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Abstract 
Matrix rings are prominent in abstract algebra. In this paper we give an over-
view of the theory of matrix near-rings. A near-ring differs from a ring in that 
it does not need to be abelian and one of the distributive laws does not hold 
in general. We introduce two ways in which matrix near-rings can be defined 
and discuss the structure of each. One is as given by Beildeman and the other 
is as defined by Meldrum. Beildeman defined his matrix near-rings as normal 
arrays under the operation of matrix multiplication and addition. He showed 
that we have a matrix near-ring over a near-ring if, and only if, it is a ring. In 
this case it is not possible to obtain a matrix near-ring from a proper near- 
ring. Later, in 1986, Meldrum and van der Walt defined matrix near-rings 
over a near-ring as mappings from the direct sum of n copies of the additive 
group of the near-ring to itself. In this case it can be shown that a proper 
near-ring is obtained. We prove several properties, introduce some special 
matrices and show that a matrix notation can be introduced to make calcula-
tions easier, provided that n is small. 
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1. Introduction 

Near-rings were first discovered as nearfields by Leonard E. Dickson in 1905 
when he constructed an algebraic structure that had all the properties of a field 
except with one distributive law missing. 

Near-rings are generalisation of rings but having only one distributive law and 
addition is not necessarily commutative in general. Near-rings have found many 
applications including in areas like cryptography. In [1], the author tried to de-
fine matrix near-rings over an arbitrary near-ring N as normal arrays with the 
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usual matrix addition and matrix multiplication. From the results obtained it 
was concluded that we can define matrix near-rings over N if, and only if, N is a 
ring. Later, [2] defined matrix near-rings over a near-ring N as mappings from 
Nn to itself, where Nn is the direct sum of n copies of the additive group of N. 
Matrix near-rings were defined over near-rings with identity and near-rings 
without identity. In this paper we only consider matrix near-rings over near- 
rings with an identity element. A natural question would be, can matrix near- 
rings be defined over an arbitrary near-ring N with the usual matrix addition 
and matrix multiplication? The answer turns up to be yes and that matrix near- 
rings over a near-ring N can only be defined if, and only if, N is a ring. 

This paper consists of 4 chapters. In Chapter 2 we give a brief introduction to 
near-rings and the background material that will help us understand matrix 
near-rings. In Chapter 3, the main chapter of this paper, we introduce matrix 
near-rings. We first define them as given by [1] and then later on as mappings as 
seen in [2]. We also work out some examples. In Chapter 4 we give a conclusion. 

2. Preliminary Material 

Before we introduce the concept of matrix near-rings we will give a brief back-
ground of near-rings. Near-rings are similar to rings, with one distributive law 
missing and unlike rings, the additive groups of near-rings need not be abelian. 
Near-rings are a generalisation of rings, so every ring is a near-ring. In this paper 
we will include the proofs of only some selected results from [2]-[6]. 

We begin by defining what a near-ring is. 
Definition 2.1. [7] A near-ring is a triple , ,N + ⋅  where N is a non empty 

set, in which the following holds, 
1) ,N +  is a group, not necessarily abelian; 
2) ,N ⋅  is a semigroup; 
3) ( )1 2 3 1 2 1 3n n n n n n n⋅ + = ⋅ + ⋅ , for all 1 2,n n  and 3n N∈ . 
This defines a left near-ring since the left distributive law holds. The definition 

of a right near-ring follows from the above where we have the right distributive 
law instead of the left one in Definition 2.1 part (3). In this project when we refer 
to a near-ring we mean a left near-ring. Just as in ring theory, near-rings have a 
unique identity element. 

If in addition { }\ 0N  is a group under multiplication, then we have that N is 
a nearfield.  

We have a wide range of examples of near-rings. We will list some of them in 
the next example.  

Example 2.2. [3] Let G be a group (not necessarily abelian) with identity 0.  
Then the following are examples of near-rings. 
1) ( ) { }| :M G f f G G= → , the set of all mappings from G to itself. 
2) ( ) ( ) ( ){ }0 | 0 0M G f M G f= ∈ =  the set of all mappings that map the 

identity element of G to itself. 
3) ( ) ( ){ }|  is constantcM G f M G f= ∈ .  
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We verify that (1) is a left near-ring below. 
Let ( )M G  be the set of all mappings from G to itself, where ,G +  is a 

group. We can verify that ( )M G  is a left near-ring with pointwise addition and 
composition of functions. 

We define λ  to be the zero map, that is for all x G∈ , ( ) 0x λ = . We have 
that ( )M Gλ ∈ , so ( )M G  is non-empty. 

For ( ),f g M G∈ , ( )( ) ( )( )x f g x f g= , for all x G∈ , so ( )f g M G∈  
and function composition is a binary operation on ( )M G . 

Now, for all ( ), ,f g h M G∈  and x G∈  we have, 

( ) ( )( ) ( )( )( )
( )( )( )
( )( )( )
( )( ) ,

x f g h x f g h

x f g h

x f g h

x f g h

=

=

=

=

  



 

 

so ( ) ,M G   is a semigroup. 
Using pointwise addition we have that for all x G∈ ,  

( )( ) ( ) ( ) ( ) ,x f g x f x g M G+ = + ∈  

so function addition is a binary operation on ( )M G . 
Then for ( ), ,f g h M G∈  we have,  

( ) ( )( ) ( ) ( )( )
( ) ( ) ( )
( ) ( )( ) ( )
( ) ( )
( ) ( )( )

( )

,

x f g h x f x g h

x f x g x h

x f x g x h

x f g x h

x f g h

+ + = + +

= + +

= + +

= + +

= + +

 

that is, addition is associative. 
For all x G∈ , ( )f M G∈  we have that,  

( )( ) ( ) ( ) ( ) ( )0x f x x f x f x fλ λ+ = + = + =  

( )( ) ( ) ( ) ( ) ( )0 .x f x f x x f x fλ λ+ = + = + =  

We let ( )( ) ( )( )x f x f− = − , then for all x G∈ , 

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( ) 0 ,x f f x f x f x f x f x λ− + = − + = − + = =  

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )0 .x f f x f x f x f x f x λ+ − = + − = − = =  

Thus, we have that λ  is the additive identity element and each element has 
an additive inverse. Therefore, ( )M G  is a group under addition. 

The left distributive law holds, that is function composition distributes over 
point wise addition from the left, since we have that,  

( ) ( )( ) ( )( )( )( )
( )( ) ( )( )
( ) ( )( )
( ) ( ) ( )( )

( )

.

x f g h x f g h

x f g x f h

x f g x f h

x f g f h

+ = +

= +

= +

= +



 

 
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Thus, ( )M G  is a left near-ring since the left distributive law holds. 
The right distributive law fails to hold if G contains more than one element. 

To check this, let , a b G∈ . We define functions af  and bf  by ( ) ax f a= , 
( ) bx f b= , for all x G∈ . Then for any ( )g M G∈ ,  

( ) ( ) ( )( )( ) ( ) ( )( ) ( )a b a b a bx f f g x f f g x f x f g a b g + = + = + = +   

while,  

( )[ ] ( )( ) ( )( )
( )( ) ( )( )
( ) ( ) .

a b a b

a b

x f g f g x f g x f g

x f g x f g

a g b g

+ = +

= +

= +

   

 

Therefore, the right distributive law can only hold when  
( ) ( ) ( )a b g a g b g+ = +  for all ,a b G∈ . We conclude that g needs to be an 
endomorphism for the right distributive law to hold. But when G contains more 
than one element, not all the mappings of ( )M G  are endomorphisms, (for 
example ( ) ax f  for 0a ≠ ). 

Just as in ring theory we have the notion of sub-near-rings. We give the for-
mal definition below. 

Definition 2.3. [8] A non-empty subset A of a near-ring N is said to be a 
sub-near-ring of N if A satisfies all the properties in Definition 2.1.  

As for rings it can be shown that a subset A of N, , ,A + ⋅  is a sub-near-ring 
of , ,N + ⋅  if A is non empty and for every ,a a A′∈  we have that a a A′− ∈  
and a a A′⋅ ∈ . This is the sub-near-ring test. 

Now we show some properties of near-rings.  
Lemma 2.4. [8] Let , ,N + ⋅  be a left near-ring. Then, 
1) 0 0n ⋅ = , 
2) ( )n m n m⋅ − = − ⋅ , 
for all ,n m N∈ .  
Proof. 1) For all n N∈ , we have, ( )0 0 0 0 0n n n n⋅ = ⋅ + = ⋅ + ⋅ , so that  
0 0n ⋅ = . 
2) Also, for all , ,n m N∈ , we have that  

( )( ) ( )0 0n n m m n m n m= ⋅ = ⋅ + − = ⋅ + ⋅ −  so that ( )n m n m⋅ − = − ⋅ .          □ 
In our near-ring N, we have that 0 0n ⋅ =  for all n N∈ , but 0 0n⋅ =  for all 

n N∈  is not generally true, this brings us to the following parts of a near-ring. 
Definition 2.5. [8] Let N be a near-ring. 
1) { }0 | 0 0N n N n= ∈ ⋅ =  is the zero symmetric part of N. 
2) { }| 0cN n N n n= ∈ ⋅ =  is the constant part of N.  
Both N0 and Nc are sub-near-rings and 0 ,N +  is a normal subgroup of 
,N + . But we will not show that in this paper. 

A near-ring N is called a zero symmetric near-ring if 0N N= . Since most 
researchers in this field require that this be an extra property, we will only con-
sider zero symmetric near-rings in this paper. 

We now give another part of near-rings, the distributive part. 
Definition 2.6. [8] An element d N∈  is distributive if for every ,m m N′∈ , 
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( ) .m m d m d m d′ ′+ ⋅ = ⋅ + ⋅  

We also define,  

{ }|  is distributive .dN d N d= ∈  

A subset S of a group G is said to be a generating set of G if every element of G 
can be expressed as a combination (under the group binary operation) of finitely 
many elements of S. In other words G is the intersection of all subgroups con-
taining elements of S. 

Now we give the following definition of distributively generated near-ring. 
Definition 2.7. [1] A near-ring N is said to be distributively generated if, and 

only if, N contains a multiplicative group B of distributive elements that generate 
the additive group of N.  

If we have that Nd generates ,N + , then N is said to be distributively gener-
ated or d.g for short. It can easily be shown that 0dN N⊆ . 

We now give the following theorem which tells us about the decomposition of 
a near-ring into a zero symmetric part and a constant part. 

Theorem 2.8. [8] Let N be a near-ring. Then for every N, we have that  
{ }0 0cN N∩ =  and 0 cN N N= + .  

Proof. Let 0 cx N N∈ ∩ . Then 0x N∈  and cx N∈ , so we have that,  

00 0,  since  .x x N⋅ = ∈  

Also,  

0 ,  since  .cx x x N⋅ = ∈  

Therefore, 0x =  and this implies that,  

{ }0 0 .cN N∩ =  

Now, for any n N∈  and suppose that ( ) 00n n N− ⋅ ∈ , we have,  

( ) ( )0 0 0 0 0
0 0
0,

n n n n
n n

⋅ − ⋅ = ⋅ − ⋅ ⋅

= ⋅ − ⋅
=

 

which shows that ( ) 00n n N− ⋅ ∈ . 
Similarly, suppose that 0 cn N⋅ ∈ ,  

( ) ( )( ) ( )
( )

0 0 0 0 , since 0 0

0 0 0
0 0
0 .

n n n n n n n n

n n n
n
n

⋅ ⋅ = ⋅ − − ⋅ ⋅ = − − ⋅

= ⋅ − ⋅ − ⋅

= ⋅ −
= ⋅

 

which shows that 0 cn N⋅ ∈ . 
Finally if n N∈  is defined by,  

( )0 0 ,n n n n= − ⋅ + ⋅  

Therefore, since ( ) 00 , 0cn N n n N⋅ ∈ − ⋅ ∈  we have that,  

0 .cN N N= +  

□ 
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As in ring theory we have modules of near-rings. Since we are working with 
left near-rings we will define a right module below. 

From now on we will not write ⋅  for multiplication of elements of the near- 
ring N, but use juxtaposition instead. 

Definition 2.9. [1] A right near-ring module M over a near-ring N is an addi-
tive group M, together with a near-ring N and a mapping  

: M N Mγ × →  

defined by  

( ),   where  , ,m n m n m M n Nγ = ⋅ ∈ ∈  

such that for any m M∈  and 1 2,n n N∈  we have the following axioms,  
1) ( )1 2 1 2m n n m n m n⋅ + = ⋅ + ⋅ ,  
2) ( ) ( )1 2 1 2 .m n n m n n⋅ = ⋅ ⋅   
Let N have an identity element, 1. If we have the extra axiom,  
3) 1m m⋅ = , for all m M∈ ,  

then M is said to be a unitary module. 
We denote a near-ring module M over N by MN and it is called an N-module.  
Below we give some examples of modules. 
Example 2.10. [8] Let H be a group and n∈ , the set of integers. We define 

for all h H∈  and n∈ ,  

0 0 , where 0 is the identity of ,h hh H⋅ =  

( )
( )

,  elements  if  0,

,  elements  if  0.

h n h h h n n

h h h n n

⋅ = + + + >

= − − − − − <





 

Then H is a near-ring  -module. 
We will show that the axioms of a module are satisfied. 
For any h H∈  and ,n m∈  we have  

( )
times

times times

,

,

.

n m

n m

h n m h h h

h h h h h h

h n h m

+
⋅ + = + + +

= + + + + + + +

= ⋅ + ⋅



 



   

Also,  

( )

( )

times

times

times

.

.

n m

n

m

h nm h h h

h h h m

h n h n h n

h n m

⋅
⋅ = + + +

 
= + + + ⋅ 
 

= ⋅ + ⋅ + + ⋅

= ⋅ ⋅













 

And since 1∈ , we have that 1h h⋅ =  for every h H∈ . Thus, H is a uni-
tary  -module.  

Example 2.11. Let N be a near-ring. Then, the set Nn for n an integer whose 
elements are of the form ( )1 2, , , n

nn n n N∈  for every in N∈ , and  
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{ }1,2, ,i n∈   with coordinate-wise addition defined for every  
( ) ( )1 2 1 2, , , , , , , n

n nn n n m m m N∈   by,  

( ) ( ) ( )1 2 1 2 1 1 2 2, , , , , , , , , ,n n n nn n n m m m n m n m n m⊕ = + + +    

and scalar multiplication defined for all ( )1 2, , , n
nm m m N∈  and m N∈  by,  

( ) ( )1 2 1 2, , , , , , ,n nm m m m m m m m m m⋅ =   

is an N-module. 
For any ( )1 2, , , , ,n

nm m m N m n N∈ ∈ , with 1 the identity of N, we have,  

( ) ( ) ( ) ( ) ( )( )
( )
( ) ( )
( ) ( )

1 2 1 2

1 1 2 2

1 2 1 2

1 2 1 2

, , , , , ,

, , ,

, , , , , ,

, , , , , , .

n n

n n

n n

n n

m m m n m m n m m n m m n m

m n m m m n m m m n m m

m n m n m n m m m m m m

m m m n m m m m

⋅ + = + + +

= + + +

= +

= ⋅ + ⋅

 



 

 

 

Also,  

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )
( )
( )

1 2 1 2 2

1 2

1 2

1 2

, , , , , ,

, , ,

, , ,

( , , , ) .

n

n

n

n

m m m nm m nm m nm m nm

m n m m n m m n m

m n m n m n m

m m m n m

⋅ =

=

= ⋅

= ⋅ ⋅

 







 

To check the identity axiom,  

( ) ( ) ( )1 2 1 2 1 2, , , 1 1, 1, , 1 , , , .n n nm m m m m m m m m⋅ = =    

Therefore, Nn is a unitary near-ring module over N.  
A near-ring module has different properties, we will list them below and veri-

fy each one of them. 
Lemma 2.12. [1] Let MN be an N-module with an identity element 0M. Then 

we have,  
1) 0 0 0M M⋅ = ,  
2) 0 0Mx ⋅ = , for all x M∈ ,  
3) 0 0M My⋅ =  for all y N∈ ,  
4) ( )x y x y⋅ − = − ⋅  for all , y N x M∈ ∈ .  
Proof.  
1) ( )0 0 0 0 0 0 0 0 0M M M M⋅ = ⋅ + = ⋅ + ⋅ , so that 0 0 0M M⋅ = .  
2) For all x M∈  we have, ( )0 0 0 0 0x x x x⋅ = ⋅ + = ⋅ + ⋅ , so that 0 0Mx ⋅ = .  
3) Let y N∈ . Then, ( ) ( )0 0 0 0 0 0 0 0M M M M My y y⋅ = ⋅ ⋅ = ⋅ ⋅ = ⋅ = , so that  

0 0M My⋅ = .  
4) Let x M∈  and y N∈ . Then,  

( ) ( )( ) ( )0 0Mx y x y x x y y x y x y⋅ + − ⋅ = = ⋅ = ⋅ + − = ⋅ + ⋅ −  so that  
( )x y x y⋅ − = − ⋅ .  

□ 
We now give the definition of a submodule below. 
Definition 2.13. [1] A subset H of an N-module NM  is said to be submo-

dule if, and only if,  
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1) H is a normal subgroup of ,M + ,  
2) ( )m h n m n H+ ⋅ − ⋅ ∈ , where , Nm M h H∈ ∈  and n N∈ .  
Just like in ring theory we have homomorphisms to help find structural prop-

erties between two near-rings.  
Definition 2.14. [1] Let N and N ′  be near-rings. A mapping φ  from N 

into N ′  is called a near-ring homomorphism if for all ,n n N′∈ ,  

( ) ( ) ( ) ( ) ( ) ( )and .n n n n nn n nφ φ φ φ φ φ′ ′ ′ ′+ = + =  

Remark 2.15. [8] 
1) An injective (one-to-one) homomorphism is called a monomorphism. 
2) A surjective (onto) homomorphism is called an epimorphism. 
3) A homomorphism that is both one-to-one and onto is known as an iso-

morphism.  
The term embed is used to mean, “map by means of a monomorphism.” 
We will now provide an interesting theorem about the embedding of 

near-rings into other algebraic structures.  
Theorem 2.16. [3] Let , ,N + ⋅  be a near-ring and ,G +  a group which 

properly contains an isomorphic copy of ,N + . Then it is possible to embed 
, ,N + ⋅  in ( )M G .  

Proof. We identify ,N +  with its isomorphic copy contained in some group 
G. Let :n G Gψ → , where for n N∈ , nψ  is defined by,  

( )
  if  ,
  otherwise.n

gn g N
g

n
ψ

∈
= 


 

We define a map ( ): N M Gθ →  for n N∈  by,  

( ) .nn θ ψ=  

We now show that θ  is a monomorphism. 
For any ,m m N′∈  we have,  

( )

( ) ( ) .

m m

m m

m m

m m

θ ψ
ψ ψ

θ θ

′+

′

′+ =

= +

′= +

 

Also,  

( )

( )( ) ( )( ).

mm

m m

mm

m m

θ ψ
ψ ψ

θ θ

′

′

′ =

=

′=

  

The homomorphism property holds. 
Now, we show that θ  is an injective map. 
Suppose ,m m′  are both in N. Then,  

( ) ( )m mθ θ′=  

implies that m mψ ψ ′=  
so that m m′=  
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Thus, θ  is a monomorphism and thus an embedding map.             □ 
The above theorem tells us that every near-ring can be considered as a sub- 

near-ring of some ( )M G . 
Since ( )M G  is a nearing with an identity element we can now derive the 

following corollary. 
Corollary 2.17. [8] Every near-ring can be embedded in a near-ring with 

identity.  
Isomorphism theorems that apply in other algebraic structures such as groups 

and rings also apply in near-rings. We will take a moment to give the First 
near-ring Isomorphism Theorem. Before stating the theorem we give some im-
portant definitions we will need.  

Definition 2.18. [1] Let N and N' be near-rings. Let φ  be a near-ring ho-
momorphism from N to N'. Then we have, 

1) The image of φ  in N' is,  

( ) ( ){ }im : ,n n Nφ φ= ∈  

2) The kernel of φ  denoted by ( )ker φ  is given by,  

( ) ( ){ }ker | 0 .n N n Nφ φ ′= ∈ = ∈  

Theorem 2.19. [8] (First near-ring Isomorphism Theorem) Let N and N' be 
near-rings. Let φ  be a near-ring homomorphism from N to N'. Then,  

( ) ( )ker im .N φ φ≅  

Having discussed the necessary background material we will now introduce 
the concept of matrix near-rings in the next chapter. 

3. Matrix Near-Rings 

In this section we look at two possible ways of defining matrix near-rings. We 
restrict the discussion to near-rings with identity. Results, definitions and theo-
rems are similar to those in [1] [9] [10] [11].  

3.1. Defining Matrix Near-Rings as Arrays 

If we try defining matrix near-rings as normal arrays with the usual matrix addi-
tion and multiplication over a near-ring as seen in [1], we observe that the set of 
n n×  matrices is not associative under multiplication because of the missing 
distributive law in our near-ring. We begin proving some results. We will need 
the following definition. 

Definition 3.1. [1] Let N be a left near-ring with an identity element. A ma-
trix over N is an n n×  rectangular array of the form,  

11 12 1

1 2

= ,
n

n n nn

a a a
A

a a a

 
 
 
 
 



   



 

with n rows and n columns and elements ija  from the near-ring N.  
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Let ( )M N  be the set of n n×  matrices over N. Two matrices A and  
( )B M N∈  are said to be equal if the corresponding elements ij ija b=  for 

every ,i j . 
We define addition in ( )M N  by, 

( )

11 12 1 11 12 1

1 2 1 2

11 11 12 12 1 1

1 1 2 2

,

n n

n n nn n n nn

n n

n n n n nn nn

a a a b b b

a a a b b b

a b a b a b
M N

a b a b a b

   
   +   
   
   

+ + + 
 = ∈ 
 + + + 

 

       

 



   



 

i.e., we add corresponding elements of the two matrices. 
Multiplication in ( )M N  is defined as, 

( )
11 12 1 11 12 1 11 12 1

1 2 1 2 1 2

,
n n n

n n nn n n nn n n nn

a a a b b b d d d
M N

a a a b b b d d d

    
    = ∈    
    
    

  

           

  

 

where,  

1
.

n

ij ir rj
r

d a b
=

= ∑  

We now give a theorem which tells us that ( ) ,M N ⋅  is a semigroup if, and 
only if, N is a ring.  

Theorem 3.2. [1] Let N be a near-ring with identity and ,N +  an abelian 
group. ( ) ,M N ⋅ , for 1n >  is a semigroup if, and only if, N is a ring.  

Proof. Suppose N is a ring, then for any ( ), ,A B C M N∈  we have that,  

( ) ( ) ,A BC AB C=  

because rings have the associative law. Therefore, ( ) ,M N ⋅  is a semigroup. 
Conversely, suppose ( ) ,M N ⋅  is a semigroup. Since ,N +  is abelian, it 

suffices to show that , ,N + ⋅  satisfies the right distributive law. For any  

1 2, ,n n n N∈ , let ( ), ,A B C M N∈  be defined by  

1 2

2

1 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0

,  and  .0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

n n n
n

A B C

     
     
     
     = = =
     
     
     
     

  

  

  

           

     

 

Then  

( )

1 2

2

1 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

n n n
n

A BC

     
     
     
     =
     
     

          

  

  

  

           

     
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1 2

2

1 1 2 2

2

1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0

0 0 0
0 0 0

0 0 0

0 0

n n n
n n

n n n n n n
n n

+  
  
  
  =
  
  
  
  

+ + 
 
 
 =
 
 
 
 

 

 

 

       

   







   

 

 

Also we have that,  

( )

1 2

2

1 2 1 2

2

1 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0

0 0 0 1 0 0 0
0 0 0 0 0 0 0

0 0

n n n
n

AB C

n n n n n
n

     
     
     

=      
     
               

+ 
 
 

=  
 
  
 

  

  

  

           

     

 

 

 

   

 

( )1 2 1 2

2

0 0
0 0 0
0 0 0

.0 0 0

0 0

n n n n n
n n

 
 
 
 
 
  
 

+ + 
 
 

=  
 
  
 

   

 







   

 

 

Since corresponding entries of the matrices are equal, we have that,  

( )1 2 1 2 1 1 2 2n n n n n n n n n n n+ + = + +  

( )1 2 1 2 1 2 1 2n n n n n n n n n n n+ + = + + , since ,N +  is abelian, 
so that ( )1 2 1 2n n n n n n n+ = + . 

Therefore, the right distributive law holds. Thus, N is a ring.             □ 
An immediate result is the following corollary which tells us that if the addi-

tive group of N is abelian, then ( )M N  with multiplication forms a groupoid. 
Corollary 3.3. [1] Let N be a proper near-ring with identity and ,N +  an 

abelian group. Then ( ) ,M N ⋅ , for 1n >  forms a groupoid and not a semi-
group.  

Proof. Let ( )M N  be the set of n n×  matrices. Since 0 N∈ , we have that 
the zero matrix given by  

( )

0 0 0
0 0 0

,

0 0 0

M N

 
 
 ∈
 
 
 





   


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thus ( )M N  is non empty. 
Now, for all ( ),A B M N∈  when we multiply two matrices, we have that the 

product ( )AB M N∈ . Therefore ( )M N  is closed under multiplication. 
Also, since 1 N∈ , we have an identity element ( )I M N∈  given by,  

1 0 0
0 1

,
0

0 0 1

I

 
 
 =
 
 
 



 

  



 

such that, for any ( )A M N∈ ,  

.AI A IA= =  

Clearly, ( ) ,M N ⋅  is a groupoid. 
Now, we show that the associativity property does not hold in general. 
Since N is a left near-ring we can choose , ,a b c N∈  so that  

( )a b c ac bc+ ≠ + . 
Now, let ( ), ,A B C M N∈  be defined as,  

1 1 0 0
,  ,  .

0 0 0 0 0
a c

A B C
b

     
= = =     
     

 

Then, 

( ) 1 1 0 0
0 0 0 0 0
1 1 0 0 ,
0 0 0 0 0

a cA BC
b

ac ac bc
bc

     =           
+    = =    

    

 

while, 

( )

( )

1 1 0 0
0 0 0 0 0

00 0 .
0 0 0 0 0 0

a cAB C
b

a b ca b c

     =           
 + +  = =    

    

 

Therefore, associativity fails to hold in general. Thus, ( ) ,M N ⋅  is not a se-
migroup.                                                         □ 

The definition of a near-ring , ,N + ⋅  does not require that ,N +  is ab-
elian. So now, we state a theorem that tells us that for matrix near-rings  

( ) , ,M N + ⋅ , ,N +  needs to be an abelian group. 
Theorem 3.4. [1] Let N be a near-ring with identity. ( ) , ,M N + ⋅  has a left 

distributive law if, and only if, ,N +  is abelian.  
Proof. Suppose ( ) , ,M N + ⋅  satisfies the left distributive law. Then for any 

1 2,n n N∈ , let ( ), ,A B C M N∈  be defined by,  

1 2

2

1 0 0 1 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 0 0

, , .0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

n n
n

A B C

     
     
     
     = = =
     
     
     
     

  

  

  

           

     
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Then we have that,  

( )

1 2

2

1 1 1 2 1 2

1 0 0 1 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0
1 1 0 0

0 0 0 0 .

0 0

n n
n

A B C

n n n n n n

      
      
      + = +      
      

            
+ + + + + 

 
=  
  
 

  

  

  

           

     





   

 

 

Also we have that,  

1 2 1 1 2 2

2

1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

,0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

n n n n n n
n

AB

+    
    
    = =    
    
    
    

  

  

  

           

     

 

and  

1 1 11 0 0 1 1 0 0 1 1 0 0
0 0 0 0 1 1 0 0 0 0 0 0

,0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

n n n

AC

+ +    
    
    
    = =
    
    
    
    

  

  

  

           

     

 

so now,  

1 1 1 2 2 11 1 0 0
0 0 0 0 .

0 0

n n n n n n

AB AC

+ + + + + 
 

+ =  
  
 





   

 

 

From the above we have that,  

1 2 1 2 1 2 2 11 1n n n n n n n n+ + + = + + +  

so that, 1 2 2 1n n n n+ = + , 
so that the additive group of N is abelian. 

Conversely, suppose ,N +  is abelian. Then for all ( ), ,A B C M N∈  we have 
that,  

( ) ( ) ( )
1 1

.
n n

ik kj kj ik kj ik kjij
k k

A B C a b c a b a c
= =

+ = + = +   ∑ ∑  

Since,  

[ ] [ ]
1 1

and ,
n n

ik kj ik kjij ij
k k

AB a b AC a c
= =

= =∑ ∑  

we also have that, 

[ ] [ ]

( )
1 1

1

,

,  since , is abelian.

n n

ik kj ik kjij ij
k k

n

ik kj kj
k

AB AC a b a c

a b c N

= =

=

+ = +

= + +

∑ ∑

∑
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From the above result we have that  

( ) .A B C AB AC+ = +  

Therefore, ( ) , ,M N + ⋅  satisfies the left distributive law.               □ 
From Theorems 3.2 and 3.4 we can conclude the following about ( ) , ,M N + ⋅ . 
Corollary 3.5. [1] Let N be a near-ring with an identity element. Then  
( ) , ,M N + ⋅  is a near-ring if, and only if, N is a ring.  

The following result tells us that the additive group of ( )M N  forms a mod-
ule. 

Proposition 3.6. [1] Let N be a near-ring with an identity element. Then, the 
additive group of ( )M N  can be considered a unitary N-module.  

Proof. We will show the axioms of a module. 
For ( )A M N∈  and m N∈ , we define,  

( )
11 12 1 11 12 1

1 2 1 2

.
n n

n n nn n n nn

a a a a m a m a m
A m m M N

a a a a m a m a m

   
   ⋅ = ⋅ = ∈   
   
   

 

       

 

 

Now, for any ( )A M N∈  and ,m n N∈ , we have,  

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

11 12 1

1 2

11 12 1

1 2

11 11 12 12 1 1

1 1 2 2

11 12 1

1 2

n

n n nn

n

n n nn

n n

n n n n nn nn

n

n n nn

a a a
A m n m n

a a a
a m n a m n a m n

a m n a m n a m n
a m a n a m a n a m a n

a m a n a m a n a m a n
a m a m a m

a m a m a m

 
 ⋅ + = ⋅ +
 
 

+ + + 
 =  
 + + + 

+ + + 
 =
 

+ + + 
 
=





   





   





   





   



11 12 1

1 2

11 12 1 11 12 1

1 2 1 2

.

n

n n nn

n n

n n nn n n nn

a n a n a n

a n a n a n
a a a a a a

m n
a a a a a a

 
  +
  
  

   
   = ⋅ + ⋅
   
   



   



 

       

 

 

Also we have,  

( ) ( )
11 12 1

1 2

11 12 1

1 2

11 12 1

1 2

.

n

n n nn

n

n n nn

n

n n nn

a a a
A mn mn

a a a

a mn a mn a mn

a mn a mn a mn

a m a m a m
n

a m a m a m

 
 ⋅ = ⋅ 
 
 
 
 =  
 
 
 
 = ⋅ 
 
 



   





   





   



 

Also, since 1 N∈ , we have that  
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( )

11 12 1 11 12 1

1 2 1 2

11 12 1

1 2

1 1 1
1

1 1 1

.

n n

n n nn n n nn

n

n n nn

a a a a a a

a a a a a a

a a a
M N

a a a

   
   ⋅ =   
   
   

 
 = ∈ 
 
 

 

       

 



   



 

Therefore, ( ) ,M N +  becomes a unitary near-ring module over N.      □ 
We now find an alternate way of defining a proper near-ring of matrices in 

the next section.  

3.2. Defining Matrix Near-Rings as Functions 

As long as we view matrices as arrays of entries with the usual matrix addition 
and multiplication, it will not make sense to define a proper near-ring of matric-
es over an arbitrary near-ring. We could consider n n×  matrices over a ring N 
as functions of nN  to nN  where nN  is the direct sum of n copies of the ad-
ditive group of N. Before we give a formal definition of matrix near-rings as 
originally defined by [2], we will first take note of some notations we will need. 

Let n be a natural number and , ,N + ⋅  a near-ring with an identity element. 
Let jl  be the jth-coordinate injection function and jπ  the jth-coordinate pro-
jection function. That is, for any ( )1 2, , , n

nm m m N∈  and m N∈ , we have 
that, 

( )1 2, , , n j jm m m mπ =  and 
( ) ( )0, ,0, ,0, ,0jm l m=   , with m in the jth position and zeros elsewhere. 
For each k N∈  there corresponds a function kf  from N to itself, defined 

by,  

( ) ,  .ks f sk s N= ∀ ∈  

We define our matrices using this embedding of N into ( )M N  as seen in 
Theorem 2.16 of Chapter 2. 

We now introduce the function given by,  

: ,k n n
ijf N N→  

where, , 1 , , k k
ij j if f l i j n k Nπ= ≤ ≤ ∈ . 

In rings, n n×  matrices over a ring can be expressed as sums and products of 
elementary matrices ijkE  with k in the ( )th,i j  position and zeros elsewhere, 

0 0 0

.0 0

0 0 0

ijkE k

 
 
 
 =
 
 
 
 

 

    

 

    

 

 

So we can consider k
ijf  to be elementary matrices. 

When using the k
ijf  functions in calculations we will use the following nota-

tion. 
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For any 1, , n
nm m N∈ ,  

( ) ( ) ( ) ( )
( )

1 1

th

, , , ,

0, ,0, ,0, ,0 ,   with in the position.

k k k
n ij n j i j i j i

j j

m m f m m f l m f l m k l

m k m k i

π= = =

=

 

 

 

We now formally define a matrix near-ring using the concept introduced ear-
lier where we consider n n×  matrices as mappings from nN  to itself. 

In the definition below, by saying ( )nM N  is generated by the set  

{ }: , 1 ,k
ijf k N i j n∈ ≤ ≤ , we mean that it is closed under the operations of addi-

tion, differences and products. 
Definition 3.7. [11] The near-ring of n n×  matrices over N denoted by 
( )nM N  is a sub-near-ring of ( )nM N , the near-ring of all mappings from 

nN  to itself, generated by the set,  

{ }: , 1 , .k
ijf k N i j n∈ ≤ ≤  

The elements of ( )nM N  will be referred to as n n×  matrices over N.  
An immediate result from the definition of a matrix near-ring is the following 

proposition. 
Proposition 3.8. [11] ( )nM N  is a left near-ring with identity element  

( )1 1 1
11 22 nn nf f f M N+ + + ∈ . Where 1 is the identity element of N.  
Proof. ( )nM N  being a near-ring follows from Definition 3.7. So we now ve-

rify that 1 1 1
11 22 nnf f f+ + +  is the identity element. 

Take any ( )1 2, , , n
nm m m N∈ , so we have,  

( )( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( )

1 1 1
1 2 11 22

1 1 1
1 2 11 1 2 22 1 2

1 1 2 2

1 1 2 2

1 2

1 2

, , ,

, , , , , , , , ,

1 1 1

,0, ,0 0, ,0, ,0 0,0, ,0,

, , , .

n nn

n n n nn

n n

n n

n

n

m m m f f f

m m m f m m m f m m m f

m l m l m l

m l m l m l

m m m

m m m

+ + +

= + + +

= + + +

= + + +

= + + +

=

 

   





   



 

□ 
Proposition 3.9. [11] If N is a ring with an identity element, then ( )nM N  is 

isomorphic to the usual full ring of n n×  matrices over N.  
Proposition 3.9 tells us that if we have that N is a ring, then both distributive 

laws hold and we can define matrix near-rings as arrays with the usual matrix 
addition and multiplication and have a matrix ring. 

In the next section we give an alternative notation for matrices. 

3.3. Alternative Notation for Matrices 

Now, the question the reader may have is whether or not we have an alternative 
notation for matrices which makes actual calculations feasible. We will show 
that for small n, we have a notation close to the normal notation used in matrix 
ring theory. 

We make use of the following conventions. Although the elements of nN  are 
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considered as column vectors, we represent them as n-tuples,  
( )1 2, , , n

nm m m N= ∈ . 
Recall that 1 is the identity element of N. The matrix units are of the form 
1, 1 ,ijf i j n≤ ≤  and the identity matrix is given by 1 1 1

11 22 nnf f f+ + +  as shown 
in Proposition 3.8. 

If { }1,2, ,i n∈  , the function : n
iA N Nπ →  is called the ith row of the ma-

trix A, it follows that ( )1
n

i iiA A lπ
=

= ∑ . The ith column of the matrix A is defined 
as the function : n

il A N N→ . 
Scalar multiplication on the right of the matrix A by an element k N∈  is de-

fined by,  

1
.

n
k

i i
i

Ak A f lπ
=

= ∑  

We show the result below based on notation from [11]. 
It follows that 1 k

ij ijf k f= , if, and only if, 0k N∈ . We show this below. 
Suppose, 0k N∈ . Then, for any ( )1 2, , , n

nm m m N∈ , we have that:  

( ) ( )
( )

1
1 2

th

, , , 0 , ,0 , ,0 , ,0

0, ,0, ,0, ,0 ,  with in the position of the vector.

n ij j

j j

m m m f k k k m k k k

m k m k i

=

=

  

 

 

Also, we have  

( ) ( )1 2, , , 0, ,0, ,0, ,0 ,  by definition of .k k
n ij j ijm m m f m k f=    

This implies that 1 k
ij ijf k f=  for any 0k N∈ . 

Conversely, if 1 k
ij ijf k f= , then we have that:  

( ) ( )
( ) ( )

1

th

1,1, ,1 0 , ,0 , ,0 , ,0

1,1, ,1 0, ,0, ,0, ,0   with in the position.
ij

k
ij

f k k k k k k

f k k i

=

= =

  

  

 

Therefore, 0 0k = . 
Scalar multiplication on the left of A is defined by ( )11 22

k k k
nnkA f f f A= + + + . 

In this case we have that 1 k
ij ijkf f=  for any k N∈ . 

Suppose k N∈ . Then, for any ( )1 2, , , n
nm m m N∈ , we have that,  

( ) ( )
( )

1 1
1 2 1 2

th

, , , , , , , ,

0, ,0, ,0, ,0 ,  with in the position of the vector.

n ij j n ij

j j

m m m kf m k m k m k m k f

m k m k i

=

=

  

 

 

Also, we have  

( ) ( )1 2, , , 0, ,0, ,0, ,0 ,  by definition of .k k
n ij j ijm m m f m k f=    

This implies that 1 k
ij ijkf f=  for any k N∈ . 

Since we have restricted our study to zero symmetric near-rings, it is clear that 
scalar multiplication on the left and right is the same. 

Our alternative notation for matrices will be column vectors whose entries are 
functions from nN  to N. Each function is the appropriate row of the matrix 
defined previously. The following rules provide this representation in a recursive 
manner , where T represents transposition. 

1) The matrix k
ijf  is represented by the vector with k

j fπ  in the ith position 
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and zeros elsewhere and is given by  
T

0, ,0, ,0, ,0 .k
j fπ     

2) If the matrices A and B are represented by  

[ ] [ ]T T
1 2 1 2, , ,   and  , , , .n nA a a a B b b b= =   

Then we have that,  

[ ]T1 1 2 2, , , .n nA B a b a b a b+ = + + +  

While AB is represented by the vector obtained from [ ]T1 2, , , nA a a a=   by 
replacing in ka  every occurrence of jπ  by jb .  

Since we have assumed every element of nN  to be a column vector in this 
representation, we will write them as column vectors in the next example.  

Example 3.10. We consider the case of 2 2×  matrices, so we have that for 
any two matrices A and B given by,  

( )12 21 22 22
a b c dA f f f f= + +  

( )21 11 12 11 .p q s tB f f f f= + +  

We can represent the matrices by  

( ) ( )1 2 2 1

2 1

  and  .
b c a s t q

d p

f f f f f f
A B

f f

π π π π

π π

   + +
= =   
      

 

To simplify further we may substitute rf  and 1
rfπ  by r and substitute 

2
rfπ  by r . So that A and B becomes:  

( ) ( )  and  .
b c a s t q

A B
d p
+ +   

= =   
   

 

To illustrate how A acts as a function from 2N  to 2N . Let [ ]T1 2, nm m N∈ . 
So we have:  

( ) ( )1 1 1 2

2 2 2

.
m m m b m c ab c a

A
m m m dd

+ +    
= =      

       
 

Multiplication is illustrated by:  

( ) ( ) ( )( )b s t q cp ab c a s t q
AB

d p dp

 + ++ +   
= =     

      
 

Clearly, this notation is only convenient for small n. However, this notation 
shows us that the rows of a matrix are much more distinguishable than columns. 

Just as in ring theory we do have the concept of special matrices which we will 
define in the next section. 

3.4. Special Kinds of Matrices 

We now define some special kinds of matrices which we know from matrix ring 
theory. 

Definition 3.11. [11] Let 1 2, , , nm m m N∈ . A matrix is said to be a diagonal 
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matrix if it is of the form 1 2
11 22

nmm m
nnf f f+ + + . If we have that 1 2 nm m m= = = , 

the matrix is called a scalar matrix.  
We can also define lower triangular matrices in two ways, one is that a matrix 

A is said to be a lower triangular matrix if, and only if, there is an expression for 
A consisting only of r

ijf  with i j≥ , apart from operators and parenthesis. The 
other way, which is equivalent to the first way is given in Definition 3.12.  

Definition 3.12. [11] A matrix B in ( )nM N  is said to be lower triangular 
if, for any { }1,2, ,i n∈  , we have that  

,  for all , ,n
i im B m B m m Nπ π′ ′= ∈  

with { }, 1, 2, ,j jm m j iπ π′= =  .  
We can also define an upper triangular matrix in a similar manner below. 
Definition 3.13. [11] A matrix B is said to be an upper triangular matrix if, 

for any { }1,2, ,i n∈  , we have that  

,  for all , ,n
i im B m B m m Nπ π′ ′= ∈  

with { }, , 1, ,j jm m j i i nπ π′= = +  .  
Now, we will denote the set of all lower triangular matrices by   and the set 

of all upper triangular matrices by  . 
Next we introduce a lemma that tells us that   and   are sub-near-rings 

of ( )nM N . We will use the sub-near-ring test to prove the following results. 
Since we restricted our study to zero symmetric near-rings, we use that  

mA Am=  for m N∈  and ( )nA M N∈ . 
Lemma 3.14. [11] The set of lower triangular matrices   and the set of up-

per triangular matrices   each form a sub-near-ring of ( )nM N .  
Proof. We first prove for the set of lower triangular matrices  . 
a) Suppose ,A B∈ . Let { }1,2, ,i n∈  . Choose any , nm m N′∈  with  

{ }, 1, 2, ,j jm m j iπ π′= ∈  . Then we have,  

( ) ( ).i i i i i im A B m A m B m A m B m A Bπ π π π π π′ ′ ′− = − = − = −  

Thus, ( )A B− ∈ , this means ,+  is a subgroup of ( ) ,nM N + . 
Further, we have that { }, 1, 2, ,j jm A m A j iπ π′= ∈   since A∈  and  

{ }, 1, 2, ,j jm m j iπ π′= ∈  . Therefore, we have that,  

( ) ( ) ( ) ( ) ,i i i im AB m A B m A B m ABπ π π π′ ′= = =  

since B∈ . Consequently AB∈ , and   is a sub-near-ring of ( )nM N . 
b) Similarly, we show for the set of upper triangular matrices  . 
Suppose ,A B∈ . Let { }1,2, ,i n∈  . Choose any , nm m N′∈  with  

{ }, , 1, ,j jm m j i i nπ π′= ∈ +  . Then we have,  

( ) ( ).i i i i i im A B m A m B m A m B m A Bπ π π π π π′ ′ ′− = − = − = −  

Thus, ( )A B− ∈ , so that ,+  is a subgroup of ( ) ,nM N + . 
Further, we have that { }, , 1, ,j jm A m A j i i nπ π′= ∈ +   since A∈  and  

{ }, , 1, ,j jm m j i i nπ π′= ∈ +  . Therefore, we have that,  

( ) ( ) ( ) ( ) ,i i i im AB m A B m A B m ABπ π π π′ ′= = =  
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since B∈ . In Consequence, AB∈ , and   is a sub-near-ring of ( )nM N . 
□ 

The binary operations on ( )nM N  are coordinate-wise addition and   
which indicates function composition. 

We now define some rules for matrix calculations before we do some exam-
ples. We assume ,N +  is abelian. 

Lemma 3.15. [11] For all { }, , , 1, 2, ,i j l p n=   and , , ,a b s t N∈  we have,  
1) a b a b

ij ij ijf f f ++ = ,  
2) a b b a

ij pl pl ijf f f f+ = + , if p i≠ , 

3) 
0 , if

, if ,

b
pja b

ij pl ab
pj

f i l
f f

f i l
 ≠=  =

   

4) a a
ij ijf f −− = .  

5) a is zero symmetric in N if, and only if, a
ijf  is zero symmetric in ( )nM N .  

6) a is constant in N if, and only if, a
ijf  is constant in ( )nM N .  

7) a is distributive in N if, and only if, a
ijf  is distributive in ( )nM N .  

8) If a s t= +  is the decomposition of a into the zero symmetric part s and 
the constant part t, then a s t

ij ij ijf f f= +  is the corresponding decomposition of 
a

ijf  in ( )nM N .  
Proof. For any ( )1 2, , , n

nm m m N∈ , we have,  
1)  

( )( ) ( ) ( )

( ) ( ) ( )
( )( ) ( )

1 2 1 2 1 2

1 2

, , , , , , , , ,

= , , , .

a b a b
n ij ij n ij n ij

j i j i j j i

a b
j i n ij

m m m f f m m m f m m m f

m a l m b l m a m b l

m a b l m m m f +

+ = +

= + = +

= +

  



 

Therefore, we have that a b a b
ij ij ijf f f ++ = . 

2)  

( ) ( ) ( )

( ) ( )

( ) ( )

( )
( ) ( )
( )

thth

1 2 1 2 1 2

in the position in the position

1 2

, , , , , , , , ,

0, ,0, ,0, ,0 0, ,0, ,0, ,0

0, ,0, ,0, ,0, ,0, ,0

, , ,

lj

a b a b
n ij pl n ij n pl

j i l p

j l

m b pm a i

j l

l p j i

n

m m m f f m m m f m m m f

m a l m b l

m a m b

m a m b

m b l m a l

m m m f

+ = +

= +

= +

=

= +

=

  

   





  

 .b a
pl ijf+

 

Therefore, we have that a b b a
ij pl pl ijf f f f+ = +  for i p≠ . 

3)  

( ) ( )( ) ( )
( )1 2

0

0 if
, , ,

if

, if  
, if  = .

pa b b
n ij pl j i pl

j p

b
pj
ab
pj

b l i l
m m m f f m a l f

m ab l i l

f i l
f i l

 ≠= = 
=

 ≠= 


 
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4)  

( )( ) ( )
( )( ) ( )

( )

1 2

1 2

, , ,

   since  

, , , .

a
n ij j i

j i

a
n ij

m m m f m a l

m a l m n mn

m m m f −

− = −

= − − = −

=





 

Therefore we have that a a
ij ijf f −− = . 

5) Suppose a is zero symmetric in N, then we have,  

( ) ( )
( )
( )

1 2

1 2

, , , 0 0,0, ,0

0,0, ,0 ,  since  0 0

, , , 0

a a
n ij ij

n

m m m f f

a

m m m

=

= =

=

 





 

Thus, we have that 0 0a
ijf = , so that a

ijf  is zero symmetric in ( )nM N . 
Also, if a

ijf  is zero symmetric in ( )nM N , then,  

( ) ( ) ( )1 2, , , 0 0,0, ,0,0 ,0, ,0 0,0, ,0 .a
n ijm m m f a= =     

This implies that 0 0a = . Therefore a is zero symmetric in N.  
6) Suppose a is constant in N, then we have,  

( ) ( )
( )
( )

1 2

1 2

, , , 0 0,0, ,0

,  since  0 ,

, , , .

a a
n ij ij

i

a
n ij

m m m f f

a l a a

m m m f

=

= =

=

 



 

Thus, we have that 0 a a
ij ijf f= . So that a

ijf  is constant in ( )nM N . 
Also, if a

ijf  is constant in ( )nM N , then,  

( ) ( )1,1, ,1 0 1,1, ,1 ,a a
ij ijf f=   

( ) ( )0, ,0 1,1, ,1 .a a
ij ijf f=   

This implies that 0 1a a a= = . Therefore a is constant in N.  
7) Suppose a is distributive in N, choose matrices ( ), nA B M N∈  such that,  

( ) ( ) ( ) ( )1 2 1 2 1 2 1 2, , , , , , ,  and  , , , , , , .n n n nm m m A s s s m m m B t t t= =     

Then,  

( )( )

( ) ( )

( ) ( )

( )( ) ( ) ( ) ( )

( ) ( )
( ) ( )

1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

, , ,

, , , , , ,

, , , , , ,

  since  

, , , , , ,

, , , , , , .

a
n ij

a
n n ij

a
n n ij

j j i j i j i

a a
n ij n ij

a a
n ij n ij

m m m A B f

m m m A m m m B f

s s s t t t f

s t a l s a l t a l m m a ma m a

s s s f t t t f

m m m Af m m m Bf

+

 = + 

 = + 

′ ′= + = + + = +

= +

= +



 

 

 

 

 

Thus, we have that ( ) a a a
ij ij ijA B f Af Bf+ = + . So that a

ijf  is distributive in 
( )nM N . 

Also, if a
ijf  is distributive in ( )nM N , then, using our previous results we 

have that,  
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( ) ( ) ( ) .s t as t a s t a sa ta sa ta
jl jl ij jl ij il il il ilf f f f f f f f f++ ++ = = = + =  

Therefore, we have that ( ) ( ) ( )1,1, ,1 1,1, ,1s t a sa ta
il ilf f+ +=  , so that  

( )s t a sa ta+ = + . Thus, a is distributive in N.  
8) Suppose a s t= + , with s and t representing the zero symmetric part and 

constant part respectively. Then;  

.a s t s t
ij ij ij ijf f f f+= = +  

where s
ijf  is the zero symmetric part, by Lemma 3.15 (5) and t

ijf  is the con-
stant part by Lemma 3.15 (6).  

□ 
Next we give some examples to practice working with the functions k

ijf  de-
fined earlier. 

Example 3.16. Let ( )2 , ,M N + ⋅  be a matrix near-ring. For any , ,r s t N∈ , 
we carry out some calculations. 

Addition  
a) 11 12

r sf f+   

( )( ) ( ) ( )
( ) ( ) ( )

1 2 11 12 1 2 11 1 2 12

1 2 1 2

, , ,

,0 ,0 ,0 .

r s r sm m f f m m f m m f

m r m s m r m s

+ = +

= + = +
 

b) 22 12
r sf f+   

( )( ) ( ) ( )
( ) ( ) ( )

1 2 22 12 1 2 22 1 2 12

2 2 2 2

, , ,

0, ,0 , .

r s r sm m f f m m f m m f

m r m s m s m r

+ = +

= + =
 

Function composition 
Function composition is operated from left to right as follows:  
a) 11 21

r sf f   

( )( ) ( )( ) ( ) ( )1 2 11 21 1 2 11 21 1 21 1, , ,0 0, .r s r s sm m f f m m f f m r f m rs= = =  

b) 22 12
r sf f   

( )( ) ( )( ) ( ) ( )1 2 22 12 1 2 22 12 2 12 2, , 0, ,0 .r s r s sm m f f m m f f m r f m rs= = =  

Distribution of composition over addition 
We show the left distributive law:  
a) ( )12 21 11

r s tf f f+   

( ) ( )( ) ( )( )
( ) ( )
( ) ( ) ( )

1 2 12 21 11 2 21 11

2 21 2 11

2 2 2 2

, ,0

,0 ,0

0, ,0 , .

r s t s t

s t

m m f f f m r f f

m r f m r f

m rs m rt m rt m rs

+ = +

= +

= + =



 

b) ( )11 21 12
r s tf f f+   

( ) ( )( ) ( )( )
( ) ( )
( ) ( ) ( )

1 2 11 21 12 1 21 12

1 21 1 12

1 1

, ,0

,0 ,0

0, 0,0 0, .

r s t s t

s t

m m f f f m r f f

m r f m r f

m rs m rs

+ = +

= +

= + =


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Since our near-ring N is zero symmetric, we give a corollary that specifies 
when the near-ring ( )nM N  is zero symmetric. The following result follows 
from Lemma 3.15. 

Corollary 3.17. [11] N is zero symmetric if, and only if, ( )nM N  is zero 
symmetric.  

Proof. If ( )nM N  is zero symmetric, then each ( )a
ij nf M N∈  is zero sym-

metric, this implies that a N∈  is zero symmetric by Lemma 3.15 part (5). 
Conversely, if N is zero symmetric and ( )nA M N∈ . Then,  

( ) ( ) ( ) ( )1 2 1 2, , , 0 0,0, ,0 0,0, ,0 , , , 0n nm m m A A m m m= = =    , since 0 0a = , 
for all a N∈ . Therefore, 0 0A = .                                    □ 

We now present a corollary that tells us about a sub-near-ring of ( )nM N  
which is also isomorphic to our near-ring N, assuming ( ) ,nM N +  is abelian. 

Corollary 3.18. [11] If   is a non-empty subset of { }1,2, , n  then,  

: ,a
ii

i
N f a N

∈

 
= ∈ 
 
∑


 

is a sub-near-ring of ( )M N  which is isomorphic to N.  
Proof. From Lemma 3.15 part (1) and (2) and from the fact that  

  for all , .a b ab
ii ii ii

i i i
f f f a b N

∈ ∈ ∈

  
= ∈  

  
∑ ∑ ∑
  

 

It follows that N  is a sub-near-ring of ( )nM N . 
We now show that the function  

, ,a
ii

i
a f a N

∈

∀ ∈∑


 

is an isomorphism from N to N . 
For every ,a b N∈ , we have that,  

.a b
ii ii

i i
f f

∈ ∈

=∑ ∑
 

 

But since we have that for any , ,a b N∈  and ( )1, , n
nm m N∈ , if a a

ii iif f=  
then,  

( ) ( )1 1, , , ,a b
n ii n iim m f m m f=   

( ) ( )a b
i i i im f l m f l=  

( ) ( )i i i im a l m b l=  

( ) ( )
th thposition position

0, ,0, ,0, ,0 0, ,0, ,0, ,0i i

i i

m a m b=   

 

 

which is true if i im a m b= , which implies that a b= . Thus, a
iiia f

∈∑


 is  

well defined and clearly one-to-one. 
Since we are taking the sum over every element in  , then we have that for  

all a N∈ , there exists an image in N . Thus, a
iiia f

∈∑


 is onto. 

Now to check the homomorphism property, 
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( )
( )since , is abelian.

a b a b
ii ii ii

i i

a b
ii ii

i i

a b f f f

f f M N

+

∈ ∈

∈ ∈

+ = +

= + +

∑ ∑

∑ ∑



 

 

 

□ 
As earlier stated, the near-ring N does not have to be abelian, so now we give a 

corollary that tells us that the near-ring of matrices ( )nM N  is abelian if, and 
only if, N is abelian. 

Corollary 3.19. [11] N is abelian if, and only if, ( ) ,nM N +  is abelian.  
Proof. Suppose N is abelian. Then, ,nN +  is abelian. Take any  

( ), nA B M N∈  and nN∈ , then we have  

( )

( )
  since , is abelian,n

A B A B

B A N

B A

+ = +

= + +

= +

  

 



 

this implies that, A B B A+ = + , 
so that ( )nM N  is abelian. 

Now, if ( ) ,nM N +  is abelian, then N  with say, { }1=  is abelian. Con-
sequently, since by Corollary 3.18 N is isomorphic to N , N is therefore ab-
elian.                                                          □ 

4. Conclusion  

After understanding the background material on near-rings we went on to ex-
tend the idea to matrices. A natural question would be, can matrix near-rings be 
defined over an arbitrary near-ring N with the usual matrix addition and matrix 
multiplication? The answer was as seen in [1] who concluded that matrix 
near-rings over a near-ring N can only be defined if, and only if, N is a ring. 
Next we defined matrices as mappings from Nn to itself as seen in [2] and proved 
some results. In conclusion, proper near-rings of matrices can only be defined 
over an arbitrary near-ring if we consider all n n×  matrices as elementary maps 
from Nn to itself. 
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