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Abstract 
This paper unfolds and reviews the theory of abstract algebra, field extensions 
and discusses various kinds of field extensions. Field extensions are said to be 
algebraic or transcendental. We pay much attention to algebraic extensions. 
Finally, we construct finite extensions of   and finite extensions of the 
function field over finite field p  using the notion of field completion, ana-
logous to field extensions. With the study of field extensions, considering any 
polynomial with coefficients in the field, we can find the roots of the poly-
nomial, and with the notion of algebraically closed fields, we have one field, F, 
where we can find the roots of any polynomial with coefficients in F. 
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1. Introduction 

Much of the history of math is trying to broaden our definition of numbers to 
help solve more equations. Is it possible to set up another number system? A 
branch of mathematics called abstract algebra makes it possible to understand 
this question. The biggest motivation in the history of the expansion of numbers 
is solving equations. When we consider the natural numbers, the equation 

1 2x + =  can be solved, but for the equation 2 1x + = , we encounter the need to 
define a new number system, the integers,   that include the solution of this 
equation. The same applies with the equation 2 1x =  when we consider the in-
tegers, so we define the rationals as a new number system where the solution of 
2 1x =  lies. The rationals do not include the solutions of 2 1 3x + = , we define 

How to cite this paper: Chibeti, S., Kyap-
wanyama, I., Phiri, H.M. and Kalunga, J. 
(2023) An Introduction to the Theory of 
Field Extensions. Advances in Pure Ma-
thematics, 13, 103-132. 
https://doi.org/10.4236/apm.2023.132006 
 
Received: December 12, 2022 
Accepted: February 25, 2023 
Published: February 28, 2023 
 
Copyright © 2023 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/apm
https://doi.org/10.4236/apm.2023.132006
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/apm.2023.132006
http://creativecommons.org/licenses/by/4.0/


S. Chibeti et al. 
 

 

DOI: 10.4236/apm.2023.132006 104 Advances in Pure Mathematics 
 

the real numbers by completing the rationals. The fundamental components of 
abstract algebra are groups, rings, and fields. In field theory, if we can perform 
basic arithmetic on a set, addition, subtraction, division and multiplication, the 
set is referred to as a field ([1]), the real numbers are an example of a field. Now 
when one takes into account the field of real numbers,   and the well-known 
simple equation 2 2 1x + =  with coefficients in  , the solutions of the equa-
tion do not lie in  . A natural question that arises is whether there is a larger 
field where the solutions of this equation lie. The answer proves to be yes, and 
this larger field is a field of complex numbers. Based on this, we regard the field 
of complex numbers,   as a field that extends the field of real numbers,  . 
We’re interested in field extensions because we are assured that given any equa-
tion with coefficients in a field, say L, the solutions of this equation lie in a larger 
field if it does not lie in L. We briefly give an insight into every chapter and high-
light some points in each section. 

Chapter 1, underlines some important concepts in our paper. We introduce 
the concept of a ring, which is key in understanding the concept of a field. Fi-
nally, the concept of polynomial rings is introduced, which will be encountered 
more often in our study of field extension, highlighting only key results. 

In Chapter 2, we introduce the concept of field extensions, from which we 
discuss various kinds of field extensions and some results. 

In Chapter 3, we sail through the notion of an algebraic extension, here we 
discuss what it takes to have an algebraically closed field and an algebraic closure 
of a field. To complement our discussion of algebraic extension, we briefly dis-
cuss transcendental extensions. 

Chapter 4 introduces the notion of an absolute value on a field and the crite-
rion for a field to be complete. Here we demonstrate that the notion of comple-
tion, is one way to obtain field extensions. 

In Chapter 5, we conclude our discussion of field extensions and give sugges-
tions of the possible future work. 

Basics and Results 

We’ll look at some basic ring and field properties in this section. These will come 
in handy when researching extension fields. Many results, theorems and defini-
tions are taken from [1] and [2]. 

Definition 1.1. ([1]) Create a set   with the addition and multiplication 
binary operations. If the following conditions are met,   is referred to as a 
ring.  

1) ( ),+  is group and for 0 1,a a ∈  we have 0 1 1 0a a a a+ = + .  
2) Multiplication in   is associative, for all 0 1 2, ,a a a ∈ ,  

( ) ( )0 1 2 0 1 2a a a a a a⋅ = ⋅ . 

3) In  , the two distributive laws apply, for all 0 1 2, ,a a a ∈ ,  

( )0 1 2 0 1 0 2a a a a a a a+ = +  and ( )1 2 0 1 0 2 0a a a a a a a+ = + . 
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Remark 1.2. Suppose that   is a ring and 0 1,a a ∈  be elements. If  

0 1 1 0a a a a= ,   is considered to be a commutative ring. If a multiplicative 
identity 1 exists such that for any 0a ∈   

0 0 01 1 ,a a a⋅ = ⋅ =  

then   is termed a ring with unity.   is a finite ring if it has a finite num-
ber of elements; otherwise, it is infinite. If 1  is a subset of   and a ring with 
the same operations as  , it is called a subring of  . We’ll assume the ring 
  is a ring with unity throughout this discussion.  

Example 1.3. The set denoted by,  ,  , and  , all contain an element, 1, 
and they satisfy the axioms stated in Definition 1.1, they are rings with unity and 
they are infinite.  

Definition 1.4. ([1]) Let two nonzero elements 0a  and 1a  be elements of 
ring  . If   is commutative, then 0a  is referred to as a zero divisor if 

0 1 0a a = .  
Suppose that   is a commutative ring, If   contains no zero divisors, it 

is referred to as an integral domain, say ID. If in an ID, every nonzero element 
can be expressed uniquely as a product of irreducible elements (or prime ele-
ments), it is referred to as a Unique Factorization Domain, and we write (UFD).  

Definition 1.5. ([1]) A mapping between two rings :η ′→   is referred 
to as a ring homomorphism if the following conditions are met, for all 

0 1,a a ∈ , then 
1) ( ) ( ) ( )0 1 0 1a a a aη η η+ = +   
2) ( ) ( ) ( )0 1 0 1a a a aη η η=   
Elements of a ring   that map to the additive identity, 0 form a set and it is 

referred to as the kernel of the ring homomorphism, η . If the mapping in Defi-
nition 1.5 is bijective, then it referred to as an isomorphism we write  

.′≅   

Definition 1.6. ([1]) A subring of a ring   is said to be an ideal, I, of  , if 

0 0 0 0, a r r a I∈  for ever 0r ∈  and 0a I∈ . 
For a ring   and its ideal I, then the following two operations are defined in 

the quotient group I , suppose 0 1,a a ∈ , we have  

( ) ( ) ( )0 1 0 1a I a I a a I+ + + = + +  and ( )( ) ( )0 1 0 1a I a I a a I+ + = + . 

I  is referred to as the quotient ring of   by the ideal I. It is considered 
to be a principle ideal if I is created by a single element, say 0a , and we write 

0a . We refer to an integral domain that contains ideals that are principal, as a 
principal ideal domain. Suppose that there are no ideas between the ideal I and 
it's ring  , the ideal is maximal ideal of  .  

Definition 1.7. ([1]) A field F is a nonzero commutative ring such that 
{ }\ 0F  is a group under multiplication.  

In any field, we are assured of 0 and 1, and 0 1≠ , we therefore have that a 
field contains at least two elements. A subset of a field, L is has the operation of L 
and it is referred to as a subfield. A mapping of fields satisfying the axioms stated 
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in Definition 1.5 is called a homomorphism of fields and it is injective because 
its kernel is a proper ideal.  

Example 1.8. Since ⊂ ⊂   ,   contains the field  , hence its a sub-
field. Also   contains  , thus,   is also subfield of  , by transitivity 
property.  

Suppose the multiplicative identity and the additive identity of a field L are 
denoted by 1L and 0 respectively, then the field L contains elements of the addi-
tive group generated by 1L. As we generate the elements of L, we might get an 
additive identity in the process. Suppose the least number of times we have to 
add 1L to get 0 is k, then k is the characteristics of the field, L. If such a positive 
integer does not exist, the characteristic of, L, is said to be zero.  

Definition 1.9. ([1]) Let L be a field. The least positive integer, k that satisfies  

1 0Lk ⋅ =  

is referred to as the characteristic of L, and we write ( )Ch L k= .  
( ) 0Ch L =  if such a k does not exist.  

Proposition 1.10. ([1]) Let F be a field. The characteristic of F is either 0 or a 
prime number p.  

Proof. Assume that the characteristic of F, ( )Ch F k= , assuming 1k > , then 
1 0k ⋅ = . Now let 0 1k a a= , where 0 1,a a k< , then we have that  

( ) ( )( )0 1 0 11 0 1 1 0.a a a a⋅ = ⇒ ⋅ ⋅ =  

( )( )0 11 1 0a a⋅ ⋅ =  if and only if ( )1 0n ⋅ =  or ( )1 0m ⋅ = , the fact that k is the 
lowest positive integer, we have a contradiction.                         □ 

Theorem 1.11. ([2]) For a maximal ideal I and the ring  , I  is a field.  
Proof. See [2].                                                   □ 

Polynomial Rings 
Definition 1.12 [2] Consider a ring  . If   is commutative and has 1 then 
an object ( ) 0 1

n
ns z z zα α α= + + +  over  , where ia ∈  is referred to as 

a polynomial.   
From ( )s z , we call nα  the leading coefficient and ( )s z  is an n-degree. 

For ( )s z  to be monic, 1nα =  in ( )s z  and the collection of all polynomials 
is denoted by [ ]z . The addition is done component-wise and when we con-
sider, ( )s z  from Definition 1.12 and ( ) 0 1

m
mr z z zβ β β= + + + , multiplica-

tion is defined in this manner,  

( ) ( ) 0 1
n m

n ms z r z x zγ γ γ +
+= + + +  

where 0 0 0γ α β= , 1 1 0 0 1γ α β α β= + , 1 2 0 1 1 0 2γ α β α β α β= + + , when we generalize,  
we have 0

i
i i j jjγ α β−=
= ∑ . From the above argument, we have that [ ]z , satisfies  

the axioms stated in Definition 1.1 and hence its a ring and its referred to as a 
polynomial ring. [ ]z  is referred to as an integral domain, provided   de-
fines a ring [1].  

Proposition 1.13. ([1]) Suppose that L satisfies the axioms of a field. Then its 

https://doi.org/10.4236/apm.2023.132006


S. Chibeti et al. 
 

 

DOI: 10.4236/apm.2023.132006 107 Advances in Pure Mathematics 
 

polynomial ring, [ ]L z  qualifies to be to be called a principle ideal domain and 
hence a unique factorization domain.  

Remark 1.14. For the polynomial ( ) 2 6s γ γ γ= + − , the solutions of this po-
lynomial given by 2γ =  and 3γ = −  are referred to as roots of the polynomi-
al. If ( ) 03 3r γ γ= =  we say, ( )r γ  is a constant polynomial.  

Definition 1.15 (contemporary) Suppose that L satisfies the axiom of field 
and from its polynomial ring, [ ]L z , let ( )s z  be a nonconstant polynomial. If 
we cannot write ( )s z  in the form  

( ) ( ) ( ) ,s z r z k z= ⋅   

where ( ) ( ), ,r z k z   are of degree less than ( )s z , we say, ( )s z  is irreduci-
ble.  

We can express ( ) 2 2s z z= −  with coefficients in the rationals as  
( ) ( )( )2 2s z z z= + − . ( )s z  is irreducible in the rationals but not in the 

reals.  
Proposition 1.16. ([1]) Suppose that the non constant polynomial ( )s z  is 

irreducible, then the ideal, ( )s z  is a maximal ideal.  

2. Extension Fields 

The concepts discussed in the previous chapter help us to introduce extension 
fields. As the main component of this section, we familiarize ourselves with field 
extensions by discussing simple extensions, finite extensions, and splitting fields. 
Many results, definitions, and theorems in this section are those in [1] [2] [3] 
and [4]. 

2.1. Construction of Extension Fields 

Definition 2.1. ([1]) Suppose that the field L contains the field K, we refer to the 
field L as extension field of the field that it contains.  

The commonly used notations are :L K , L K  and a diagram that depicts a 
the larger field on top of the base field as shown below. We adopt the first nota-
tion for our discussion. 

We now give an example of field extensions. 
Example 2.2. The field   contains the fields,   and  , so we write 
:   and :  . Similarly the field   is contained in the field  , so we 

have :  .   
Definition 2.3. ([1]) Let F, L and K be fields and F L K⊂ ⊂ . Then the field 

L is referred to as a subextension of the K that extends F.  
Remark 2.4. From Example 2.2, the field   extends the fields   and   

and since we have the inclusion ⊇ ⊇    we have that   is a subextension 
of the field   that extends  .  

We now present a statement and demonstration of the Fundamental Theorem 
of Field Theory, also known as Kronecker’s Theorem, which establishes the ex-
istence of an extension field.  

Theorem 2.5 (Fundamental Theorem of Field Theory). [1] Let L represent a 
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field. From the polynomial ring [ ]L z , let ( )s z  be nonconstant. Then there 
exists a field, K that extends the field E. if ( ) 0s γ = , then Kγ ∈ .   

Proof. Suppose that L is a field, its polynomial ring [ ]L z  is a UFD. From 
[ ]L z , let ( )s z  be a non-constant, it can be expressed in terms of some irre-

ducible polynomial in [ ]L z . If one of these irreducible polynomials is, ( )r z , 
then the ideal ( )r z  is a maximal ideal. And we have that the field  

[ ]
( )

.
L z

K
r z

=  

We asserts that L is contained in K and we now define the map  

[ ]
( )

:
L z

L
r z

η →  

given by  

( ) ( )       .r z Lη β β β= + ∀ ∈  

We see that for all 1 2, Lβ β ∈   

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2 1 2r z r z r zη β β β β β β η β η β+ = + + = + + + = +  

and also  

( ) ( ) ( )( ) ( )( ) ( ) ( )1 2 1 2 1 2 1 2( ) .r z r z r zη β β β β β β η β η β= + = + + =  

The map is a ring homomorphism. Because we associate L with its image 
( )Lη  in K, we’ll use β  instead of ( )r xβ +  for Lβ ∈ . We have  
( )η β β= , so that s. Since L is contained in K, K is a field that extends L. 
For an element γ  in K, we write ( )x r zγ = + . Now from the polynomial 

ring, [ ]L z , let ( ) 0 1
n

nr z z zβ β β= + + +  we have  

( )

( )( ) ( )( )
( ) ( )

0 1

0 1

0.

n
n

n

n

r

x r z z r z

r z r z

γ β β γ β γ

β β β

= + + +

= + + + + +

= + =



  

Therefore γ  satisfies ( )r z .  
Example 2.6. For the field  , Consider the polynomial [ ]z , and from 
[ ]z , let ( ) 2 1s z z= + , since ( )s z  is irreducible. The ideal, ( )s z  is  

maximal. so we have the field [ ]
2 1

z
K

z
=

+


. By Theorem 2.5, K is the field that  

extends   and contains the solution of ( )s z . We can write  

[ ] { }2
0 1 0 12

1  | ,
1

z
K z z

z
β β β β= = + + + ∈

+


  

If γ  satisfies ( )s z  we van write it as 2 1z zγ = + +  in K then we have,  

[ ] { }0 0 12
 | , .

1
z

z
β βγ β β= + ∈

+


  

Then solving for γ  in 2 1 0γ + =  we have iγ = ±  in K and so  
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{ }0 1 0 1 | , .K iβ β β β= + ∈ =   

Remark 2.7. The example above gives an illustration of the construction of 
complex numbers with the help of Theorem 2.5. From the construction, we have  

an isomorphism between the field [ ]
2 1

z
z +


 and the field  .  

2.2. Simple Extension 

In the previous section, we have considered a type of field extension obtained by 
considering a polynomial and an element that is a root of this polynomial. Can 
we have a construction where we do not consider the polynomial but the ele-
ment from the larger field? This question is worth exploring. In this section, we 
consider this kind of construction, where we only consider an element and ad-
join it to the base field. Many results, definitions, and theorems in this section 
are those in [1] [3] and [5]. We now give a lemma which is a motivation of the 
definition of simple extensions.  

Lemma 2.8 ([1]). Suppose that F is a subfield of E and Eα ∈ . Then there 
exists a unique smallest subfield of E containing both F and α .  

Proof. Suppose that F E⊆  and an element Eα ∈ . Then define the set,   
by  

{ }:iF i I= ∈  

as the collection of subfields that contains the field F and an element Eα ∈ . 
Define the intersection  

,ii I
F

∈
=


  

then for an element, x∈ , there exists elements iy F∈  and z E∈  such that  

1  and  1.xy zx= =  

Now  
1 1z z zxy y yz y= ⋅ = = ⋅ = =  

and iz F∈  for all i. This implies that z∈  and by the uniqueness of the in-
verse,   turns out to be a subfield of an extension, E that contains the field F 
and the element α  and it is the smallest such subfield that contains them both. 
Since F E⊆ , F is a subfield and the intersection of these subfields is , L is the 
unique smallest subfield of the extension, E.  

The lemma above holds true if α  is replaced by 1 2, ,α α    
Definition 2.9 ([1]). For an extension field, :E F , consider the elements 

1 2, ,α α  . Then E has a subfield with the notation ( )1 2, ,F α α   that contains 
the elements 1 2, ,α α   and the field F. It is the smallest and it is therefore to 
referred to as field generated by 1 2, ,α α  .   

Definition 2.10 ([1]). Suppose that the elements 1 2, ,α α  , in Definition 2.9 
are replaced by α  and we write ( )F α . Then ( )F α  is referred to as a simple 
extension with the base field F. The element, α  that generates the field is called 
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a primitive element.  
Remark 2.11. For the fields ( ), L L γ , and K, consider ( )L L Kγ⊆ ⊆ . We 

have ( )L γ  as the intermediate field. The elements of ( )L γ  are polynomials 
in γ , for ( )Lγ α∈ , we consider an n degree polynomial, ( )r z . Suppose that 
( ) 0r γ = , we write  

( ) 1
0 1 1

n
nL γ β β γ β γ −
−= + + +  

where now the coefficients 0 1, , ,   n Lβ β β ∈ . Some of the elements of ( )L γ  
are not polynomials in γ , if ( ) 0r γ ≠  in [ ]L z . We can express the field 
( )F α  as a field containing the ratios of the polynomials defined above. We 

have  

( ) ( )
( ) ( ) ( ) [ ] ( ) | , , 0

r
L r z k z L z k

k
α

α α
α

  = ∈ ≠ 
  

 

Example 2.12. Consider an extension field, :   and an element i such that 
2 1i = − , then we have the inclusion  

( ) .i⊆ ⊆    

The field ( )i  contains the element i and  . Since i is a root of some po-
lynomial in [ ]x , we can write the elements of ( )i  as,  

( ) { }0 1 1 1| where ,  ,i a a i a a= + ∈   

thus ( ): :i   . The simple extension generated by 2  is expressed as  

( ) { }0 1 0 12 2 | where ,  .a a a a= + ∈   

From the field K that extends the field L, we can construct the smallest field 
( )L γ  that contains F and the element γ  in the extension field K. By Theorem 

2.5, if ( ) 0r γ =  for some irreducible polynomial, ( ) [ ]r z L z∈ , there exists a 
field that extends the field, L and contains γ , and the field is,  

[ ]
( )

.
L z
r z

 

From the field L, we have two extensions field that contains the root γ ,  

( )L γ  and [ ]
( )

L z
r z

. We now explore the relationship between the two fields.  

Theorem 2.13 ([1]). Suppose that E is a field and the nonconstant polynomi-
al, ( )r z  with coefficients in E is irreducible. Then if E L⊆  and ( ) 0r α = , 
we have Lα ∈ . Define ( )E α  as the simple extension over E. Then 

[ ]
( )

( ).
E z

E
r z

α≅  

That is up to isomorphism, the smallest extension of E, [ ]
( )

( )
E z

E
r z

α≅   

contains a root of the polynomial ( )r z .   
Proof. Define an evaluation homomorphism  
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[ ] ( ): E z Eα αΦ →  

by ( )( ) ( )k z kα αΦ = . When we restrict αΦ  on E, we have the identity map, 

EE IαΦ =  and αΦ  is a ring homomorphism. Since ( ) 0r α = ,  
( )( ) 0rα αΦ =  and so ( ) kerr z α∈ Φ , therefore ( ) kerr z α⊆ Φ . We now de-

fine the induced homomorphism  



[ ]
( )

( ):
E z

E
r zα αΦ →  

by  ( ) ( )( ) ( )( )k z r z k zα αφΦ + =  where ( )k z  is any arbitrary polynomial 
and αφ  is well defined. Since any homomorphism between two fields is identi-
cally zero or injective, we have that αφ  is either a zero map or is injective. Now 
since  



EEE
Iα αφΦ = =                          (1) 

and  ( )( ) ( )z r z zα α αΦ + = Φ =  we have that αΦ  is injective. We now have  

[ ]
( )



[ ]
( )

( ).
E z E z

E
r z r zαφ α

 
≅ ⊆  

 
 

We now show that ( )E α  is the image of αΦ . From Expression 1,  



[ ]
( )



[ ]
( )

   and   
E z E z

E
r z r zα αα

   
Φ ⊇ ∈Φ      

   
 

Now ( )  ( )( )z z r zα αα = Φ = Φ + , ( )E α  is the smallest field that contains 
the field E and α , then we have  



[ ]
( )

( ).
E z

E
r zαφ α

 
⊇  

 
 

But ( )E α  has  [ ]
( )

E z
r zαφ

 
  
 

 has its subfield, so we have that  

( ) 

[ ]
( )

[ ]
( )

.
E z E z

E
r z r zαα φ

 
= ≅  

 
 

Therefore  

[ ]
( )

( )
E z

E
r z

α≅  

Example 2.14. Consider ( ) [ ]2 2s z z z= − ∈ . Since ( )s z  is irreducible, the  

quotient, [ ]
( )

K z
s z

 forms a field. Now if ( ) 0s β = , then 2β = ± . By Theorem  

2.13, we have by taking the positive root of 2 in    

[ ] ( )2
2 .

2
z

z
≅

−


  

Remark 2.15. By Theorem 2.13, we have the isomorphism between the field  
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( ) ( ){ }0 1 0 12 2 | where , a a a a− = + − ∈   and the field [ ]
2 2

z
z −


 and by 

Example 2.14 we have the relation [ ] ( )2
2

2
z

z
≅

−


 . Transitivity tells us there  

will be an isomorphism, and we have that  

[ ] ( ) ( ) ( )2
2 2 2

2
x

z
≅ ⇒ − ≅

−


    

under the isomorphism  

( )0 1 0 12 2a a a a+ −  

Corollary 2.16. Let ( )s z  be an irreducible polynomial. Isomorphic fields 
are those generated by adjoining roots of ( )s z .  

Lemma 2.17 ([1]). for the field L, the field ( ),L x y  generated by x and y over 
L is the field ( )( )( )L x y  generated by y over the simple extension ( )L x .  

Proof. For an extension field :E L , let the elements , x y E∈ , then by Defi-
nition 2.9, the field ( ),L x y E⊆ , generated by the elements x and y contains the 
field L, and the elements x and y, thus it is smallest among the subfields that 
contains the two elements and the field L, hence contains the simple extension 
( )L x . Since the field contains the simple extension ( )L α  and the element y it 

contains the field ( )( )( )L x y  and we have  

( ) ( )( )( ),L x y L x y⊇                         (2) 

Similarly, the field ( )( )( )L x y  generated by x is the smallest among the sub-
fields and contains the simple extension ( )L x  and y and thus contains L, x, 
and y. we have  

( )( )( ) ( ),L x y L x y⊇                        (3) 

From Equation (2) and Equation (3), we have the equality of the two fields  

( ) ( )( )( ), .L x y L x y=  

□ 
Example 2.18. Consider the extension field   over  , then the field  

( )2, 3  contains 2  and 3  and it is the smallest among the subfields 
of the extension field   having 2 , 3  and the field  . Also ( )2, 3  
is an extension over   and it is obtained as follows  

( )( ) ( ) ( )2 3 2, 3 2 .= ⊇ ⊇     

2.3. Finite Extension Fields 

Since any field say L contains a prime field, the multiplication defined in F 
makes L into vector space over it’s prime field. Similarly when we consider the 
extension of the field E over L, E is a vector space over L. Most results, defini-
tions, and theorems in this section are those in [1] [3] and [5]. 
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First we give the definition of the degree of an extension before we define fi-
nite extension fields. 

Definition 2.19. Suppose :K L  is an extension field. Then K is vector space 
over L and the dimension of this vector space is referred to as the degree of the 
extension, K and we write :K L .  

Definition 2.20. Let K be a field that extends the field L. If the degree defined 
in Definition 2.19, is finite, then K is finite, otherwise, K is infinite.  

Suppose that for the extension [ ]:K L , K L= , then K has degree one. If the 
degree of the extension is 2 and 3, the extension is called a cubic and quadratic 
extension respectively. Suppose that γ  satisfies a n-degree minimal polynomi-
al, ( )s z  over a field  , then we write ( )deg , nγ =   

Theorem 2.21 ([1]). Let K be a field that extends the field L and Kγ ∈ . If 
( )deg , L nγ = , then the simple extension, ( )L α  is a vector space over L has the 

basis { }11, , , nγ γ −
 .  

Proof. Suppose that Kγ ∈  and γ  satisfies a polynomial ( )s z  in the po-
lynomial ring [ ]L z . Then consider the set  

[ ] ( ){ }ker  : 0 .s L z sγ αΦ = ∈ =  

If the set { }11, , , nα α −
  were linearly dependent, then there exists some po-

lynomial say kerh γ∈ Φ  with the degree of h less than n. Since ( )deg , L nγ =  
is the minimal degree for a nonzero polynomial in ker γΦ . If given  
( ) [ ]s z L z∈ , there exist polynomials [ ],q r L z∈  and when we employ the divi-

sion algorithm,  

( ) ( ) ( ) ( ) ( )and deg 1s z q z g z r z r n= + ≤ −  

and ( )g z  is a minimal polynomial of the root γ  over the base field L. Clearly 
( ) ( )s rγ γ= , and ( )L γ  is the image of ker γ= Φ  and we write  

( ) ( ) [ ] ( ){ }: , where deg 1L r r L z r nγ γ= ∈ ≤ −  

It then follows that { }11, , , nγ γ −
  is a spanning set and therefore a basis of 

( )L γ .                                                           □ 
Example 2.22. Consider a field extension ( )2 :   then the element  

2γ =  is in the extension ( )2 . We have that 2γ =  implies 2 2 0γ − = , 
so ( ) 2 2 kers z z γ= − ∈ Φ . Therefore the ( )deg 2, 2= . By Theorem 2.21, the 
basis of an extension ( )2 :   is { }1, 2 .  

Theorem 2.23 ([1]). Suppose that the extensions E and K are finite extensions 
of the fields L and E respectively, we have the multiplicative relation given by  

[ ] [ ] [ ]: : : .K L K E E L= ⋅  

Proof. We define a basis for K over E as the set { }1 2, , , nA α α α=   and for E 
as { }1 2, , , mB β β β=  . It suffices to prove that the basis for K over L is the 
multiplication of the two basis given by  

{ }where 1 , 1 .j iBA j m i nβ α= ≤ ≤ ≤ ≤  

For the elements 1 2, , , nγ γ γ  and Kη ∈ , we have a linear combination,  
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1 1 2 2      for each 1, 2, , .n n i nη γ α γ α γ α= + + + =   

there exist elements 1 2, , ,  i i im Fξ ξ ξ ∈  and we have the linear combination  

1 1 2 2 .i i i im mγ ξ β ξ β ξ β= + + +  

Therefore,  

( )
1 1 1 ,

n n m

i i ij i i ij j i
i i j i j

xiη γ α β α ξ β α
= = =

 
= = = 

 
∑ ∑ ∑ ∑  

which proves that AB is a spanning set of the :K L . We assume that  

( )
,

0 .ij j i ij i i
i j i j

xiξ β α β α
 

= =  
 

∑ ∑ ∑  

Since each ij ij Eξ β ∈∑  and that the basis for an extension :K L  is A, 
0ij ijξ β =∑  for each i. Now we have that each ij Lξ ∈  and the basis for an ex-

tension :E L  is B, it implies that each 0ijξ =  which proves we have linearly 
independent set and it given by AB.                                   □ 

Remark 2.24. We note that for the extension fields :E L  and :K E , if 
{ }| i i Iα ∈  and { }, j j Iβ ∈  where I is the indexing set are basis of the exten-
sions respectively, then for fields L E K⊆ ⊆ , the set { }, ,j i j Iαβ ∈  of length 
mn is a basis for K over L.  

Corollary 2.25 ([3]). Suppose that 1 2 1r rK K K K−⊆ ⊆ ⊆ ⊆  are finite field 
extensions, then  

[ ] [ ] [ ] [ ]1 1 3 2 2 1: : : .r r rK K K K K K K K−= ⋅  

Proof. When we employ induction, the proof clearly follows from Theorem 
2.23,  

[ ] [ ] [ ]
[ ] [ ] [ ] [ ]

1 1 1 1

1 1 2 3 2 2 1

: : :

: : : : .
r r r r

r r r r

K K K K K K

K K K K K K K K
− −

− − −

= ⋅

= ⋅ ⋅

 

□ 
Example 2.26. Consider an extension ( )3 2, 3  over  . Then we have 

the inclusion  

( ) ( )3 32, 3 2 .⊇ ⊇    

By Theorem 2.23,  

( ) ( ) ( ) ( )3 3 3 32, 3 : 2, 3 : 2 2 : .     = ⋅            

Let 3α = . Then 2 3 0α − =  we have that ( ) ( )[ ]2 33 2s x x x= − ∈  and 
degree ( )( )33, 2 2= . By Theorem 2.21, we have that the extension  

( )( ) ( )3 32 3 : 2   has a basis { }1, 3  and ( )( ) ( )3 32 3 2, 3=  . We 
now have,  

( ) ( ) ( )( )3 3 32, 3 : 2 deg 3, 2 2  = =     

Similarly, let 3 2β = , that is 3 2 0β − =  and ( ) [ ]3 2r x x x= − ∈ . So 

( )3deg 2, 3= . By Theorem 2.21, ( )3 2  is a 3-dimensional vector space  . 
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Now by Theorem 2.23, we have that  

( ) ( ) ( ) ( )3 3 3 32, 3 : 2, 3 : 2 2 : 2 3 6     = ⋅ = × =            

The product of the basis { }1, 3  and ( ){ }2
3 31, 2, 2  gives the basis of an  

extension ( )3 2 :   and it is given by  

( ) ( ){ }2 2
3 3 3 31, 2, 2 , 3, 2 3, 3 2 .  

2.4. Splitting Fields 

Theorem 2.5, gives us a criterion to construct extension fields. If the field K ex-
tends L and ( )s z  is a nonconstant polynomial from the polynomial ring 
[ ]L z , K has a root of ( )s z . If the root of ( )s z  is γ , then we have a factor 

( )z γ− . For the nonconstant polynomial, ( ) [ ]1s z K z∈ , we can therefore write 
( ) ( ) ( )1s z z s zγ= − . K being a field implies that we can repeat the process, in 

doing so, we obtain a field E that extends K, and for ( ) [ ]2s z E z∈  we have 
( ) ( )( ) ( )2s z z z s zγ η= − − . In so doing, we can find a field, En that extends oth-

er fields and this fields contains all the roots of ( )s z , which can be expressed as 
a product of linear factor ([1]).  

Definition 2.27. Let the field E extend the field L and the nonconstant poly-
nomial ( ) [ ]s z L z∈ . if ( )s z  can be factored completely into linear factors in 
the polynomial ring [ ]E z  and over any proper subfields of the base field, 
( )s z  fails to factor completely into linear factors, E is the splitting field for 
( )s z  and is the smallest such extension that contains all the roots of the ( )s z .  
We now give the following example to demonstrate the above definition.  
Example 2.28. Consider field ( )2  that extends the field  . Then the 

polynomial ( ) [ ]2 2s z z z= − ∈  can be expressed as  
( ) ( )( ) ( )[ ]2 2 2s z z z z= − + ∈ . Thus ( )s z  has been expressed into li-

near factors, we conclude that the extension field ( )2  is a splitting of the 
polynomial, ( )s z . Similarly, for extension field ( )2, 3  over   generat-
ed by 2  and 3  consider the nonconstant polynomial,  
( ) ( )( ) [ ]2 22 3r z z z z= − − ∈ , this polynomial can be written as  

( ) ( )( )( )( ) ( )[ ]2 2 3 3 2, 3r z z z z z z= − + − + ∈ . We have that  

( )2, 3 :   is the splitting field for ( )r z .  
Theorem 2.29 (Existence of splitting fields) ([1]) Given any field, say L and 

the nonconstant polynomial ( )s z  with coefficients in L, there exists a field, K 
that extends L. K is the splitting field for ( )s z .  

Proof. It suffices to show first that there is a field, K that extends the field, L in 
which the polynomial, ( )s z  of degree n factors completely into linear factors. 
This is accomplished through induction on the of ( )s z , if we have that K L= , 
then the degree of ( )s z  is one. Assume ( )s z  has degree more than n and F 
being a field implies that the polynomial ring [ ]L z  is a unique factorization 
domain and so we can express ( )s z  into linear factors completely as product 
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of irreducible polynomial. If all the irreducible factors are of degree 1 again. 
Otherwise at least one factor say ( )r z  has degree more than 1. Let the degree 
be 2. By Theorem 2.5, we have a field K1 that extends the field L and contains the 
root of ( )r z . This implies that over K1, the two polynomial ( )r z  and ( )s z  
has a linear factor say ( )z γ− . If ( )1s z  is the remaining factor of ( )s z , 1n −  
is its degree. By induction, we have a field K that extends the field K1 and ( )s z  
factors completely. Since 1K Kγ ∈ ⊆ , this implies that Kα ∈  and K being an 
extension of L, ( )s z  has all its roots in K. 

Suppose we have a field E that extends all subfields of K and contains L in 
which ( )s z  has it’s root, then E is the splitting field ( )s z .               □ 

We now provide the following theorem without proof which tells us that split-
ting fields are unique.  

Proposition 2.30 ([1]). If there are two splitting fields, they are isomorphic.  
Proof. See ([1])                                                  □ 
We now present a statement and demonstration of the theorem relating the 

degree of a nonconstant polynomial, ( )s z , and that of its splitting field, and a 
demonstration of the theorem follows.  

Theorem 2.31. Suppose that a polynomial, ( )s z  of degree n splits over the 
field L, then its splitting field has a degree of at most !n .  

Proof. Suppose that ( )s z  is an n-degree polynomial in [ ]L z  and  
( ) 0s γ = . Then the simple extension, ( )L L γ=  is of degree atmost n. If ( )s z  

is irreducible over 1L , then 1L  has degree less than n. Over 1L , ( )s z  has at 
least one linear factor, so any other root of ( )s z  say β  satisfies an 1n −  de-
gree polynomial 1L , thus,  

( ) ( )1: 1L L nβ ≤ −    

Using Theorem 2.23, if ( )s z  splits in K, then  

[ ] [ ][ ] [ ]1 1: : : :n n nK L K L L L L L−=   

□ 
Example 2.32. From Example (2.28), consider an extension field ( )2  over 

 , then the polynomial ( ) 2 2s z z= −  of degree 2 in the polynomial ring [ ]z  
splits in ( )2 . By Example (2.22), ( )2 : 2  =   . Similarly, the polynomi-
al, ( ) ( )( ) [ ]2 22 3s z z z z= − − ∈  with coefficients in   is of degree 4 and it 
splits in ( )2, 3 . Thus, ( )2, 3  has degree 4.  

3. Algebraic Extension 

Having set up the theory of field extensions, we have considered different kinds 
of field extensions. By Theorem 2.5, we where able to find an extension field say 
E over F by considering a polynomial ( ) [ ]s z L z∈  and an element γ  such 
that ( ) 0s γ = . Can we have field, K that extends L containing only those ele-
ments that satisfy some polynomial with coefficients in L? In this Chapter, we 
explore this kind of fields and it’s associated properties. Results, definitions and 
theorems are mostly from [1] [3] [5] and [6].  
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3.1. Properties of Algebraic Extension 

We can classify the elements of an extension field into two categories, and with 
this classification, we formulate the definition of the algebraic extension. 

Definition 3.1 ([1]). Let K be a field that extends L. If   Kγ ∈  and there exists 
a nonzero polynomial ( ) [ ]s z L z∈  such that γ  satisfies ( )s z . then γ  is al-
gebraic over L.  

We say that γ  transcendental if it is does not satisfy any polynomial coeffi-
cients in the base field.  

Example 3.2. Consider the field   that extends the base field  . From the 
polynomial ring [ ]z , let ( ) 2 2s z z= −  and since ( )2 0s = , 2  in   is 
algebraic over the base field. Whereas π  and e are transcendental over   
since  

( ) 0s π ≠  and ( ) 0s e ≠ . 

Remark 3.3. An element from the extension field is algebraic or transcenden-
tal, depending on the base field. From Example 3.2, the elements π , and e are 
transcendental over  , now for ( )r z z π= −  and ( )s z z e= −  both in [ ]z  
they are algebraic over   since π  and e satisfy the polynomial ( )r z  and 
( )s z  respectively.  
Now we’ll look at the subfield of algebraic elements.  
Corollary 3.4 ([1]). For a field K that extends L, there exists fields contained 

in K, that contains the set of all elements of K defined in Definition 3.1.  
Proof. Suppose that the field K that extends L contains elements defined in 

Definition 3.1 and these elements are π  and 0γ ≠ . We now show that  

,  and ,π γ πγ π γ±  

are elements defined in Definition 3.1. To do this, it suffices to show that the 
field ( ),L π γ  has a finite degree since it contains all these elements. By Theo-
rem 3.22, we have  

( ) ( ) ( ) ( ), , : : .L F L L Lπ γ π γ γ γ= ⋅            

Now since the element π  is an element defined in Definition 3.1, it is alge-
braic the simple extension ( )L γ . Therefore, we have that the field, ( ),L π γ  
that extends the field ( )L γ  and the ( )L γ  that extends L are of finite degree.  

□ 
The subfield of elements from Corollary 3.4 defines what we call a relative al-

gebraic closure of field within a field that extends it and this, we'll present in the 
preceding section. With the tools at handy we describe the notion of an algebraic 
extension and find it’s relation with finite extension.  

Definition 3.5 ([1]). Suppose that field K that extends the field L contains 
elements defined in Definition 3.1, then K is referred to as an algebraic extension 
of L.  

Note that if the field that extends the base field is a not an extension defined in 
Definition 3.5, it is said to be a transcendental extension.  
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Example 3.6. Consider the element i such that 2 1i = −  in the field,   that 
extends   and the polynomial ring [ ]z . From [ ]z  define  

( ) 22 2.s x z= +  

We now have that ( ) 0s i = , hence i defines an element in Definition 3.1. 
However not all elements of   are algebraic over the base  , e.g. ( )2 2i+ ∈ , 
hence   is a field defined in Definition 3.5. From Example 3.2, we have that 
over  , neither   nor   is a field defined in Definition 3.5 .  

Definition 3.7 ([3]). Let K be the field that extends the field L and let   Kγ ∈  
be an element defined in Definition 3.1. From the polynomial ring [ ]L z , let 
( )s z  be an irreducible monic polynomial and ( ) 0s γ = . Then the polynomial 
( )s z  is said to be minimal.  
Proposition 3.8 ([3]). Over the field L and element Lγ ∈ , define a finite 

simple extension generated by γ , ( )L γ . Then the element γ  is algebraic over 
L.  

Proof. Suppose that the element γ  satisfies some polynomial with coeffi-
cients in L, then over L , let ( )s z  be a polynomial defined in Definition 3.7, the 
degree of this polynomial is equivalent to that of ( )L γ . Hence the field exten-
sion is finite, and has degree at most n if the element γ  satisfies a polynomial 
of degree k. Conversely, suppose now that over L, γ  is an element of a k-degree 
simple extension. Then the extension ( )L γ  has 1k +  roots and they are li-
nearly dependent. Suppose the roots are  

21, , , , ,kγ γ γ  

and for all 0iβ ≠  in L , we have a linear combination,  

0
0.

k
i

i
i

β γ
=

=∑  

For a nonzero polynomial, ( )s z  of degree at most n with coefficients in L, 
( ) 0s γ = , thus γ  is algebraic over L.                                 □ 
The next theorem shows that finite implies algebraic.  
Theorem 3.9 ([3]). Let K be a field that extend the field L. If :K L  algebraic 

extension, then :K L  is finite.  
Proof. Suppose that the field K extends the field L and contains the element 

γ . Over L, the simple extension ( )L γ  is contained in the field K and defines a 
subspace of the vector space K. Hence the field ( )L γ  has degree at most the 
degree of the K. By Proposition 3.8, the element α  satisfies some polynomial 
with coefficients in L.                                               □ 

Theorem 3.10 ([1]). The extension field E over the field F is finite if and only 
if E is generated by a finite number of algebraic elements over F.  

Proof. See [1] 
□ 

In our next theorem, we prove the statement that algebraic over algebraic is 
Algebraic  

Theorem 3.11 ([1]). Suppose that over the field L, the field K is an algebraic 
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extension and over the field E , the field L is an algebra algebraic extension . 
Then over E, L is an algebraic extension.  

Proof. Let the field K, contain the element γ . Then γ  satisfies some poly-
nomial, ( )s x  with coefficients in L,  

( ) 1
1 1 0   0k k

k ks a a a aγ γ γ γ−
−= + + + + =                (4) 

where   ia K∈ . Now over E, consider the field ( )E γ  generated by γ  the coef-
ficients ia ’s of the polynomial ( )s x . 

Since over E, L is an algebraic extension, the elements ia ’s satisfies some po-
lynomial with coefficients in E, and so the extension ( )iE a , 0, 1, , i k=   is fi-
nite by Theorem 3.10. Now by Equation 4, we have that the element α  gene-
rates an extension field of degree at most k, since it’s minimal polynomial over 
this field is a divisor of the polynomial above, we have that  

( ) ( ) ( ) ( ), : , : :i i i iE a E E a E a E a Eα α     = ⋅       where 0, 1, , i k=   

is also finite and we have that over E, K is an algebraic extension since the ele-
ment γ  satisfies some polynomial with coefficients in E.                 □ 

3.2. Algebraic Closure of a Field and Algebraically Closed Fields  

Definition 3.12. [1] Let L and L  be two fields. Then if over L, :L L  is an al-
gebraic extension field and from the polynomial ring, [ ]L x , all polynomials 
splits completely. L  is said to the algebraic closure of L.  

We can also define an algebraic closure in terms of a set.  
Definition 3.13. Suppose that the field K extends the field of the L. We define 

the algebraic closure of L in the field K as  

{ }  .L Eγ= ∈  

The element γ  satisfies some polynomial with coefficients in L, thus all ele-
ments contained in L  are algebraic over the base field, L.  

Definition 3.14 ([1]). Suppose that L is field and from the polynomial ring, 
[ ]L x , every nonconstant polynomial has a root and this root is contained in K. 

Then K is referred to as an algebraically closed.  
Lemma 3.15. Suppose that the field L equals to its algebraic closure L , then L 

is algebraically closed.  
Proof. When we assert that L is algebraically closed, then from the polynomial 

ring [ ]L x , we can choose any polynomial, ( )s x . Suppose that ( ) 0s γ = , then 
( )x γ−  is a factor contained in [ ]L x . For ( ) [ ]r x L x∈ , we can now express 
( )s x  as  

( ) ( ) ( ) ,s x x r xγ= −  

All the roots are in L. Thus, over L, ( )s x  splits completely and hence L 
equals L . Conversely, if we assert that L L=  , it follows immediately that L is 
algebraically closed.                                                □ 

Corollary 3.16. Suppose that the field L  is the algebraic closure of the field 
L. Then we have that it is algebraically closed.  
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Example 3.17. Consider the field,   that extends the field  , then,   alge-
braic closure of  , and hence its algebraically closed. The   is not an algebraic 
closure of itself, since when we consider the polynomial ( ) [ ]2 4s x x x= + ∈  has 
roots 2i±  which are not contained in  , hence its not algebraically closed.  

From the uniqueness of splitting fields, we have that algebraic closure of a 
field is unique up to isomorphism and we know that that if the field L  is an al-
gebraic closure of the field L, then L L=   and this field is algebraically closed. 
Now, the question that may arise is, can we have an algebraically closed field for 
an given field? Our next proposition helps us understand this question.  

Proposition 3.18 ([1]). Suppose that L is a field, then exists an algebraically 
closed field, K that extends the field L.  

Proof. See [1]                                                    □ 
Example 3.19. Consider the field  , that extends the field,   and  .   

is the algebraic closure of   and  , hence its algebraically closed.  
Proposition 3.20. Suppose that the field K contains the field L. If K is alge-

braically closed, then we call the set L  an algebraic closure of L and its defined 
as  

{ } :  is algebraic over .L K Lγ γ= ∈  

Proof. Suppose that L  contains the elements that satisfy some polynomial 
with coefficients in L. Over L, Definition 3.5 implies that L  is algebraic. From 
the polynomial ring [ ]L x , every polynomial, say ( )s x  factors completely into 
linear factors over K. This also holds true for every polynomial in the polynomial 
ring [ ]K x . Now γ  is algebraic over L since ( ) 0s γ = . We have that γ  is 
contained in L . We now have that all linear factors have coefficient in L , 
which implies that that ( )s x  factors completely in L  and this means that we 
have an algebraic closure, L  of L.                                    □ 

Algebraic Closure of Finite Fields 
In order to describe the algebraic of finite fields, we first presents some results 
on finite fields. If the elements in a field, p  are of a finite number, we say that 

p  is a finite field. Consider the following set of integers 2 , 3 , 5 , 7    , these 
set of integers are maximal ideal of the ring of integers and when we get the quo-
tient with ring  , we have the fields k   for 2,3,5,7k = . The fields ob-
tained have a finite number of elements 2, 3, 5, 7  respectively. From the con-
struction, we see that if we consider any prime we can construct these fields and 
we write p p=    to denote these kind of fields. 

Lemma 3.21 ([1]). Suppose that the field   contains the field  . If   has 
q number of elements and over  , k is the degree of  . We have that   has 

kq  elements.  
Proof. Suppose that   has a finite number of elements, then over  ,   is a 

finite extension field and hence a vector space with a finite dimension. Assume 
that over  , k is a dimension of   that is [ ]: k=  . We have that over  , 
the set { }1 2, , , kγ γ γ  is basis and the iγ ’s are linearly independent. For any 
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β ∈  and iα ∈  we have a linear combination of the basis, and we write  

1
.

k

i i
i

β α γ
=

=∑  

There are q choices for each iα  and there are ikα ’s. We have that β  has 
kq  choices and we conclude that the finite field F must have kq  elements.  □ 
Theorem 3.22 ([1]). Suppose that the field   has a finite number of ele-

ments and let the prime p denote its characteristic. Over its prime subfields, let k 
be the degree of  , then   has kp  elements.  

Proof. Suppose that   has a finite number of elements, then its characteris-
tic is a prime, p. There is an isomorphism between p  that contains p number 
of elements and the prime subfield that has characteristic p. Then we have that 

p F⊆  and p p= . By Lemma 3.21, we have that the field F must have np  
elements. Hence we conclude that all finite fields must have prime power orders.  

□ 
Remark 3.23. From Theorem 3.22, a finite field cannot have 6 elements be-

cause the number 6 is not a power of any prime.  
Lemma 3.24 ([1]). Suppose that the field   has q elements and for any 

γ ∈ . Then  

0.qγ γ− =  

Proof. For the case 0γ = , it follows that 0qγ = . Under multiplication, the 
nonzero elements of   forms a group and its order is 1q − . We denote this 
group by *  and we have that * 1q= − . From group theory, we have that 

1 1qγ − =  which implies that qγ γ=  and we conclude that the lemma holds.  □ 
Lemma 3.25 ([1]). Suppose that the field   has q elements and contains the 

field  . From the polynomial ring, [ ]z , let the polynomial ( ) qs z z z= − . 
Then ( )s z  splits in  , and for γ ∈ , we write  

( ).qz z z γ− = −∏  

Proof. Suppose that ( )s z  splits in  ,   is a splitting field of ( )s z . There 
are at most q roots in   since ( )s z  is a q-degree polynomial. By the previous 
lemma, Lemma 3.24, the polynomial, ( )s z  is satisfied by all the elements of 
 . Therefore for γ ∈ , we write  

( ).qz z z γ− = −∏  

Over a proper subfield of  , that contains   the ( )s z  does not split, as 
such a field would have fewer than q elements.                           □ 

Theorem 3.26 (Existence and Uniqueness of Finite Fields). [1] Consider an 
integer 1k ≥  and prime number p there exists a field with kp  elements and 
its referred to as a finite field. Let kq p=  and from the polynomial ring p , let 
( ) qs z z z= − . Then there is an isomorphism between the splitting field of ( )s z  

and the field q .  
Proof. See [1]  
Theorem 3.27 (Subfield Criterion for finite fields). Let q  be a finite field 
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with nq p=  elements. Then every subfield of q  has order mp  where m is a 
positive divisor of n then there is exactly one subfield of q  with mp  elements.  

Proof. see [1]. 
□ 

Example 3.28. The subfield of the field 302
  are 302

 , 152
 , 102

 , 52
 , 32

 , 

22
  and 2  since 30, 15, 10, 5, 3, 2 and 1 are positive divisors of 30.  

Lemma 3.29. Suppose that the field   is finite with k elements. Then not a 
every polynomial with coefficients in   has a root, that is   is not algebrai-
cally closed.  

Proof. We asserts that   has k elements, then   is finite. Let the elements 
be 1 2, , , kγ γ γ . From the polynomial ring [ ]z  define the polynomial ( )s z  
by  

( ) ( )
1

1.
k

i
i

s z z γ
=

= − +∑  

Then for all 1i k< + , ( ) 0is γ ≠ . Therefore, there is no element of   that is 
a root of ( )s z . Since ( )s z  exists, we conclude that   is not algebraically 
closed.                                                           □ 

For a finite field of prime order. We consider an integer 1k ≥  and a prime p. 
Suppose that mq p= , we have the field q . Since q  is a field, it has an alge-
braic closure, say   and so,   contains q  by definition. q  that contains 

q . Also since there is a unique field extension nq
  over q  and n

q  is con-
tained in  . There is an isomorphism between the k

q  and one field contained 
in  . If we assume that this subfield is isomorphic to nq

 , we have the inclu-
sion  

.nq q
⊆ ⊆    

The union  

1 nn q
F ∞

=
=


  

is an algebraic closure of q . This field is a countable union of arbitrarily large 
finite fields ([7]). 

3.3. Transcendental Extensions 

The previous section introduced an algebraic extension in which all its elements 
are algebraic over the base field. If an extension field is not algebraic, then it’s 
said to be transcendental, and in this section, we introduce this type of field ex-
tension. Results, definitions and theorems are similar to those in [8] and [9].  

Definition 3.30 ([10]). Let the field   extend the field  . Then we say that 
:   is a transcendental extension if there exists at least one element, γ  that 

is not a root some polynomial with coefficients in  .  
Example 3.31. Consider the two extensions   over   and ( )e  over  , 

then   and ( )e  are transcendental extension of   since from Remark 
3.3, the elements π  and e are transcendental over  .  
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Definition 3.32 ([10]). Suppose X is a transcendental element over a field  . 
Then the rational function field over   in one variable Z is the field containing 
all rational functions and it is defined as  

( ) ( )
( ) [ ] ( ) | , , 0 .

s z
Z s r z r z

r z
  = ∈ ≠ 
  

   

Definition 3.33 ([10]). Suppose the field   extends the field  . We define an 
algebraically dependent set if from the extension  , a subset { }1 2, , , nγ γ γ=   
satisfies some polynomial, ( )r z  in [ ]1 2, , , nz z z , that is,  

( )1 2, , , 0.nr γ γ γ =  

A subset S is said to algebraically independent over   if it not algebraically 
dependent over  . A given set of elements is said to algebraically independent 
if it does not satisfy some algebraic relation and it is said to be algebraically de-
pendent if it satisfies a polynomial or some algebraic relation.  

Example 3.34. Consider the two sets { }2 ,π π  and { }2 , then over the field 
 , these two sets are algebraically dependent, since they satisfy the polynomials 
( ) 2,f x y x y= −  and ( ) 2 2g x x= −  respectively from the polynomial ring  

[ ],x y . But the sets { }π  and { }2 2 ,x y x y+ +  are algebraically independent 
over   and   respectively.  

Remark 3.35. If an element say α  is transcendental over any given field, 
then the set containing α  is algebraically independent over the given field. If 
the set S is algebraically independent over any given field, then it’s subset is also 
algebraically independent. Thus, we can say that an empty set is algebraically 
independent over any given field. On the other hand, if S is any set that contains 
an algebraically dependent set, then S is algebraically dependent.  

Corollary 3.36 ([10]). Suppose that   is a field and over  , define the set 
{ }1 2, , , nγ γ γ=  . If   is algebraically independent, then we have an isomor-

phism defined by  

( ) ( )1 2 1 2, , , , , ,n nx x xγ γ γ ≅    

Definition 3.37 ([11]). Suppose that the field   extends the field   and 
the set { }1 2, , , nγ γ γ=  . If   is the maximum of all the algebraically inde-
pendent subsets of  , we say that   is a transcendental basis of   over  .  

If the basis of an extension defined above is empty,   is an algebraic exten-
sion.  

Example 3.38. Consider the extension field ( )2  over  , then set de-
fined by { }= ∅  is a basis of this extension. over  , the function field  
( )X , has the set { }X  has its transcendental basis.  
Proposition 3.39 ([11]). Suppose that the field   extends the field   and 

over  , define an algebraically independent set,  . Over  , the set γ∪  is 
algebraically independent ⇔  an element γ ∈ , is transcendental over ( )  .  

Proof. We assert that over  , the set γ∪  is algebraically independent 
and γ  satisfies some polynomial with coefficients in ( )  . We therefore 
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have for ( ) ( )1 1, , , ,i n nr β β β β∈    

( ) ( ) ( )
( )

1
0 1 1 1 1 1

1

, , , , , ,

, , 0.

n
n n n n

n
n n

r r r

r

β β β β γ β β γ

β β γ

−
−+ + +

+ =

   



 

The relation shows that ( )   is algebraically dependent which is a contra-
diction. Conversely, suppose that over ( )  , γ  satisfies some polynomial, 
( )r x . Now each coefficient of this polynomial is an element of ( )  , Clearing 

denominators yields a nonzero polynomial ( ) ( )1 1, , , ,i n nr β β β β∈  . There-
fore this polynomial yield and algebraic dependence in ( )  , and over  , we 
have that ( )   is algebraically independent if and only if γ  is transcenden-
tal.  

Corollary 3.40 ([10]). Suppose that the field   extends the field   and 
over  , define an algebraically independent set,  . If   is algebraic over 
( )  ,   is a transcendental basis.  
Theorem 3.41. [11] Suppose that   and 2  are two transcendental basis. 

Then cardinality of 1  equals the cardinality of 2 .  
Proof. See [11]                                                   □ 
Definition 3.42. Suppose that the field   extends the field   and   de-

fines a transcendental basis over  . If ( )=    we say that   is purely 
transcendental.  

Definition 3.43 ([10]). Suppose that the field   extends the field   and 
  defines a transcendental basis over  . Then the cardinality of   is re-
ferred to as the transcendental degree of   over  . We write ( )tra deg :L K  
to denote the transcendental degree.  

Example 3.44. From Example 3.38, the transcendental basis of the extension 
field ( )2  over   is the empty set ∅  which implies that the transcen-
dental degree of ( )2  is zero. In general, the transcendental degree of an al-
gebraic extension is zero and we can conclude that all extensions are transcen-
dental extensions.  

Theorem 3.45. Suppose that ,    and   are fields and the inclusion 
⊇ ⊆    be a tower of fields. Then  

( ) ( ) ( )tra deg : tra deg : tra deg := +       

Proof. See [11]                                                   □ 

4. Absolute Values and Completions 

In the previous chapters, we have considered different kinds of field construc-
tion in which the base field is taken to be any arbitrary field. In this chapter, we 
consider two kinds of base field,   and ( )q t  and introduce the notion of an 
absolute value on these base field and use this concept to construct an extension 
field. Most results, definition and theorems are taken from [12] [13] [14] [15].  

4.1. Absolute Value over   and Completion of Fields 

Definition 4.1. [14] Let E be a field. A mapping 0: Eφ ≥→  defined by  
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( )φ α α=  where Eα ∈ , 

is called an absolute value over E, if it has the following properties;  
1) 0α =  and 0α ≥  if, and only if, 0α =   
2) αβ α β= , for all ,  Eα β ∈   
3) α β α β+ ≤ +  for all ,  Eα β ∈  (Triangle inequality).  
Definition 4.2. [14] Suppose the absolute value in Definition 4.1 has an extra 

property called the strong triangle inequality for any ,  Eα β ∈  given by,  

{ }max , ,α β α β+ ≤  

then, it is called nonarchimedean. If an absolute value is not nonarchimedean, it 
is said to be archmedean. 

Example 4.3. Consider the usual absolute value defined by  

0

0,  if  0
1   if  0,

α
α

α
=

=  ≠
 

which is called the trivial absolute value. For real numbers and rational numbers, 
we have the mappings 0. : ≥∞

→   and 0. : ≥∞
→   both defined by 

    if  0
  otherwise

α α
α

α∞

≥
= −

 

Remark 4.4. The absolute value on the complex numbers is defined as  

2 2 .iα β α β+ = +  

If we assume that both a and b are the same, then the strong triangle inequali-
ty is not satisfied in each case and we therefore have that these absolute values 
we have defined are all archimedean.  

We now present the general properties of absolute values on a field.  
Lemma 4.5. [13] For a field F. Let .  be the absolute value on F. Then we 

have,  
1) 1 1=   

2) 
11λ λ −− =   

3) λ γ λ γ− ≤ −   
Proof.  
1) 

2 21 1 1 1 1= = ⇒ =   

2) 
11 1 11 λλ λ λ λ λ −− − −= = ⇒ =   

3) We assert that α λ γ= −  and β γ= , so that  

α β α β+ ≤ +  

we obtain,  

.λ γ α β β α λ γ− = + − ≤ = −  

Definition 4.6. Suppose that   is a field and on  , define the two non-
trivial absolute values 0 0.k =  and 1 1.k = . we say that 0k  and 1k  are equiv-
alent if, and only if, for every γ ∈  there is a positive real number, τ  such 
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that,  

0 1  .τγ γ=  

An immediate result from Definition 4.6 is the following corollary.  
Corollary 4.7. For a field  , two nontrivial absolute values 

0.  and 
1.  on 

F are equivalent if for all γ ∈  we have,  

0 11 1γ γ< ⇒ <  

We now introduce the notion of a metric space, convergence of a sequence 
and Cauchy sequence.  

Definition 4.8. Suppose   is a set. A mapping :δ × →   satisfying 
the following axioms, for every , ,α β γ ∈ ;  

1) ( ), 0δ α β ≥  and ( ), 0 a bδ α β= ⇔ =   
2) ( ) ( ), ,δ α β δ β α=   
3) ( ) ( ) ( ), , ,δ α γ δ α β δ β γ≤ +   

is called the metric on  .  
Remark 4.9. A metric space denoted by ( ),δ  is a set   equipped with a 

metric δ . The Definition 4.1 of an absolute value on a field looks similar to De-
finition 4.8 of a metric and thus we can employ the notion of an absolute value 
together with a field to form a metric space. Let us consider an ordinary absolute 
value on  , then we have a metric space ( ).,  and we can define the metric 
on the rational numbers :δ +× →    as  

( ), .a b a bδ = −  

Definition 4.10. [15] Suppose a field F is equipped with . . A sequence 
( )ns  with its elements taken from F converges to a limit ι , if there is an ele-
ment Fι ∈  such that for any 0ε >  there exists a natural number M, for all 
n M≥  we have,  

.ns ι ε− <  

If the limit in the above definition exists, it is unique. 
We now provide a theorem below without proof. 
Lemma 4.11. [15] Suppose F is a field and the sequences ( )ns  and ( )nt  in 

F converge to s and t respectively. Then, the sequence ( )n ns t+  and ( )n ns t  
converges to s t+  and st  respectively.  

Proof. See [15].  
Definition 4.12. Suppose F is a field and ( )ns  a sequence in F. ( )ns  is 

called a Cauchy sequence if for every 0ε > , there is a positive integer M such 
that for any ,m n M≥ ,  

.m ns s ε− <  

The notion of a Cauchy sequence can be thought of as a sequence in which 
elements are closer to each other, that is, the difference between the elements is 
minimal. We now find the relation between a sequence that converges and 
Cauchy sequence.  
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Theorem 4.13 ([15]). Suppose that the sequence ( )ns , then ( )ns  is Cauchy 
sequence.  

Proof. Suppose the sequence ( )ns  converges to a limit say s, then for every 
0ε >  there exists a positive integer M such that for all n M≥   

.
2ns s ε

− <  

Now for any ,m n M≥ , we have,  

.
2 2m n m n n ns s s s s s s l l s ε ε ε− = − + − ≤ − + − < + =  

□ 
The converse does not necessarily hold true, it depends on the field.  
Definition 4.14. [15] Two sequences ( )ns  and ( )nt  are equivalent if for 

every 0ε > , there is a natural number M such that for every natural number 
n M≥ ,  

.n ns t ε− <  

From Definition 4.14, we can derive the definition of an equivalence relation 
on the set of all sequences in the field F. We denote the equivalence classes of the 
sequence, ( )ns  by ( )ns   .  

Definition 4.15 ([15]). Let L be a field. The field L̂  whose elements are 
equivalence classes of Cauchy sequences in L is called the completion of L.  

Remark 4.16. The field we have just defined is indeed a field since we have all 
the operations, that is  

1) ( )ˆ0 0 ,0 ,0 ,F F FF =      
2) ( )ˆ1 1 ,1 ,1 ,F F FF =      

3) ( ) ( ) ( )n n n na b a b     + = +        
4) ( ) ( ) ( )n n n na b a b     =        

5) for any nonzero element ( )na    of the completion field, we define anoth-
er element say ( )nb    in the completion field by  

1  if  0
0     if  0

n n
n

n

a a
b

a

− ≠= 
=

 

such that ( ) ( ) ( ) 1n n n na b a b     = =      .  
Definition 4.17. [15] Let S be any subset of a field L equipped with . . The 

set S is dense in L if for every element x L∈  and every 0ε > , there exists an 
element s S∈  such that  

.x s ε− <  

Theorem 4.18 ([15]). Let L be a field equipped with .  and L̂  it’s comple-
tion. Then L is dense in L̂ .  

Proof. Let ˆa L∈  be the equivalence class of Cauchy sequences ( )ns  in L. 
Then for every 0ε > , there exists an ms  such that for all n m≥  we have the 
property m ns s ε− < . It follows that ˆma s ε− < , where ˆˆms L L∈ ⊆  is just the 
equivalence class of ( ), , ,m m ms s s  .                                   □ 
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Theorem 4.19. [15] Every Cauchy sequence in the completion field F̂  is 
equivalent to a Cauchy sequence whose elements lie in F.  

Proof. Let ( )nc  be a Cauchy sequence in F̂ . Since F is dense in F̂ , for each 

nc  we pick ˆ
na F F∈ ⊆  so that  

1 .n nc a
n

− <  

Then for any 0ε > , we pick M such that for all ,m n M≥ ,  

3m mc a ε
− <  

3n nc a ε
− <  and 

3m nc c ε
− < . 

It then follows from the triangle inequality that for any ,m n M≥ ,  

.m na a ε− <  

thus, the sequence ( )na  is Cauchy.                                 □ 
Theorem 4.20. [15] Suppose L is a field equipped with . . Then there is a 

complete field F̂  with . ′  that extends L. This completion F̂  is unique up 
to isomorphism. Moreover on L, . ′  restricts to . . Lastly, L is dense in F̂ .  

Proof. (Sketch of the proof) Since some Cauchy sequence in L does not have a 
limit, the limit should exits in the completion field. So general idea is for each 
element of the completion field F̂  to be a limit of Cauchy sequence of elements 
in L.                                                       □ 

Throughout our discussion, we have been talking about the ordinary absolute 
and the trivial absolute value and we have shown that the ordinary absolute val-
ue is archimedean. Can we have a nonarchimedean absolute value on the field of 
rational numbers? The definition below helps us understand this question.  

Definition 4.21. [12] For a prime p, define an absolute value on the rational 
numbers 0. :p ≥→   as follows, for all x∈ , let , ,mα β ∈  with  

( )gcd , 1α β = , p divides neither α  nor β  and mx p α
β

=  then,  

m
px p−=  

is the p-adic absolute value on the rational numbers  .  
The p-adic absolute value is indeed an absolute value and it also satisfies the 

strong triangle inequality condition for absolute values and hence it is nonarc-
himedean.  

Example 4.22. Consider a prime number say 11p =  and 968
9

x = ∈ .  

Then we have that  

2 2

11 11

968 811 11 .
9 9

−= =  

We now have an idea of a p-adic absolute value on  . Does there exist 
another absolute value on   apart from the p-adic absolute value and the or-
dinary absolute value? The next theorem tells us more about this question. 

Theorem 4.23 (Ostrowski). [10] Let ψ  be an absolute value on the rational 
numbers. Then ψ  is trivial or it’s either equivalent to the usual absolute value 
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or some p-adic absolute value.  
Proof. See [10]                                                   □ 
The Theorem 4.23 tell us that we can only find two absolute values on  , 

namely the ordinary and the p-adic absolute value.  

4.2. Finite Extension of   

After establishing the notion of completion and absolute value on  , we can 
think of completion of a field as an extension of a field.  

Example 4.24. The rational numbers with the ordinary absolute value ( ).,  
is not complete. Consider a sequence { }3,3.1,3.14,3.141,na =  . The sequence 

na  is a Cauchy sequence in   but it is not convergent as the limit of this se-
quence is π  which is not in  .  

With the tools at hand, we can now complete the rationals with respect to the 
ordinary absolute value and the p-adic absolute value.  

Remark 4.25. Consider the rational numbers   and the ordinary absolute 
value .  on  , we have a metric space ( )., . From Example 4.24, we see 
that π  is not in   so we now get a set of all Cauchy sequence of rational 
numbers. For π  to be included and all the missing limit, we use the equiva-
lence class of a Cauchy sequence with respect to the equivalence relation. We 
now obtain a new field which we call the field of real numbers.  

Corollary 4.26. [14] ( ).,  is the completion of ( )., .  
Remark 4.27. From Corollary 4.26, we have the statements below:  
1) The field   of real numbers with respect to the ordinary absolute value is 

complete,  
2) Real numbers   are an extension field of rational numbers  ,  
3)   is dense in  .  
Instead of the ordinary absolute value, we now consider the p-adic absolute 

value and run through the same process of constructing the completion field.  
Corollary 4.28. ( ).,

p
  is not complete  

Corollary 4.29. [14] The completion of ( ).,
p

  is the field p  called the 
p-adic field.  

Remark 4.30. From Corollary 4.29, we have the following statements:  
1) the p-adic field with respect to the p-adic absolute value is complete,  
2) p  is an extension field of  ,  
3)   is dense in p .  
The elements of the above obtained field can be written as,  

,n
n

n k
a p

∞

=
∑  

where k∈  and { }0, 1, , 1na p∈ −  for all n k≥ .  
Example 4.31. Consider the 7-adic field, then we can write two as  

0 1 22 2 7 3 7 2 7= ⋅ + ⋅ + ⋅  in 7 . 

We have constructed the p-adic field, p , this field has a lot of properties 
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and they discussed in [14]. We now give the general definition of all finite field 
extensions over the rational numbers  .  

Definition 4.32. [14] An algebraic number field is a finite extension of  .  
If F is an algebraic number field over  , then F has finite degree.  
Example 4.33. The field   is a finite extension of itself. Gaussians ( )i  

and all simple extension of  .  
Definition 4.34. We call the complex number, γ  an algebraic number if it 

satisfies some monic polynomial with coefficients in  .  

4.3. Finite Extension of ( )p t  

In the previous section, we considered   as the base field, and from this con-
sideration, we constructed algebraic number fields. In this section, we take the 
rational function field over the finite field as our base field.  

Definition 4.35. Let 1p >  be a prime, nq p=  and { }| 0g∈ . We define 
the rational function field as  

( ) ( )
( ) ( ) ( ) [ ] ( ) | , , 0 .q q

h t
t h t f t t f t

f t
  = ∈ ≠ 
  

   

Definition 4.36. [12] A formal Laurent series ( )f T  is an infinite series of 
the form  

( ) j
j

j r
f T a T

∞

=−

= ∑  

with ,r j∈ , j pa ∈  for all j.  
Definition 4.37. [12] Given ( )px t∈  and for polynomials [ ], pg h t∈  let  

r gx t
h

=  such that t divides neither g nor h, then an absolute value . t
 is defined  

by,  

.r r
t

t

gx t p
h

−= =  

The above absolute is called the t-adic absolute value and it is nonarchime-
dean like the p-adic absolute value. The t-adic absolute value can also be defined 
in terms of other parameters than p.  

Theorem 4.38. [12] The field ( )p t  is the completion field of the field 
( )p t  with respect to . t

.  
Proof. Consider the set T of distinct limits of Cauchy sequences in ( )p t . 

We represent each element in T as a unique Cauchy series of the form  

0 1
n n i

n n i
i m

a t a a t a t a t
∞

−
−

=−

+ + + + + + = ∑    

with ,m i∈ , i pa ∈  for all i. Thus the completion of ( )p t  is the field of 
formal Laurent series denoted by ( )p t .                               □ 

Remark 4.39. From the two previous sections, we can draw some important 
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conclusions about the fields that we have constructed. Since p  is an extension 
of   which has characteristic zero, the field p  is of characteristic zero. Si-
milarly, since ( )p t  is an extension of the finite field p , it is of characteristic 
p. The other notable thing is that both fields are constructed with the respect to a 
nonarchimedean absolute value. The elements are written in form of power se-
ries in these fields.  

5. Conclusion 

In conclusion, we have shown that with the study of field extensions, consider-
ing any polynomial with coefficients in the field, we can find the roots of the po-
lynomial. With the notion of algebraically closed fields, we have one field, F, 
where we can find the roots of any polynomial with coefficients in F. We have 
also shown that the concept of field extensions can be accounted for by field 
completion. 
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