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Abstract 
The goal of this paper is to show that there are infinitely many number fields 
K  , for which there is no inert prime p ∗∈ , i.e. p ∗∀ ∈  a prime num-
ber,   P  prime ideal of K such that Kp = P , where: K  is the Dede-
kind domain of the integer elements of K. To prove such a result, consider for 
any prime p, the decomposition into a product of prime ideals of K , of the 

ideal ,

1

i p
g

e
K i

i
p

=

=∏ P . From this point, we use on the one hand: 1) The well- 

known property that says: If ∃  [ ]K Kθ θ∈ =   , then the ideal Kp  
decomposes into a product of prime ideals of K  as following:  

[ ] ( ) [ ]( ) ,,
,

1 1

i pi p
g g ee

K i i p
i i

p p fθ θ θ
= =

= = +∏ ∏  P . (where:  

( ) [ ]1 2
1 2 1 0

n n n
n nf X X a X a X a X a Xθ

− −
− −= + + + + + ∈  ; is the irreducible 

polynomial of θ , and,  

( ) ( )( ) [ ],1
, 1 1 0 ,

1

i p
g en n

p n i p p
i

f X X a X a X a f X Xθ
−

−
=

= + + + + = ∈∏   is its re-

duction modulo p, which leads to a product of irreducible polynomials in 

[ ]p X ). It is clear that because if ( )pf X  is reducible in [ ]p X , then con-
sequently p is not inert. Now, we prove the existence of such p, by proving 
explicit such p as follows. So we use on the other hand: 2) this property that 
we prove, and which is: If ( ) [ ]4 3 2

3 2 1 0f X X a X a X a X a X= + + + + ∈ , is 
an irreducible normalized integer polynomial, whose splitting field is  

( ),f dm dnΣ =  , then for any prime number p∈ :  

( ) [ ]4 3 2
3 2 1 0p pf X X a X a X a X a X= + + + + ∈  is always a reducible poly-

nomial. 3) Consequently, and this closes our proof: let’s consider the set 
(whose cardinality is infinite) of monogenic biquadratic number fields:  

( ) [ ]{ }, such thatK K K KK dm dn θ θ= = ∃ ∈ =     . Then each  
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( )f Xθ  checks the above properties, this means that for family  , all its 
fields, do not admit any inert prime numbers p∈ . 
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1. Introduction 

Let K   be a Galois extension of   of degree n. The question we ask our-
selves is the following: Do such Galois extensions exist, which are free of inert 
primes? To our knowledge, there are no studies on such a property, although we 
have many theorems on ramification, which could allow in certain cases to se-
riously study this problem. The question is relevant, because apart from the arith-
metic description of the prime ideals of K , this kind of results can facilitate the 
calculation of the number of classes of K. 

All the reminders and definitions that follow can be found in [1]. 
- Let us recall, that it is well known that the ring of integers K  of K, is a free 

 -module of rank [ ]:Kn =   , moreover it is a Dedekind ring, and therefore, 
p∀  a prime of  , then: 

n efg=                              (1) 

where: 1
e e

K gp =  P P  with i pP  being all prime ideals of K  lying above 
p, and that they are in number Kg g=  , where Ke e=   is the ramification 
index of the iP , and :

iK K pf f  = =    P , 1, ,i g∀ =  , is the residual de-
gree of the i pP . 

Definition 1.1. The notations remaining the same, we have: 
1) The prime number p∈ , is said to be inert in K ⇔  ∃  P  a prime ideal 

of K such that Kp f n= ⇔ = P , 1e =  and 1g = .  
2) The prime number p∈  is said to be ramified in K ⇔  2e ≥  ⇔   

( )p discr K .  
Definition 1.2. The Galois number field K is said to be monogenic ⇔  ∃  

Kθ ∈  such that [ ] { }2 11, , , n
K θ θ θ −= ⇔    forms a  -basis (called pow-

er basis) of the  -module K .  
Notations 1.1. When K is monogenic, then in particular [ ]K θ=  . Let de-

notes by ( )f Xθ  or simply ( )f X , the irreducible polynomial of θ , then: 

( ) [ ]1 2
1 2 1 0 ;n n n

n nf X X a X a X a X a X− −
− −= + + + + + ∈   
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And p∀  a prime number of  , we note  

( ) [ ]1
1 1 0

n n
p n pf X X a X a X a X−

−= + + + + ∈  , and by ( ) ( )( ),
1

g e

p i p
i

f X f X
=

=∏ , 

its decomposition into irreducible factors product of [ ]p X : 

Where: ( ) [ ]11

, , 1 ,1 ,0

n ni

ii p i n i if X X b X b X b X
−

−= + + + + ∈  , and  
( ) [ ]211

, , 1 , 2 ,1 ,0

n nni i

i ii p i n i n i i pf X X b X b X b X b X
−−

− −= + + + + + ∈  , are irreducibles 
in [ ]p X .  

Definition 1.3. We denote by  
( ) [ ]{ }, such thayK KK dm dn θ θ= = ∃ ∈ =     , the set of monogen-

ic biquadratic number fields. (This set has infinite cardinality cf. [2]);  
We have the following well-known important proposition, the notations being 

the same: 
Proposition 1.1. Let K be a monogenic Galois number field and  

[ ]K Kθ θ∈ =   , then p∀  a prime number of  , we have:  

[ ] [ ] ( ) [ ]( ),
1

g e
K i p

i
p p p fθ θ θ θ

=

= = +∏    .  

As a result we have the following corollary. 
Corollary 1.1. Let K be a monogenic Galois number field. If for all prime 

numbers p∈ , the polynomial ( )pf X  is decomposed in [ ]p X . (i.e. is 
not irreducible), then there does not exist any prime number p∈ , which is 
inert in K.  

In this paper, from the introduction, we ask whether there exist number fields 
K, such that p∀ , a prime integer, p is never inert in K. The answer is positive 
for small degree 4, since we have found an infinite family of such degree, for 
which all its fields satisfy this property. 

From a general point of view, and as a relevant issue, one can look for other 
families of fields where this property remains true, those could be Galois or not. 

The main goal of this article, is to show Theorem 3.1., which proves the exis-
tence of an infinite family of Galoisian numbers fields, namely   (cf. Defini-
tion 1.3.), having no inert prime integer p, when considering each field K ∈ . 

To proove this, we show that all fields belonging to the family  , are such 
that the irreducible polynomials associated with their monogenic element, satis-
fy Proposition 3.1.; then as a result, the Proposition 1.1. is true, but with neces-
sarily 1g ≠ , which established the seeked result. 

Thus, in the family  , the equation: 4 efg= , cf. (1), is always checked with 
necessarily 4f ≠ . 

2. Ramification—Quadratic and Biquadratic Fields—Lemmas 

Let’s take ( ) [ ]4 3 2
3 2 1 0f X X a X a X a X a X= + + + + ∈  an irreducible norma-

lized integer polynomial, and for any prime number p, and let’s consider the 
map pα  (cf. Lemma 2.2.) and denotes its restriction morphisme map by  

[ ] [ ] [ ]|
:p pX

X Xα →


  , defined by: [ ] ( )( )( ) ( )( )( ) ( )|p p pX
f X f X f Xα α= =



 [ ]4 3 2
3 2 1 0 pX a X a X a X a X= + + + + ∈ . 
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Let’s put fΣ  for the splitting field of the polynomial ( )f X . Then it is known 
that fΣ  can be (cf. [3]): either a biquadratic field; or a cyclic quartic field (with a 
single sub-quadratic field); or a non-galoisian quartic field (with a single sub- 
quadratic field); or to finish a non-galoisian quartic field, without any subqua-
dratic fields. In our case we will deal with fΣ  when it belongs to a biquadratic 
field type. 

Notations 2.1. For a square free integer 0,1a ≠ , let’s denotes by ( )a
  the 

integral ring of ( )a . It is well known that: 

( )
( )

( )

1 if 1 mod 4
2 ,

if 1 or 2 mod 4 .
a

a a
a

a a

∗

  +
≡   = =        ≡ −  




 


 

And that the conjugate of a∗  is ( )

( )

1 11 , if 1 mod 4
.2 2

, if 1 or 2 mod 4 .

a a a
a

a a

∗

 − +
= − ≡= 

− ≡ −

 

Let’s recall that for a prime ideal p  of ( )a
  over a prime p, we get  

( ) pa
a∗   =     

 
p

, where the element a∗  is a root of  

[ ]2 1
4

aX X X−
− + ∈  if ( )1 mod 4a ≡  (resp. [ ]2X a X− ∈ , if 1a ≡ −  or 2 

(mod 4)). 
As a consequence: 
Proposition 2.1. For a square free integer 0,1a ≠ , and a rationnal prime in-

teger p/a, if we take a look at p a∗ 
  

 , we have: 

( ) ( )
( )

21 2 1 12 ; if 1 mod 4 ; because 4 2 ;

0 ; if 1 or 2 mod 4 .
p

p

a X X X
a

a

− − −
∗

 ≡ − + = −= 
≡ − 

   

Note that we have a canonical written form for ( ),dm dn , which we will 
use in this paper (cf. [2]): 

Remarks 2.1. In the following we’ll use the unique written form for a biqua-
dratic field ( ),dm dn , that is: 

1) , ,d m n ∗∈ , square free and pairwise relatively prime, and 0d > , m n>  
odds, , , 1dm dn mn ≠ , 1,1dm dn≡ ≡ −  or 2 (mod 4), and in the case where  

( )1 mod 4dm dn≡ ≡  we put ( ),d Inf m n< . 
In addition, in the other cases, we define 0δ =  or 1 such that  

( ) ( )1 mod 4mn δ≡ − , when 1dm dn≡ ≡ −  or 2 (mod 4). That is 0δ =  when  
( )1 mod 4dm dn≡ ≡ − , and 1δ =  when ( )2 mod 4dm dn≡ ≡ . 

2) When ( )0 ,dm dn
α ∈


  (the ring of integer elements of the field  

( ),dm dn ), we will consider its conjugates under the Galois group,  
{ }0 1 2 3, , ,G σ σ σ σ= , where the action on the basis of K:  

{ }0 1 2 31, , ,dm dn mnε ε ε ε ε= = = = =  is given by the matrix: 
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( ) ( )( )0 , 3 0 , 3

1 1 1 1
1 1 1 1

.
1 1 1 1
1 1 1 1

ij i j ji j i j
a σ ε ε

≤ ≤ ≤ ≤

 
 − − = =
 − −
 

− − 

 

There let’s make some other remarks and lemmas we’ll need further: 

2.1. Lemmas 

In the following we will be dealing with fields p dm∗ 
  

, p dn∗ 
  

 , and 

p mn∗ 
  

 , so we need the following lemmas 
Lemma 2.1. Let 0,1a ≠  be a square free integer, and p be a prime integer, 

such that any one of the following 3 cases is realized: 
i) p a ; 

ii) 2,p p a≠   but 1a
p

 
= 

 
; 

iii) 2p =  and p a , where: ( )3 mod 4a ≡  or ( )1 mod8a ≡ . 
Then we have:  

( ) p pa
a∗   = =     

  
p

, for any prime ideal pp  of ( )a
 .  

Proof 2.1. This remains to proove in fact that pa∗ ∈ . 
- If case i) holds, then cf. Proposition 2.1., 12a∗ −=  or 0 p p pa∗ ⇒ =  

   . 

- If case ii) holds: From 1a
p

 
= 

 
 ⇒  2a β=  is a square in p , so the poly-

nomials 2 1
4

aX X −
− +  or 2X a− , admit the square 2β  or ( )22β  as dis-

criminant so ( ){ }1, 2 1 pa β β∗ −∈ + ⊂  , then we get p pa∗  =  
  . 

- If case iii) holds: i.e. 2p =  and p a , let’s consider in [ ]2 X , the two 
subcases: 

1) ( )3 mod 4a ≡  ⇒  ( )22 1X a X− = +  ⇒  21a∗ = ∈ . 

2) ( )1 mod 4a ≡  but ( )1 mod8a ≡  ⇒  2 21
4

aX X X X−
− + = −  ⇒  

{ } 20 ,1
p

a∗ ∈ ⊂  . 

So in these two cases, we get as stated: 2 2a∗  =  
  .  

Now look at the morphisme map pα , and its extension pα , and let’s take 
accompt the lemma upthere, then we deduce this other Lemma. 

Lemma 2.2. Let 0,1a ≠  be a square free integer and consider any prime ideal 
pp , taken as in lemma 2.1. We get this commutative diagram of ring mor-

phisms: 

( ) ( )

[ ] [ ] [ ]

p p pdm dm

p p p

a a

a X a X X

α

α

∗ ∗

∗ ∗

    = = =        
↓ ↓

    =      





 
    

  

p
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Remarks 2.2. a) From this lemma, if a rationnal prime integer p, and an integ-
er a are such that given ones in the Lemma 2.1, then any factorization of norma-
lized polynomials, each of degree 2:  

f g h= ×  in [ ]a X∗ 
  

 , induces the non-trival factorization:  

( ) ( ) ( )p p pf g hα α α= ×  in [ ] [ ]p pX a X∗ =   
  . 

That implies that: p p pf g h= ×  is reduced in [ ]p X . 
b) Always as a consequence of lemma 2.2, if 2p = , and 2 a , once 2a∗ ∈  

then any factorization of the same type that above: 

f g h= ×  in [ ]a X∗ 
  

 , induces the non-trivial factorization: 

( ) ( ) ( )2 2 2f g hα α α= ×  in [ ] [ ]2 2X a X∗ =   
  . 

And therefore: 2 2 2f g h= ×  is reduced in [ ] [ ]2 2X a X∗ =   
  .  

  Let’s note that we can have different type of factorization: 
•  If p pg h=  then ( )2

p pf g= , and in this case for instance  
( ) 2 4

p pg X X f X= ⇒ = . 
•  If p pg h≠  and if pg  and ph  split, and binomes are different in pairs, 

then ( )
3

0
p i

i
f X β

=

= −∏ . 

2.2. Integral Bases and Notations in ( )dm dn , . 

Looking at ( ),dm dn , let’s recall that from [2] and [4], we have. 
Proposition 2.2. When ( )1 mod 4dm dn≡ ≡ , we have an integral basis for  

( ),dm dn
 , which is: 1 1 11, , ,

2 2 4
mn dn dm dn mnλ + + + + + =  

  
B  where 

( )1 mod 4d m nλ± = ≡ ≡ ≡ .  

So for ( )0 ,dm dn
α ∈


 , there exist 0 1 2 3, , ,a a a a ∈ , and consequently  

0 1 2 3, , ,A A A A ∈  hereafter, such that: 

0 0 1 2 3

0 1 2 3

1 1 1
2 2 4

,

mn dn dm dn mna a a a

A A dm A dn A mn

λα + + + + +
= + + +

= + + +

 

where: 

0 1 2 3
0

3
1

2 3
2

1 3
3

4 2 2
,

4

,
4
2

,
4

2
.

4

a a a a
A

a
A

a a
A

a a
A

λ

+ + + =

 =
 + =

 + =


, 

So we get by action of the Galois group ( ) ( ) ( )( )1 2 31 0 2 0 3 0; ;a a a a a aσ σ σ= = = : 
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( )

( )

1 0 1 2 3 1 3

2 3 3

0 1 2 3

1 1
2 2

1 1
2 4

;

mna a a a a a

dn dm dn mna a a

A A dm A dn A mn

λα λ

λ

+ + = + + + − + 
 

+ + + +
− + +

= + − −

: 

( )2 0 1 1 2 3 3

0 1 2 3

1 1 1
2 2 4

;

mn dn dm dn mna a a a a a

A A dm A dn A mn

λα + + + + +
= + − + + −

= − + −

 

( )3 0 2 3 1 3

2 3

0 1 2 3

1 1
2 2

1 1
2 4

.

mna a a a a

dn dm dn mna a

A A dm A dn A mn

λα λ

λ

− + = + + + + 
 

+ + + +
− −

= − − +

 

Proposition 2.3. When 1dm dn≡ ≡ −  or 2 (mod (4)), we have an integral ba-

sis for ( ),dm dn
 , which is: 1 21, , ,

2 2
mn dm dndn

δδ − + + =  
  

B .  

And there exist too 0 1 2 3, , ,a a a a ∈ , and consequently 0 1 2 3, , ,A A A A ∈ , 
hereafter, such that: 

0 0 1 2 3

0 1 2 3

1 2
2 2

,

mn dm dna a a dn a

A A dm A dn A mn

δδα − + +
= + + +

= + + +

 

where in this case: 

( )0 1
0

3
1

2 3
2

1
3

2 1
,

2

,
2
2

,
2

2
.

2

a a
A

a
A

a a
A

aA
δ

δ + −
=


 =
 + =


 =


, 

And we get: 

( ) ( )
31 0 1 1 2 3

0 1 2 3

1 21
2 2

;

mn dm dna a a a a dn a

A A dm A dn A mn

δδα δ − + +
= + − − − + +

= + − −

 

( ) ( )2 0 1 1 2 3 3

0 1 2 3

1 21
2 2

;

mn dm dna a a a a dn a

A A dm A dn A mn

δδα δ − + +
= + − − + + −

= − + −

 

3 0 1 2 3

0 1 2 3

1 2
2 2

.

mn dm dna a a dn a

A A dm A dn A mn

δδα − + +
= + − −

= − − +
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3. Splitting Fields and Decomposition Modulo p  
Characterization Theorems for Biquadratic Fields 

Under these notations we get the following main theorem: 
Proposition 3.1. Let ( ) [ ]4 3 2

3 2 1 0f X X a X a X a X a X= + + + + ∈  be an ir-
reducible polynomial, and fΣ  its splitting fields. Then there is an implication 
from proposition (i) to proposition (ii): 

(i) ( ),f dm dnΣ =  . 
(ii) For every prime number p∈ , the polynomial  
( ) 4 3 2

3 2 1 0pf X X a X a X a X a= + + + + , is always reducible in [ ]p X .  
Proof 3.1. •  Let’s show that (i) ⇒  (ii).  

The hypothesis (i) implies that ( ) ( )
3

0
i

i
f X X α

=

= −∏ , with the ( ),i dm dn
α ∈


 . 

Let’s solve simultaneously, the both cases ( )1 mod 4dm dn≡ ≡  and  
1dm dn≡ ≡ −  or 2 (mod 4).  

So from Proposition 2.2. & 2.3., we know that there exists 0 1 2 3, , ,A A A A ∈  
such that: 

0 0 1 2 3 ,A A dm A dn A mnα = + + +  

1 0 1 2 3 ,A A dm A dn A mnα = + − −  

2 0 1 2 3 ,A A dm A dn A mnα = − + −  

3 0 1 2 3 .A A dm A dn A mnα = − − +  

Let’s consider the following six polynomials, having noticed that:  

( )0 1 0 1,α α α α+  and ( )2 3 2 3,
dm

α α α α  
 
 

+ ∈





, 

( )0 2 0 2,α α α α+  and ( )1 3 1 3,
dn

α α α α  
 
 

+ ∈





, And 

( )0 3 0 3,α α α α+  and ( )1 2 1 2,
mn

α α α α  
 
 

+ ∈





: 

•  

( ) ( )( ) [ ]

( ) (
( ) )

( ) ( )

1 0 1

2 2 2 2 2
2 1 0 1 2 3

0 1 2 3

2 2
1 2 10 11 20 21

2

2

dm
g X X X X

X A A dm X A A dm A dn A mn

A A A A n dm

X B X B X b b dm X b b dm

α α  
 
 

= − − ∈

= − + + + − −

+ −

= − + = − + + +






 

,  

with ijb ∈ ; 
And: 

( ) ( )( ) [ ]

( ) (
( ) )

1 2 3

2 2 2 2 2
0 1 0 1 2 3

0 1 2 3

2 2
1 2 10 11 20 21

2

2 ,

.

dm
h X X X X

X A A dm X A A dm A dn A mn

A A A A n dm

X B X B X b b dm X b b dm

α α  
 
 

= − − ∈

= − − − + − −

− −

   = − + = − + + +   
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Similarly consider: 

•  

( ) ( )( ) [ ]

( ) (
( ) )

( ) ( )

2 0 2

2 2 2 2 2
0 2 0 2 1 3

0 2 1 3

2 2
1 2 10 11 20 21

2

2

dn
g X X X X

X A A dn X A A dn A dm A mn

A A A A m dn

X C X C X c c dn X c c dn

α α  
 
 

= − − ∈

= − + + + − −

+ −

= − + = − + + +






 

,  

with ijc ∈ ; 
And: 

( ) ( )( ) [ ]

( ) (
( ) )

2 1 3

2 2 2 2 2
0 2 0 2 1 3

0 2 1 3

2 2
1 2 10 11 20 21

2

2 2

.

dn
h X X X X

X A A dn X A A dn A dm A mn

A A A A m dn

X C X C X c c dn X c c dn

α α  
 
 

= − − ∈

= − − + + − −

− −

   = − + = − + + +   
   






 

 

And, to finish similarly consider: 

( ) ( )( ) [ ]

( ) (
( ) )

( ) ( )

3 0 3

2 2 2 2 2
0 3 0 3 1 2

0 3 1 2

2 2
1 2 10 11 20 21

2

2

mn
g X X X X

X A A mn X A A mn A dm A dn

A A A A d mn

X D X D X d d mn X d d mn

α α  
 
 

= − − ∈

= − + + + − −

+ −

= − + = − + + +






 

,  

with ijd ∈ ; 
And: 

( ) ( )( ) [ ]

( ) (
( ) )

3 1 2

2 2 2 2 2
0 3 0 3 1 2

0 3 1 2

2 2
1 2 10 11 20 21

2

2

.

mn
h X X X X

X A A mn X A A mn A dm A dn

A A A A d mn

X D X D X d d mn X d d mn

α α  
 
 

= − − ∈

= − − − + − −

− −

   = − + = − + + +   
   






 

 

We deduce the factorization: 

j jg h f× = , with ( ) ( )deg deg 2, 1,2,3j jg h j= = ∀ = ; 

And this: Respectively in [ ]dm X 
  

  , [ ]dn X 
  

   and [ ]mn X 
  

  . 
These factorizations will lead to non-trivial factorizations of ( )p pf fα =  in 

[ ] [ ]p pa X X∗  =  
  , for all prime number p. (cf. Remarks 2.2.). To prove it, it 
suffices to show that the propositions of Lemma 2.1. is holding.  

Let’s prove it effectively: 
A) Suppose that p dmn . 
1) 2p ≠ .  
a) If p d  then p dm  (and p dn ) then 0

p
dm =   (and  
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0
p

dn =  ). 

We have 
( )

( )

12 if 1 mod 4
0 , if 1 or 2 mod 4

p

p

dm
dm

dm

−
∗

 ≡= ∈ ≡ − 
 . 

(Resp. similarly for dn∗ ). 
We can choose to factorize in [ ]dm X∗ 

  
 :  

1 1f g h= × , lies modulo p in [ ]p X , so we get the following factorization of 

pf : 
For details: 

- In the case: ( )( )1 mod 4dm dn≡ ≡ :  

( ) ( ) ( )( ) ( ) ( )( )
( )( ) ( )( )
( )( ) ( )( )

1 1

12 1
10 11 20 21

1 12
10 11 20 21

2 2

2 2 .

p p pf X g X h X

X b b X b b

X b b X b b

−−

− −

= ×

= − + + +

× − − + −

 

- And in the case 1dm dn≡ ≡ −  or ( )( )2 mod 4  we get:  

( ) ( ) ( )( ) ( ) ( )( ) ( )22
1 1 10 20 .p p pf X g X h X X b X b= × = − +  

b) If p m  then 0
p

dm =  , and 0
p

mn =  . We can choose to factorize 

in [ ]dm X∗ 
  

 , we get for pf  the same factorization.  

c) If p n  then 0
p

dn =  , and 0
p

mn =  . We can choose to factorize in 

[ ]dn X∗ 
  

 , we get for pf  a factorization via [ ]dn X∗ 
  

 :  

For details: 
In the case: ( )( )1 mod 4dm dn≡ ≡  

( )( )( ) ( ) ( )( ) ( ) ( )( )
( )( ) ( )( )
( )( ) ( )( )

2 2

1 12
10 11 20 21

1 12
10 11 20 21

2 2

2 2 .

p p pf X g X h X

X c c X c c

X c c X c c

− −

− −

= ×

= − + + +

× − − + −

 

And in the case 1dm dn≡ ≡ −  or ( )( )2 mod 4  we get:  

( ) ( ) ( )( ) ( ) ( )( ) ( )22
2 2 10 20 .p p pf X g X h X X c X c= × = − +  

2) If 2p dmn=  , necessarily 2 d  (cf. Remarks 2.2. 1)), then 
2

0dm =   
and 

2
0dn =   ⇒  2 2X dm X− = and 2 2X dn X− =  and the factorization of 

f, in [ ]dm X 
   and in [ ]dn X 

   given by: 1 1f g h= ×  and 2 2f g h= ×  
are in fact modulo 2 in [ ]2 X , so we get two factorisations for 2f , that are 

( ) ( )2 1 12 2f g h= ×  and ( ) ( )2 2 22 2p pf g h
= =

= × . 
B) Let p prime such that p dmn . 
1) First assume 2p ≠ . 

Then necessarily exactly one, or all, of the dm
p

 
 
 

, dn
p

 
 
 

, mn
p

 
 
 

 are equal 
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to 1. Otherwise: 
2 2 2

1d m n
p

 
= − 

 
 that is absurd. 

Suppose that it is 1dm
p

 
= 

 
 (The other cases are done equivalently). 

The conditions of the Lemma 2.1. (ii) are realized, so: 

The factorization: 1 1f g h= ×  in [ ]dm X 
  

  .  

Induces the factorization ( ) ( ) ( )1 1p p pf g hα α α= × , in  
[ ] [ ]p pdm X X  =  

  .  
But in one hand, the left side gives ( )p pf fα = , and in the other hand, the 

right side give: ( ) ( )1 1p pg gα =  and ( ) ( )1 1p ph hα = , and the factorization  
( ) ( )1 1p p pf g h= ×  lies to [ ]p X , so f is reducible ( )mod p  for any such prime 

p.  
2) Assume now 2p =  (recall that 2 dmn ). 
a) In case ( )3 mod 4dm ≡  then ( )22 1X dm X− = +  in [ ]2 X  ⇒   

21dm dm∗ = = ∈  ⇒  2f  is reducible in [ ]2 X , via the factorization  
1 1f g h= ×  in [ ]dm X 

  , which implies: ( ) ( )2 1 12 2f g h= × . 
b) In case ( )1 mod 4dm ≡  let’s note that we get also ( )( )1 mod 4dn mn≡ ≡ . 
b1) If ( )1 mod8dm ≡  or ( )1 mod8dn ≡  or ( )1 mod8mn ≡  then in [ ]2 X : 

{ }2 2
2

1 1 0 ,1
4 2 p

dm dmX X X X dm∗− +
− + = − ⇒ = ∈ ⊂  , 

or { } 2
1 0 ,1

2 p

dndn∗ +
= ∈ ⊂  , or { } 2

1 0 ,1
2 p

mnmn∗ +
= ∈ ⊂  . 

So 2f  is reducible in [ ]2 X  via the factorisations: 

1 1f g h= ×  in [ ]1
2

dm X
 +
 
 

 ; 

(or 2 2f g h= ×  in [ ]1
2

dn X
 +
 
 

  or 3 3f g h= ×  in [ ]1
2

mn X
 +
 
 

 ). 

Equalities that lead to: 

( ) ( )2 1 12 2f g h= × ; 

(Or ( ) ( )2 2 22 2p pf g h
= =

= × ; or ( ) ( )2 3 32 2
f g h= × ) 

b2) Now to close the proof, it remains the case ( )( )5 mod 8dm dn mn≡ ≡ ≡ . 
But this case don’t exist for biquadratic fields ( ),dm dn , because:  

( )5 mod8dm dn≡ ≡  ⇒  ( )1 mod8dm dn mn× ≡ ≡  which is absurd.  
In conclusion, we have prooved that:  
Once ( ),f dm dnΣ =  , then ( ) 4 3 2

3 2 1 0pf X X a X a X a X a= + + + +  is 
reducible over [ ]p X , for any prime p. 

We deduce the following theorem which is the goal of this paper: 

3.1. Main Theorem 

Theorem 3.1. Let ( ) [ ]{ }, such thatK KK dm dn θ θ= = ∃ ∈ =     , 
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cf. Definition 1.3., then all the fields of  , do not admit any prime number 
p∈  which are inert there. 

Proof 3.2. Let K ∈ , and Kθ ∈  such that [ ]K θ=  . Then its irreduc-
ible polynomial ( )f X  is such that ( ), fK dm dn= = Σ , and that  

( ) 4 3 2
3 2 1 0pf X X a X a X a X a= + + + +  is reducible over [ ]p X  (cf. Proposi-

tion 3.1.) but then for any prime p, we get (cf. Proposition 1.1.):  

[ ] [ ] ( ) [ ]( ),
1

g e
i p

i
p p fθ θ θ θ

=

= +∏   , with necessarly 1g ≠ , because  

( ) ( )1,p pf X f X=  is impossible otherwise ( )pf X  would be irreducible. So p 
is inert in K.  

3.2. Application to Cubic Resolvents 

From [3] & [5], we deduce this corollary. 
Let’s put: ( ) ( ) ( ) [ ]3 2 2

2 3 1 4 3 0 2 0 14 4r X X a X a a a X a a a a a X= − − − − − + ∈ , 
known as a cubic resolvent of ( ) [ ]4 3 2

3 2 1 0f X X a X a X a X a X= + + + + ∈ , 
then: 

Corollary 3.1. Let ( ) [ ]4 3 2
3 2 1 0f X X a X a X a X a X= + + + + ∈  be an irre-

ducible polynomial. 
Then there is an implication from proposition (i) to proposition (ii): 
(i) ( ) ( ) ( )3 2 2

2 3 1 4 3 0 2 0 14 4r X X a X a a a X a a a a a= − − − − − +  admits 3 distinct 
roots in 2\  . 

(ii) For every prime number p, each polynomial  
( ) 4 3 2

3 2 1 0pf X X a X a X a X a= + + + + , is reducible in [ ]p X .  
Remarks 3.1. 1) The proof comes from that [3] & [5]: (i) ⇔  ( ),f a bΣ =   

is a biquadratic field. 
2) Since there are other resolvents ( )R X  of ( )f X , we can replace, without 

changing the goal of the corollary, the polynomial ( )r X  by these ones.  

4. Conclusions 

The conclusive results of our study raise in a relevant way the question of the ex-
istence of algebraic fields without inert prime numbers, in relation to their mo-
nogeneity or not. 

This encourages the search for other examples of families of such fields, pos-
sessing this property. We can think of well-known families in number theory. 
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