue line), computed exact sums ( )2 Nζ  (black line), and esti-

mated sums ( )1
1R N  (red circles). 

 
Table 1. Computed exact sums ( )2 Nζ  and estimates ( )1

1R N  for a range of N values between 1 and ∞  with collocation 

points colored red. 

N 1 4 7 10 15 30 60 100 ∞ 

( )2 Nζ
 1.00000 1.42361 1.51180 1.54977 1.58044 1.61215 1.62841 1.63498 1.64493 

( )1
1R N

 1.00000 1.42404 1.51180 1.54972 1.58044 1.61229 1.62867 1.63531 1.64536 

Error% 0.00000 −0.03009 0.00000 0.00310 0.00000 −0.00917 −0.01645 −0.01991 −0.02578 
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Summation estimates for the same series are now done by employing 
( )2

2R N . Besides the three collocation points already selected for ( )1
1R N  we se-

lect two more as ( )2,1.25  and ( )25,1.605724 . Then, using these five points in 
equations (9), (10) and (10), the coefficients are obtained as 0 0.010590a = , 

1 1.115741a = , 2 1.644933a = , 0 0.485085b = , 1 1.286180b = , which yield the 
following second-order rational polynomial 

( )
2

2
2 2

0.010590 1.115741 1.644933 .
0.485085 1.286180

N NR N
N N

+ +
=

+ +
          (14) 

At once it is seen that the predicted sum infinite 2 1.644933a =  agrees with 
Euler’s exact value ( ) 2

2 6 1.644934ζ ∞ =π=  to five decimal places. Since a 
graphical representation would be indistinguishable from Figure 1 the results 
are listed in Table 2 for clear comparisons. Again, the collocation points are 
shown in red. 

Note that the errors are all positive indicating that estimations consistently 
remain slightly below the computed exact values and the maximum error occurs 
for the sum infinite and only 0.00006% due to the disagreement in the sixth de-
cimal value, which cannot be seen in the table. Comparing these estimates with 
those of ( )1

1R N , the second-order approach ( )2
2R N  is absolutely superior and 

should be preferred. 

4.2. Brouncker Series 

In Methodus Differentialis, Proposition 2-Example 5, Stirling [1] considers a se-
ries which is attributed to Viscount Brouncker as a formulation for the quadra-
ture of hyperbola. The series is given by 

( ) ( ) ( )1

1 1 1 1 1 1 .
4 1 2 1 2 3 4 5 6 7 8 4 1 2

N

n
B N

n n N N=

= = + + + + +
− ⋅ ⋅ ⋅ ⋅ −∑    (15) 

Using his method of rendering the convergence of a series much faster Stirling 
[1] gives the sum infinite as ( ) 0.693147180B ∞ = , which is correct to nine de-
cimal places, and further points out that this sum is hyperbolic logarithm two; 
briefly, ln 2 . 

We now estimate the summations for various N values as well as the sum infi-
nite by employing the second-degree rational polynomial approach. To save 
space, the relatively inferior first-degree approach ( )1

1R N  is not considered 
anymore. For the Brouncker series using the same collocation points selected in  

 
Table 2. Computed exact sums ( )2 Nζ  and estimates ( )2

2R N  for a range of N values between 1 and ∞  with collocation 

points colored red. 

N 1 2 7 10 15 25 60 100 ∞ 

( )2 Nζ
 1.00000 1.25000 1.51180 1.54977 1.58044 1.60572 1.62841 1.63498 1.64493 

( )2
2R N

 1.00000 1.25000 1.51180 1.54977 1.58044 1.60572 1.62841 1.63498 1.64493 

Error% 0.00000 0.00000 0.00000 0.00002 0.00000 0.00000 0.00002 0.00004 0.00006 
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§4.1, ( )2
2R N  is established as 

( )
2

2
2 2

0.006566443 0.2957807 0.6931473 ,
0.2036055 0.7873834

N NR N
N N

+ +
=

+ +
       (16) 

which at once reveals the sum infinite as 2 0.6931473a =  correct to the six de-
cimal places. Let us remark that since the series converges relatively rapidly it is 
not necessary to extend the last collocation point to 25; but kept here as a part of 
the previous set of points. 

Table 3 gives the computed exact values for the Brouncker series and the cor-
responding estimates from Equation (16) with collocation points shown in red. 
Computations reveals that except for 3N =  and 4N =  (correct to five de-
cimals) all the estimates are correct to six decimal places within the range 1N =  
to ∞ . 

4.3. Series with Alternating Signs 

We now consider a series with alternating signs ( )A N  from Stirling [1], Prop-
osition 7-Example 1: 

( ) ( ) ( )1 1

1

1 11 1 11 .
2 1 3 5 7 2 1

n NN

n
A N

n N

− −

=

− −
= = − + − + +

− −∑            (17) 

The sum infinite is given as ( ) 4 0.78539816339A ∞ = =π , which is the area 
of the circle whose diameter is unity. Since the series has alternating signs the 
sum values zigzag about the sum infinite ( )A ∞ , overshooting and undershoot-
ing while getting closer and closer to it. This oscillatory character of the series 
therefore requires a slightly different approach hence two rational polynomial 
representations are formed: one by the use of odd-numbered and another from 
even-numbered collocation points. Thus, the former can predict the sums cor-
responding to the odd number of terms 1,3,5,N =  , while the latter those to 
the even number of terms 2,4,6,N =  . Both of them however converge to the 
same sum infinite ( )A ∞  from above and from below, respectively. Fig. 2 
shows the sum infinite ( )A ∞ , the numerically computed exact sums ( )A N , 
and the estimated sums from two different ( )2

2R N  functions which form up-
per and lower envelopes to the exact values. The asymptotic limit  

( )2
2 1 0.785398R a∞ → =  of both functions agrees to the six decimal places with 

the exact result 4 0.78539816339π = . Incidentally, the computational values 
could be obtained until six decimal places therefore it was not possible to make  

 
Table 3. Computed Brouncker sums ( )B N  and estimates ( )2

2R N  for a range of N values between 1 and ∞  with collocation 

points colored red. 

N 1 2 7 10 15 25 60 100 ∞ 

( )B N
 0.50000 0.58333 0.65871 0.66877 0.67676 0.68325 0.68900 0.69065 0.69315 

( )2
2R N

 0.50000 0.58333 0.65871 0.66877 0.67676 0.68325 0.68900 0.69065 0.69315 

Error% 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
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Figure 2. Sum infinite ( )A ∞  (blue line), computed exact sums ( )A N  (black dots), and esti-

mates ( )2
2R N  (orange and cyan lines). 

 
Table 4. Computed exact sums ( )A N  and estimates ( )2

2R N  for a range of odd N values between 1 and ∞  with collocation 

points colored red. 

N 1 3 7 13 25 33 45 99 ∞ 

( )A N
 1.00000 0.86667 0.82094 0.80460 0.79539 0.79297 0.79095 0.78792 0.78540 

( )2
2R N

 1.00000 0.86667 0.82093 0.80460 0.79539 0.79297 0.79095 0.78792 0.78540 

Error% 0.00000 0.00000 0.00025 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

 
comparisons with more decimals. 

First, using the odd-numbered collocation points 1 1N = , 2 3N = , 3 13N = , 

4 25N = , and 5 45N =  we establish the following ( )2
2R N  from equations (8) 

(9) and (10): 

( )
2

2
2 2

0.4427708 0.8865442 0.7853984 .
0.3041914 0.8105220

N NR N
N N

+ +
=

+ +
         (18) 

Note that the predicted sum infinite 2 0.7853984a =  is correct to the six de-
cimal places when compared with the exact result 4 0.78539816339π = . Table 
4 compares the performance of (18) against exact values for a range of odd term 
numbers. 

Second rational polynomial representing the lower sum values is established from 
the even-numbered collocation points 1 2N = , 2 4N = , 3 14N = , 4 26N = , and 

5 46N = : 

( )
2

2
2 2

0.0608380 0.2621761 0.7853977 .
0.2859991 0.6520864

N NR N
N N

+ +
=

+ +
         (19) 

In this case 2 0.7853977a =  differs only slightly from the 2 0.7853984a =  
obtained in (18) and they become identical when rounded to the six decimals. The 
comparisons made for (18) are now repeated for (19) but for even-numbered N  

https://doi.org/10.4236/apm.2023.134012


S. Beji 
 

 

DOI: 10.4236/apm.2023.134012 196 Advances in Pure Mathematics 
 

Table 5. Computed exact sums ( )A N  and estimates ( )2
2R N  for a range of even N values between 2 and ∞  with collocation 

points colored red. 

N 2 4 8 14 26 34 46 100 ∞ 

( )A N
 0.66667 0.72381 0.75427 0.76756 0.77579 0.77805 0.77996 0.78290 0.78540 

( )2
2R N

 0.66667 0.72381 0.75427 0.76756 0.77579 0.77805 0.77996 0.78290 0.78540 

Error% 0.00000 0.00000 −0.00010 0.00000 0.00000 0.00000 0.00000 0.00002 0.00000 

 
values in Table 5 as always the collocation points are shown in red. 

A notable point concerning the two rational approximations is that in the 
former case the sums are descending towards the sum infinity with increasing N 
values while in the latter case the opposite occurs and the values ascend towards 
the ultimate infinite sum. This upper and lower convergence patterns, which 
form envelopes, is visually quite clear from Figure 2 as well. 

An interesting series with alternating signs, attributed to Newton (1643-1727) 
by Stirling [1] in Proposition 3-Example 1 as a series that could be used for an 
accurate calculation of the circumference of a circle, is given by 

( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( )

1

1 1 1 1
2 4 3 1 2 4 2 1 2 4 1 1 2 4 1
1 1 1 1 1 1 1 11
3 5 7 9 11 13 15 2 4 3 1

1 1 1 .
2 4 2 1 2 4 1 1 2 4 1

N

n
C N

n n n n

N

N N N

=

= + − −
− − − − − − −

= + − − + + − − + +
− −

+ − −
− − − − −

∑

    (20) 

This series can be treated very similar to ( )A N  given in (17) only one must 
be careful in selecting the collocation points for establishing the rational poly-
nomials for the upper and lower estimates. Accordingly, 1 2N = , 2 6N = , 

3 10N = , etc. can be used for the upper estimates which would form the 
envelope for the upper sums while 1 4N = , 2 8N = , 3 12N = , etc. can be used 
for the lower estimates envelope. As always, these points need not be taken con-
secutively. For instance, computations performed by taking 1 2N = , 2 6N = , 

3 14N = , 4 30N = , 5 46N =  for the upper estimates and 1 4N = , 2 8N = , 

3 16N = , 4 32N = , 5 48N =  for the lower estimates yield a graph identical in 
appearance to Figure 2 and give the sum infinite estimates as  

( )2
2 2 1.110723R a∞ → =  and ( )2

2 2 1.110720R a∞ → = , respectively for the up-
per and lower estimate functions. Direct computations by taking 106 terms result 
in ( ) 1.110722C ∞ =  and increasing the number of terms does not change the 
result. In view of the agreement of the estimates with the direct computations 
the value obtained for the sum infinite, 1.11072, appears to be correct. Further, 
although not explicitly given in [1], this result can indeed be related to π, as im-
plied in Stirling’s claim that the series could be used for accurate calculation of 
the circumference of a circle. To a very good approximation we note that π can 
be computed as ( )2 2 2 2 1.11072 3.141590576C≈π ⋅ ∞ = ⋅ = , which agrees 
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with the correct value 3.141592654 to five decimal places. Thus, we may con-
clude that the exact value of sum infinite is ( ) 2 2C ∞ = π , which is 
1.110720735 to nine decimal places. 

5. Concluding Remarks 

A functional approach based on rational polynomials is presented to estimate 
the sum of a series for any given number of terms as well the ultimate sum for 
infinite number of terms or the sum infinite, as termed here. A rational poly-
nomial form composed of second-degree polynomials in the numerator and de-
nominator is found to be quite satisfactory for obtaining estimates correct to no 
less than five decimal places and even in some cases six decimal places. When 
the powers of today’s computational facilities are considered, the practical use of 
the approach introduced here is questionable; however, besides some theoretical 
considerations, there always arise possibilities to expand ideas into different 
areas where they may prove to be practically more useful. 
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