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Abstract 
By using the fractional complex transform and the bifurcation theory to the 
generalized fractional differential mBBM equation, we first transform this frac-
tional equation into a plane dynamic system, and then find its equilibrium 
points and first integral. Based on this, the phase portraits of the correspond-
ing plane dynamic system are given. According to the phase diagram charac-
teristics of the dynamic system, the periodic solution corresponds to the limit 
cycle or periodic closed orbit. Therefore, according to the phase portraits and 
the properties of elliptic functions, we obtain exact explicit parametric expres-
sions of smooth periodic wave solutions. This method can also be applied to 
other fractional equations. 
 

Keywords 
A Generalized Fractional Differential mBBM Equation, Traveling Wave  
Solution, Phase Portrait 

 

1. Introduction 

BBM (Benjamin-Bona-Mahoney) type equations are widely used in fluid me-
chanics. In this paper, we consider the generalized fractional differential mBBM 
equation 

( ) ( ) ( ) ( ) ( )2 3, , , , , 0,t x x xD u t x aD u t x bu t x D u t x cD u t xα α α α+ + + =         (1) 

where a, b and c are non-zero constants, and 0 1α< < , 0t > . When 1a c= =  
and 0 1α< < , Alzaidy [1] constructed the analytical solutions of Equation (1) 
by the fractional sub-equation method. Guo and Sirendaoerji [2] obtained the 
exact solutions of Equation (1) by using the auxiliary equation method. Feng [3] 
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introduced a new approach for seeking exact solutions of the space-time frac-
tional BBM equation. When 1α = , Equation (1) becomes the generalized diffe-
rential mBBM equation. Many different methods were used to investigate the 
BBM equation and mBBM equation (see, e.g., [4] [5] [6] [7]). These methods 
can only obtain partial solutions of the BBM type equations, and cannot explain 
the dynamic behavior of various traveling wave solutions. The limitations of 
these methods make it impossible for us to have a comprehensive and systematic 
understanding of the equations. Therefore, we will study the Equation (1) by 
using the bifurcation theory of plane dynamic system (see [8] [9] [10]).  

Fractional differential equations have been widely used to describe complex 
problems in science and engineering. For example, Wang, Long and Liu [11] 
studied the oscillatory theory for two classes of fractional neutral differential eq-
uations by using fractional calculus and the Laplace transform. The investigation 
of exact solutions of nonlinear evolution equations plays an important role in 
nonlinear mathematical physics. In recent years, many authors have applied the 
theory of plane dynamic systems to solve the travelling wave solutions of nonli-
near wave equations [12] [13]. The main goal of this paper is to show that the 
generalized fractional differential mBBM equation has some traveling wave solu-
tions by using the bifurcation theory of planar dynamical systems.  

This paper is organized as follows. In Section 2, we discuss the phase portraits 
of Equation (1). In Section 3, we obtain all the explicit exact expressions of smooth 
periodic traveling waves.  

2. Phase Portraits of Equation (1) 

In this paper, we consider the common fractional derivatives introduced by Khalil 
et al. [14]. The common fractional derivatives of order α  is defined as 

( )
( ) ( )1

0
limt

f t t f t
D f t

α
α

ε

ε

ε

−

→

+ −
=                   (2) 

for all 0 1α< < , 0t > . In order to find the traveling wave solutions, and in-
spired by [15], we make the following transformation 

( ) ( ), , ,k lu x t x tα αφ ξ ξ
α α

= = +                   (3) 

where k and l are non-zero constants, and 0 1α< < . By (3) and Theorem 2.2 of 
[14], it infers 

( )1 d d d ( ) .
d d dtD u t l l

t
α α φ ξ ξ φ ξ φ

ξ ξ
− ′= ⋅ = =                 (4) 

Similarly, it can be obtained 
3 3, .x xD u k D u kα αφ φ′ ′′′= =                       (5) 

Substituting (4) and (5) into Equation (1), it obtains 

( )3 2 0.ck bk ak lφ φ φ φ′′′ ′ ′+ + + =                    (6) 
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Then, integrating (6) and ignoring the integral constant, we find  

3
2 33

b ak l
ck ck

φ φ φ+′′ = − − .                     (7) 

Denote 23
bA
ck

= − , 3
ak lB
ck
+

= −  and let 
d
d

yφ
ξ
= . Then Equation (7) is equiv-

alent to the following planar Hamiltonian system 

3

d ,
d
d
d

y

y A B

φ
ξ

φ φ
ξ

 =

 = +


                         (8) 

with the first integral 

( ) 2 4 21,
2 4 2

A BH y y hφ φ φ= − − = .                  (9) 

Thus, the coefficient matrix of the linearized system of (8) is 

( ) 2

0 1
, .

3 0i i
i

M y
A B

φ
φ

 
=  + 

                    (10) 

And the determinant of ( ),i iM yφ  has the form 

( ) ( )2, 3 .i i iJ y A Bφ φ= − +                      (11)  

By the theory of planar dynamical systems [16], we know that for an equili-
brium point of a planar integrable system, if 0J < , then the equilibrium point 
is a saddle point; if 0J >  and ( )( )Trace , 0i iM yφ = , then it is a center point. 
Therefore, according to this theory and (10)-(11), we obtained the following 
propositions. 

Proposition 1. Suppose that 0AB > . The system (8) has only one equili-
brium point ( )0 0,0E . 

1) When 0A >  and 0B > , ( )0 0,0E  is a saddle point. 
2) When 0A <  and 0B < , ( )0 0,0E  is a center point.  
Proposition 2. Suppose that 0AB < . The system (8) has three equilibrium 

points ( )0 0,0E , 1 ,0BE
A

 
− −  
 

, 2 ,0BE
A

 
−  

 
.  

1) When 0A >  and 0B < , ( )0 0,0E  is a center point, 1 ,0BE
A

 
− −  
 

 and 

2 ,0BE
A

 
−  

 
 are two saddle points. 

2) When 0A <  and 0B > , ( )0 0,0E  is a saddle point, 1 ,0BE
A

 
− −  
 

 and 

2 ,0BE
A

 
−  

 
 are two center points. 

By Proposition 1 and Proposition 2, we obtain the following phase portraits of 
System (8), see Figure 1 and Figure 2. 
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(a) A > 0, B > 0                                           (b) A < 0, B < 0 

Figure 1. The phase portraits of the system (8) for AB > 0. 

 

 
(a) A > 0, B < 0                                           (b) A < 0, B > 0 

Figure 2. The phase portraits of the system (8) for AB < 0. 

3. Explicit Parametric Expressions of the Solutions of  
Equation (1) 

In this section, according to Figure 1 and Figure 2, and by applying the elliptic 
integral theory [17] and the direct integration method, all possible explicit pa-
rametric representations of the traveling wave solutions of Equation (1) will be 
given. 
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3.1. Consider Proposition 1 in Section 2 (See Figure 1) 

Suppose that 0A < , 0B < . In this case, we have the phase portraits of the sys-
tem (8) shown in Figure 1(b). Equation (1) has a family of smooth periodic 
wave solutions defined by ( ),H y hφ = , ( )0,h∈ +∞ . Denote 2 2B Ah∆ = − . 
Then 0B∆ > − > . By (9), we obtain the expressions of the closed orbits 

2 2 2 .
2
A B By

A A
φ φ

  − ∆ − − ∆
= − + −    

  
              (12) 

By using the first equation of (8), (12) and [17], we obtain 

2 2

1 d .
2

B
A

A

B B
A A

φ
φ ξ

φ φ

− − ∆

 
 
 

= − 
   − ∆ − − ∆

+ −         

∫  

Therefore, the parametric expression of the periodic solutions as follow 

4 , .
2

B BCn
A

φ ξ
 − − ∆ + ∆ = ∆
 ∆ 

 

3.2. Consider Proposition 2 in Section 2 (See Figure 2) 

Suppose that 0A > , 0B < . In this case, we have the phase portraits of the 
system (8) shown in Figure 2(a). Equation (1) has a family of smooth periodic  

wave solutions defined by ( ),H y hφ = , 
2

0,
4
Bh

A
 

∈ 
 

. Denote 2 2B Ah∆ = − . 

By (9), we obtain the expressions of the closed orbits 

2 .
2
A B B B By

A A A A
φ φ φ φ
    ∆ − − − ∆ − − ∆ ∆ −    = + + − −
    
    

 (13) 

By using the first equation of (8), (13) and [17], it infers the following parametric 
expression of the periodic solutions 

2

2

24 ,
2 2

,
24 , 1

2 2

B B Ah Bw sn h
A AAh

B Ahwsn h
Ah

ξ
φ

ξ

 − − ∆ − + ∆ −
−  

 =
 − +

−  
 

 

where 
2

B Bw
B

∆ − + − − ∆
=

− − ∆
. 

Suppose that 0A < , 0B > . In this case, we have the phase portraits of the 
system (8) shown in Figure 2(b). Equation (1) has two families of smooth periodic  

wave solutions defined by ( ),H y hφ = , 
2

,0
4
Bh

A
 

∈ 
 

. Denote 2 2B Ah∆ = − . 

By (9), we obtain the expressions of the closed orbits 
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2 .
2
A B B B By

A A A A
φ φ φ φ

    − − ∆ ∆ − ∆ − − − ∆    = − − − + +
    
    

 (14) 

By using the first equation of (8), (14) and [17], it infers  

d

.
2

B
A

B B B B
A A A A

A

φ

φ

φ φ φ φ

ξ

− − ∆

    − − ∆ ∆ − ∆ − − − ∆    − − + +
    
    

= −

∫

 

Thus, 

2

2

21 2 ,
2

,
21 2 ,
2

B Ahsn B Ah
B AhB

A B Ahsn B Ah
B Ah

α ξ

φ

α ξ

 − − +
 +− − ∆  =
 − + +
 + 

 

where 
B B

B B
α + ∆ + − ∆
=

+ ∆ − − ∆
. 
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