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Abstract

We denote N, R, C the sets of natural, real and complex numbers respec-
tively. Let (4,), neN be an unbounded sequence of complex numbers.
Costakis has proved the following result. There exists an entire function fwith
the following property: for every x,yeR with 0<x <y, every

0e(0,1) and every aeC there is a subsequence of natural numbers (m, ),

neN such that, for every compact subset LcC,

sup sup sup
re[x,y]te[(),ﬁ] zel

f(z+/1mnre2“”)—a‘ —0 as n—>o (*). In the present paper

we show that the constant function a cannot be replaced by any non-constant
entire function G. This is so even if one demands the convergence in (*) only
for a single radius r and a single positive number @. This result is related
with the problem of existence of common universal vectors for an uncounta-
ble family of sequences of translation operators.
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1. Introduction

We denote H(C) the set of entire functions endowed with the topology 7,
of uniform convergence on compacta.

Let aeC. Wedenote ¢,:C — C the translation function with the formula
t,(z)=z+a forevery zeC.

We consider the translation operator 7, :H(C)—> H(C) with the formula
T,(f)=fet, forevery feH(C).Theoperator T, isa linear and continuous
operator.

We write 7 =7, and

T =T oT" forn=1,2,-.

Birkhoff proved [1] that thereis f € H((C) so that
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{Ta”(f),neN}:H((C), where a € C\{0}.

In modern language this means that the operator T, is hypercyclic, or in other
words the sequence of operators (7;” ) , neN ishypercyclic.

His proof was constructive.

Let (a, )nEN be an unbounded sequence of complex numbers. Luh proved [2]

that thereis f € H(C) so that
{Ta (f).ne N} =H(C).

Gethner and Shapiro [3] and Grosse-Erdmann [4] have also proved the above

results by using the Baire’s Category Theorem. In particular, we denote
“(72”)={f€H(<C)I{7;n (f)IneN} =H((C)}.

Then, the set Z/I(Ta) isa G; and dense subset of 7 (C). This means that
the sequence of operators (Z;n ) , neN is hypercyclic. Let (b, )mEN be a se-

quence of non-zero complex numbers. Based on the previous result, the set

Au (Tbmu" ) isa G; and dense subset of H(C). This is a simple consequence

meN

of Baire’s Category Theorem.

Costakis and Sambarino [5] established a notable strengthening of Birkhoff’s
result. More specifically, they proved that the set
N {rer@){z () nenj=H(©)
aeC\[0}
containsa G and dense subset of H(C).

The important element here is the uncountable range of a, because Baire’s
Category Theorem is not applied for the intersection of an uncountable family of
sets.

Furthermore, Costakis [6] proved a more general result, that is, the set

N U(Tba,, ) contains a G; and dense subset of H(C), where a, is an

beC(0,1)
unbounded and specific sequence of complex numbers and
c(0,1)={zeC||z|=1}.

The proof of this result follows a similar method to the one used to prove a
similar result in [5]. In the same article [6], Costakis examined a simpler and
more specific case of the above result. In particular:

In the above set, the request is to find an entire function £ so that:

{f(z+/1na):n eN} =H(C) forevery a € C(0,1).

Firstly, Costakis proved in [6] that there is some f € H((C) , so that the set of
constant functions is a subset of {/(z+4,a):neN} forevery aeC(0,1).

This result offered a different and notable proof. In fact, he proved something
stronger in this case, by adding a stronger condition of convergence. More spe-
cifically, Costakis proved the following result:

Let (4 )nEN be a sequence of non-zero complex numbers, so that 4, — .

n
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We have the set:

U (2)={f eH(C)| forevery x,yeR suchthat 0<x<y,forevery
0 e(0,1) andforevery o eC thereisasequence m=(m, )neN , so that
m, €{4,,ne N}, for every neN, so that, for every compact subset L c C

sup sup sup
re[x,y] te[O,ﬁ] zel

f(z+mnr62“”)—a‘—>0 as n—>+oo}.

Costakis [6] proved that the above set U (ﬂ) isa G; and dense subset of
H(C). However, he did not use this method in the general case and gave a
completely different proof in the general case.

Therefore, it is reasonable to ask if we can deal with the general case by im-
itating the proof of the above specific case. In this paper, we shall prove that this
cannot be done. More specifically, we will prove here the following result:

Let A=(4, )neN be a given sequence of non-zero complex numbers, so that
A, >, 0e(0,1) and GeH(C), where @ isa given number and Gis a
given non constant function. We shall consider the set ¢/(4,0,G)={/f e H(C)]
there exists a sequence m =(m, ),..» where m, € {A4.keN} for every neN,
f(z +m, ™ ) - G(z)‘ —0 as

so that for every compact set LcC sup
(t,z)e[O,@]xL

n—>+oo}.

Our main result is that o/ (/1,9, G) =(J, that confirms that we cannot achieve
the general result of Costakis [6] by giving a proof similar to the proof of the
specific case of constant functions.

The paper is organized as follows:

After the introduction in Section 1, we shall prove Proposition 2.1 that is a
specific case of our main result, in the case that G € ’H((C) is not a constant
function, so that G'(0)#0.

In order to prove Proposition 2.1, we shall use 3 lemmas.

In Section 2, we shall analyze the proofs of the 3 lemmas.

In Section 3, we shall give a helping corollary and the proof of our main result
in Theorem 4.2.

There are several results concerning the existence or non-existence of com-

mon hypercyclic vectors for translation operators, see [5]-[11].

2. A Specific Case

We fix a positive number 6 and a sequence A= (/1 from complex num-

 hren
bers.

We define H((C) for the set of entire functions. We fix G € H((C) .

Now we state and prove a specific case of our main result.

Proposition 2.1. Ler A =(4, )nGN be a sequence of non-zero complex num-
bers, so that A, — x. We assume also that 6 €(0,1) and G e H(C), so that
G'(O) # 0. Then we have: M(J,H,G) =0.

Proof. So, as to provide a proof by contradiction, we suppose that
U(i,@, G) #J.let Fe U(l,@, G) . Then by Lemma 3.1 there is a subsequence

m=(m,) . of A, from different terms so that for every compact subset L of
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Sup
(l,z)e[O,E’]xL

F(z+mnezni’)—G(z)‘—>0 as n — +oo. (1)

Now, we use (1) with L={0} and #=0 and we get

F(m,)—> G(0) asn— . (2)
If we use (1) with L = {O} and =6 we get
F(mnez’”ﬂ) — G(0) as n— +o. (3)
Subtracting the above two convergence (2) and (3) we get that
F(mnezmg)—F(mn)—)O as n — oo, (4)
We have by complex analysis
J.[mwm”czmg]F'(z)dz = F(mnez“ig ) —F(m,) foreveryn=1,2,---. (5)
By (4), (5) we take:
.[[m,,,mHCZW]F,(Z)dZ —0 asn—> oo (6)
Based on Lemma 3.2 and (1) we get that for every compact subset Lof C
(t,z)self})%]xL F'(z+mne2“i’)—G'(z)‘—>O as n — oo, (7)

The above convergence (7) for L= {0} gives
sup F'(mnezni‘g)—G'(O)‘ —>0 asn— . (8)

te[O,H)
Now setting f = F", to the above convergence (6), (8) and Lemma 3.3 we take a
contradiction and the proposition follows. ]
In the following pages, we shall prove the lemmas we have used in the above

Proposition 2.1.

3. Proofs of 3 Lemmas

Lemma 3.1. Let A=(4,)
6 be a positive number. We suppose that f € U(A,0,G), where G is an entire
function so that G'(0)#0. Then, the sequence m=(m, )neN , which satisfies
the condition of U (/1, 0, G) , that is for every compact subset L c G,

be a sequence of non-zero complex number and

sup
(t,z)e[O,@]xL

f(z+mnez"”)—G(z)‘ — 0 as n—+o0, is an infinite subset of C

and can be chosen to be a subsequence of 1 from different terms.
Proof. We set

a, = sup
(t,z)E[O,G]xL

f(z+mnezm)—G(z)‘, n=0,1,2,---,

for some specific compact subset L < C.

We suppose that a, =0 for some neN. Let z, € L. Because of a, =0, we
have f(z0 +m e’™ ) =G(z,) forevery t€[0,0].Because of m, #0,based on
our hypothesis, we take that the function fis a constant by the principle of ana-
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lytical continuation, so we have f(z)=G(z,) forevery zeC.Asaresult,

‘f(z+mne2"”)—G(z)‘ :|G(z)—G(z0 )| foreveryze C,neN,7€[0,6] and

S (z+m,e™) =G () = sup|G ()~ G ()|

zel

a,= sup
(t,2)e[0,0]<L
forevery neN, 1€[0,0] and compactset L C.

So, for specific compact set L < C we have G(z) = G(ZO) for every zelL
thus function Gis a constant function G(z)=G(z,), for every zeC,whichis
false because G'(0) # 0, according to our hypothesis.

So, we have a, #0 forevery neN.We suppose that the set {m,,neN} is
finite. Then, we have that the set {a,,n €N} is finite and because a, >0 we
get that there is some v, €N, so that a, =a, =0 for every neN, n2y,
that is false. Thus, the set {m,,n €N} is infinite and this implies that there is a
subset {m;,n € N} c {mn,n € N} , so that m
from different terms. [ |

Lemma 3.2. Let m=(m,)

, neN to be a sequence of 1,

’
n

.y be a sequence of complex numbers, 0 be a

positive number and f,g be two entire functions. We suppose that for every

compact subset L of C we have:

sup f<z+mnez"”)—g(z)‘ — 0 as n —> +w.

(t,z)e[O,H]xL

Then, for every compact subset L of C:

sup f'(z+mnez”’)—g'(z)‘—>0 as 1 — o,

(t,z)e[O,H]xL
Proof. We fix some compact subset Lof C.Let n, €N, so that Lis a subset
of 5(0,710) , where D(O,p) = {z eC| |z| < p} for every p>0.
It is easy to see that

zeD(O,no)

U b(z,%’]gﬁ(o,zno). (1)

We shall consider the sequence of functions F,, n=1,2,---, F: [0,0] xC—->C,
so that F, ((t,z)) = f(z+m,ze2“i’>—g(z) , for every (t,z) IS [O,@]X(C , neN
and their partial functions

F/(z)=F, ((t,z)) for every (1,z) €[0,0]x C.
Based on the hypothesis, we conclude that for every compact subset K < C we
have:

[OQ]XK_>O as n — +oo

Fﬂ

where

E,

sup |Fn (w)| forn=1,2,--.

[O’H]XK we[O,B]xK

ny&y

Let some g, >0.Weset & =

Based on our hypothesis, there is a natural number v, € N, so that for every
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£,

neN, n2v,, < ¢, where we applied our hypothesis for

[0,0]Da.g

K=D,,. (2)

We fix some 1, €[0,0]. Then, function F,° is entire for every neN.

Let some ze Eno .
Based on Canchy’s estimates we have:

(F2) (2) 3)

3 3
e

[0,9]><52n0 ’
where for the second inequality we used relation (1).
Based on inequality (3), we have:

sup
(t‘z)e[O,H]xL

f’(z-i—mnez“”)—g'(z)‘ < ni"F" ||[0’9]X52n0 , foreveryneN. (4)
0

Based on (2) and (4) we have that for every neN, n>v,:

(t,z)sel[t%]XL f'(z+mne2"”)—g’(z)‘<go. (5)
This gives that:
(t’z)sel[logw f’(z + m,,ezm’)—g'(z)‘ —0 asn—> +o,
that implies the desired result for every compact subset LZof C. u

Lemma 3.3. Let (m, )neN be a sequence of complex numbers, so that m, — ©,
96(0,1) and aeC, a=0.

Then, there is no entire function £ so that:

sup f(mnezn")—a‘—>0 and

t€[0,6’]

I[m m eZm‘B:If(Z)dZ N 0 as n — +o0,

Proof. To take a contradiction we suppose that there exists an entire function
fthat satisfies the above two convergence.

We have the curves 7, :[0,0] - C, where y,(1)=m,’™ forevery 1€[0,6],
neN.Wealso have y, =y, ([0,9]) for n=1,2,---.

Because m, — oo, we use only the terms m,, neN, such that m, =0, for
some n big enough.

Based on Cauchy’s Theorem we have:

J.[mn‘mnczm(;}f(z)dz:L:f(z)d(z) forevery n=1,2,---. (1)

Let 4:C— C be the constant function, so that A4(z)=a forevery zeC.

We also have:

J‘[m”’mnelm'a] A(Z)dz = a(mnesziﬁ _ mn) for everyn=1,2,---. (2)
|a| .|62m’9 _ 1|
Wefix ¢, €| 0,——
21
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We can write down the first of the two convergences of hypothesis as follows:

sup|f(z)—a|—>0 as 1 —> +o, (3)

z€7;
By our hypothesis (1) and (3) we take that there is some v, € N, so that for
every neN, n>v, hasas follows:

sup|f(z)—a| <¢g, and 4)

Z€Tn

j;f(z)dz‘qo, m %0, (5)

Based on (2), Cauchy’s Theorem, (4) and the simple properties of the complex

integrals, we have:

L* f(z)dz—a(mnezmg -m, )‘ <2m|m,|&,. (6)

Based on (4), (5), (6), triangle inequality and the specific of &, we assume that
forevery neN, n2v,, the following applies:
2

|a||e2”i9 - 1| -2ng,

(7)

m

n

(where |a||ez"i9 - 1| —2ng, >0 from the certain choice of ¢;).
Inequality (7) and the fact that m, — co gives a contradiction and this com-
pletes the proof of this lemma. ]

4. The Main Result

In order to prove the main result, we also need the following corollary of Lemma
3.2

Corollary 4.1. Let (m,) .
tive number and £, g be two entire functions.

be a sequence of complex numbers, 0 be a posi-

We suppose that for every compact subset L of C the following shall apply.

sup
(t,2)€[0,0]xL

f(z + m,zez"it)—g(z)‘ —0 asn —> +o.

Then, for every compact subset L of C and v eN

sup
(t,z)E[O,H]xL

Jak (z + mnez”"’)—g(v) (z)‘ —0 asn— +oo.

Proof. It is simple implication of Lemma 3.2 by induction.

Now, we are ready to prove the main result of this article. |

Theorem 4.2. Let A=(2,)
so that A, —>», 0€(0,1) and GeH(C), where G is not a constant func-
tion.

Then, we have. M(A,H,G) =J.

Proof. We shall prove the Theorem by distinguishing two cases.

be a sequence of non-zero complex numbers,

e Casel
G'(0)=0.
The result is supported by Proposition 1.

DOI: 10.4236/apm.2022.1212054

721 Advances in Pure Mathematics


https://doi.org/10.4236/apm.2022.1212054

N. Tsirivas

e Case 2
G'(0)=0.
We shall distinguish two cases here:
1) GV (0)=0 forevery veN.
o G (0)

Provided that G e H((C) we have G(z) => '
v=0 v

v

z" for every zeC,

so we have G(z)=0 for every zeC, which is false because G is not a con-
stant function in our hypothesis.

2) Thereisa veN, v>2 sothat G(V)(O)io.

Let v, = min{v eN|G"(0)= O} , thatis v, is the smallest natural number,
so that G (0)#0. Of course, v, >2.

We suppose that U(2,0,G)#D. Let f eU(A,6,G). Then, there is a se-
quence (m, )neN , so that m, €{4,,neN} for every neN, where for every

no

compact subset L C

sup
(t,z)e[O,H]xL

f(z+mn62“”)—G(z)‘ —0 asn— +ow.

Based on the above Corollary 4.1, we take that for every compact subset L < C

sup [0 (z+ mnez“i’)—G(VO’l) (z)‘ —0 asn—>+ow. (1)

(t,2)e[0,6]xL
Because G (0)#0 we take that the function Gh e H(C) is not a con-
stant function. Of course, the function f (o) ¢ H((C) .

Based on (1) and Proposition 2.1 we have a contradiction, because, according
to (1), we have f(v"*l) eL{(/i,H,G(V“fl)), that is M(A,H,G(V“fl));tQ that is
false by Proposition 2.1.

The proof of our main result is complete now. ]

Let us compare now the main result of this article, that is Theorem 4.2, with
the result of Costakis and Sambarino [5], in order to see what is new in thew
present paper. As we said in the introduction in [5] the authors proved that the
intersection

A= {feH(cc)|{T;(f),neN}:H(c)}
acC\{0}
containsa G; and dense subset of H((C) and so it is non-empty. Let fe€ 4.
Then by the definition of A if we choose a non-zero complex number a and an
entire function g then there exists a subsequence (m, ) of natural numbers

neN
so that

T (f)— g uniformly on compacta as n — +.

a

Therefore, for every pair (a,g)e(C\{0})xH(C) asabove the sequence
(mn )neN depends on this pair.

However, the convergence in set U (/1) in the introduction [6] does not de-
pend on the specific complex number re’™ where € [x, y] and te [0,9] and
it is achieved simultaneously for all these numbers.

In this direction an open question for us, up to now, is the following
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Question:
Can we achieve the convergence in the set H. (1) simultaneously for all num-

o
bers re’™

where re [x,y] , te [0,9], for specific x,yeR, x<y and
6 €(0,1) , but not uniformly?

More formal, the question is the following: “We choose a non constant entire
function gand a positive number 6 €(0,1). Does there exist an entire function
fand a sequence of natural (mn )neN , so that for every te [0,9] and compact

set LcC sup

zel

f(z+mne2“”)—g‘—>0 as n—>+o 7
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