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Abstract 
We denote  ,  ,   the sets of natural, real and complex numbers respec-
tively. Let ( )nλ , n∈  be an unbounded sequence of complex numbers. 
Costakis has proved the following result. There exists an entire function f with 
the following property: for every ,x y∈  with 0 x y< < , every  

( )0,1θ ∈  and every a∈  there is a subsequence of natural numbers ( )nm , 
n∈  such that, for every compact subset L ⊆  ,  

[ ] [ ]
( )2

, 0,
sup sup sup e 0

n

it
m

r x y t z L
f z r a

θ
λ π

∈ ∈ ∈
+ − →  as n →∞  (*). In the present paper 

we show that the constant function a cannot be replaced by any non-constant 
entire function G. This is so even if one demands the convergence in (*) only 
for a single radius r and a single positive number θ . This result is related 
with the problem of existence of common universal vectors for an uncounta-
ble family of sequences of translation operators. 
 
Keywords 
Hypercyclic Operator, Common Hypercyclic Vectors, Translation Operator 

 

1. Introduction 

We denote ( )  the set of entire functions endowed with the topology u  
of uniform convergence on compacta. 

Let a∈ . We denote :at →   the translation function with the formula 
( )at z z a= +  for every z∈ . 
We consider the translation operator ( ) ( ):aT →    with the formula 
( )a aT f f t=   for every ( )f ∈  . The operator aT  is a linear and continuous 

operator. 
We write 1

a aT T=  and  
1 for 1,2, .n n

a a aT T T n+ = =   

Birkhoff proved [1] that there is ( )f ∈   so that  
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( ){ } ( ) { }, , where \ 0 .n
aT f n a∈ = ∈    

In modern language this means that the operator aT  is hypercyclic, or in other 
words the sequence of operators ( )n

aT , n∈  is hypercyclic. 
His proof was constructive. 
Let ( )n n

a
∈  be an unbounded sequence of complex numbers. Luh proved [2] 

that there is ( )f ∈   so that  

( ){ } ( ), .
naT f n∈ =   

Gethner and Shapiro [3] and Grosse-Erdmann [4] have also proved the above 
results by using the Baire’s Category Theorem. In particular, we denote  

( ) ( ) ( ){ } ( ){ }| | .
n na aT f T f n= ∈ ∈ =      

Then, the set ( )naT  is a Gδ  and dense subset of ( ) . This means that 
the sequence of operators ( )naT , n∈  is hypercyclic. Let ( )m m

b
∈  be a se-

quence of non-zero complex numbers. Based on the previous result, the set  

( )m nb a
m

T
∈



  is a Gδ  and dense subset of ( ) . This is a simple consequence 

of Baire’s Category Theorem. 
Costakis and Sambarino [5] established a notable strengthening of Birkhoff’s 

result. More specifically, they proved that the set  

{ }
( ) ( ){ } ( ){ }

\ 0
| ,n

a
a

f H T f n H
∈

∈ ∈ =



    

contains a Gδ  and dense subset of ( ) . 
The important element here is the uncountable range of a, because Baire’s 

Category Theorem is not applied for the intersection of an uncountable family of 
sets. 

Furthermore, Costakis [6] proved a more general result, that is, the set  

( )
( )0,1

nba
b C

T
∈


  contains a Gδ  and dense subset of ( ) , where na  is an  

unbounded and specific sequence of complex numbers and  
( ) { }0,1 | 1C z z= ∈ = . 
The proof of this result follows a similar method to the one used to prove a 

similar result in [5]. In the same article [6], Costakis examined a simpler and 
more specific case of the above result. In particular: 

In the above set, the request is to find an entire function f, so that:  

( ){ } ( ) ( ): for every 0,1 .nf z n Cλ α α+ ∈ = ∈   

Firstly, Costakis proved in [6] that there is some ( )f ∈  , so that the set of 
constant functions is a subset of ( ){ }:nf z nλ α+ ∈  for every ( )0,1Cα ∈ . 

This result offered a different and notable proof. In fact, he proved something 
stronger in this case, by adding a stronger condition of convergence. More spe-
cifically, Costakis proved the following result: 

Let ( )n n
λ

∈  be a sequence of non-zero complex numbers, so that nλ →∞ . 
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We have the set: 
( ) { ( ) |fλ = ∈    for every ,x y∈  such that 0 x y< < , for every  

( )0,1θ ∈  and for every α ∈  there is a sequence ( )n n
m m

∈
=  , so that  

{ },n nm nλ∈ ∈ , for every n∈ , so that, for every compact subset L ⊆    

[ ] [ ]
( )2

, 0,
sup sup sup e 0it

n
r x y t z L

f z m r a
θ∈ ∈

π

∈
+ − →  as }n → +∞ . 

Costakis [6] proved that the above set ( )λ  is a Gδ  and dense subset of 
( ) . However, he did not use this method in the general case and gave a 

completely different proof in the general case. 
Therefore, it is reasonable to ask if we can deal with the general case by im-

itating the proof of the above specific case. In this paper, we shall prove that this 
cannot be done. More specifically, we will prove here the following result: 

Let ( )n n
λ λ

∈
=   be a given sequence of non-zero complex numbers, so that 

nλ →∞ , ( )0,1θ ∈  and ( )G∈  , where θ  is a given number and G is a 
given non constant function. We shall consider the set ( ) { ( ), , |G fλ θ = ∈    
there exists a sequence ( )n n

m m
∈

=  , where { },n km kλ∈ ∈  for every n∈ ,  
so that for every compact set L ⊆   

( ) [ ]
( ) ( )2

, 0,
sup e 0it

n
t z L

f z m G z
θ∈

π

×
+ − →  as 

}n → +∞ . 

Our main result is that ( ), ,Gλ θ = ∅ , that confirms that we cannot achieve 
the general result of Costakis [6] by giving a proof similar to the proof of the 
specific case of constant functions. 

The paper is organized as follows:  
After the introduction in Section 1, we shall prove Proposition 2.1 that is a 

specific case of our main result, in the case that ( )G∈   is not a constant 
function, so that ( )0 0G′ ≠ . 

In order to prove Proposition 2.1, we shall use 3 lemmas. 
In Section 2, we shall analyze the proofs of the 3 lemmas. 
In Section 3, we shall give a helping corollary and the proof of our main result 

in Theorem 4.2. 
There are several results concerning the existence or non-existence of com-

mon hypercyclic vectors for translation operators, see [5]-[11].  

2. A Specific Case 

We fix a positive number θ  and a sequence ( )n n
λ λ

∈
=   from complex num-

bers. 
We define ( )  for the set of entire functions. We fix ( )G∈  . 
Now we state and prove a specific case of our main result.  
Proposition 2.1. Let ( )n n

λ λ
∈

=   be a sequence of non-zero complex num-
bers, so that nλ →∞ . We assume also that ( )0,1θ ∈  and ( )G∈  , so that 

( )0 0G′ ≠ . Then we have: ( ), ,Gλ θ = ∅ .  
Proof. So, as to provide a proof by contradiction, we suppose that  
( ), ,Gλ θ ≠ ∅ . Let ( ), ,F Gλ θ∈ . Then by Lemma 3.1 there is a subsequence 
( )n n

m m
∈

=   of λ , from different terms so that for every compact subset L of 
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( ) [ ]
( ) ( )2

, 0,
sup e 0 as .it

n
t z L

F z m G z n
θ∈ ×

π+ − → → +∞            (1) 

Now, we use (1) with { }0L =  and 0t =  and we get  

( ) ( )0 as .nF m G n→ →∞                     (2) 

If we use (1) with { }0L =  and t θ=  we get  

 ( ) ( )2e 0 as .i
nF m G nθπ → → +∞                   (3) 

Subtracting the above two convergence (2) and (3) we get that  

( ) ( )2e 0 as .i
n nF m F m nθπ − → →∞                 (4) 

We have by complex analysis  

 ( ) ( ) ( )2
2

, e
d e for every 1,2, .i

n n

i
n nm m

F z z F m F m nθ
θ

π
π

 
 

′ = − =∫      (5) 

By (4), (5) we take:  

 ( )2, e
d 0 as .i

n nm m
F z z nθπ 

 
′ → →∞∫                  (6) 

Based on Lemma 3.2 and (1) we get that for every compact subset L of    

 
( ) [ ]

( ) ( )2

, 0,
sup e 0 as .it

n
t z L

F z m G z n
θ

π

∈ ×
′ ′+ − → →∞           (7) 

The above convergence (7) for { }0L =  gives  

 
[ )

( ) ( )2

0,
sup e 0 0 as .i

n
t

F m G nθ

θ

π

∈
′ ′− → →∞             (8) 

Now setting f F ′= , to the above convergence (6), (8) and Lemma 3.3 we take a 
contradiction and the proposition follows.                                

In the following pages, we shall prove the lemmas we have used in the above 
Proposition 2.1.  

3. Proofs of 3 Lemmas 

Lemma 3.1. Let ( )n n
λ λ

∈
=   be a sequence of non-zero complex number and 

θ  be a positive number. We suppose that ( ), ,f Gλ θ∈ , where G is an entire 
function so that ( )0 0G′ ≠ . Then, the sequence ( )n n

m m
∈

=  , which satisfies 
the condition of ( ), ,Gλ θ , that is for every compact subset L G⊆ , 

( ) [ ]
( ) ( )2

, 0,
sup e 0it

n
t z L

f z m G z
θ∈

π

×
+ − →  as n → +∞ , is an infinite subset of   

and can be chosen to be a subsequence of λ  from different terms.  
Proof. We set  

( ) [ ]
( ) ( )2

, 0,
sup e , 0,1,2, ,it

n n
t z L

a f z m G z n
θ∈ ×

π= + − =   

for some specific compact subset L ⊆  . 
We suppose that 0na =  for some n∈ . Let 0z L∈ . Because of 0na = , we 

have ( ) ( )2
0 0e it

nf z m G zπ+ =  for every [ ]0,t θ∈ . Because of 0nm ≠ , based on 
our hypothesis, we take that the function f is a constant by the principle of ana-
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lytical continuation, so we have ( ) ( )0f z G z=  for every z∈ . As a result,  

( ) ( ) ( ) ( ) [ ]2
0e for every , , 0,it

nf z m G z G z G z z n t θπ+ − = − ∈ ∈ ∈   and 

( ) [ ]
( ) ( ) ( ) ( )2

0
, 0,

sup e supit
n n

t z L z L
a f z m G z G z G z

θ∈ × ∈

π= + − = −  

for every n∈ , [ ]0,t θ∈  and compact set L ⊆  . 
So, for specific compact set L ⊆   we have ( ) ( )0G z G z=  for every z L∈  

thus function G is a constant function ( ) ( )0G z G z= , for every z∈ , which is 
false because ( )0 0G′ ≠ , according to our hypothesis. 

So, we have 0na ≠  for every n∈ . We suppose that the set { },nm n∈  is 
finite. Then, we have that the set { },na n∈  is finite and because 0na →  we 
get that there is some 0ν ∈ , so that 

0
0na aν= =  for every n∈ , 0n ν≥ , 

that is false. Thus, the set { },nm n∈  is infinite and this implies that there is a 
subset { } { }, ,n nm n m n′ ∈ ⊆ ∈  , so that nm′ , n∈  to be a sequence of λ , 
from different terms.                                                 

Lemma 3.2. Let ( )n n
m m

∈
=   be a sequence of complex numbers, θ  be a 

positive number and ,f g  be two entire functions. We suppose that for every 
compact subset L of   we have:  

( ) [ ]
( ) ( )2

, 0,
sup e 0 as .it

n
t z L

f z m g z n
θ∈ ×

π+ − → → +∞  

Then, for every compact subset L of  :  

( ) [ ]
( ) ( )2

, 0,
sup e 0 as .it

n
t z L

f z m g z n
θ

π

∈ ×
′ ′+ − → →∞  

Proof. We fix some compact subset L of  . Let 0n ∈ , so that L is a subset 
of ( )00,D n , where ( ) { }0, |D p z z p= ∈ <  for every 0p > . 

It is easy to see that  

 
( )

( )
0

0
0

0,
, 0, 2 .

3z D n

n
D z D n

∈

  ⊆ 
 



                 (1) 

We shall consider the sequence of functions nF , 1,2,n =  , [ ]: 0,nF θ × →  , 
so that ( )( ) ( ) ( )2, e it

n nF t z f z m g zπ= + − , for every ( ) [ ], 0,t z θ∈ × , n∈  
and their partial functions  

( ) ( )( ) ( ) [ ], for every , 0, .t
n nF z F t z t z θ= ∈ ×  

Based on the hypothesis, we conclude that for every compact subset K ⊆   we 
have:  

[ ]0,
0 asn KF n

θ ×
→ → +∞  

where  

[ ] [ ]
( )0,

0,
sup for 1,2, .n nK

w K
F F w n

θ
θ

×
∈ ×

= =   

Let some 0 0ε > . We set 0 0
1 3

n ε
ε = . 

Based on our hypothesis, there is a natural number 0ν ∈ , so that for every 
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n∈ , 0n ν≥ , [ ] 2 0
10, nn DF

θ
ε

×
< , where we applied our hypothesis for  

 
02 .nK D=                            (2) 

We fix some [ ]0 0,t θ∈ . Then, function 0t
nF  is entire for every n∈ . 

Let some 
0nz D∈ . 

Based on Canchy’s estimates we have:  

 ( ) ( ) ( ) [ ]
0 0

2 00
0,

0 0,
3

3 3sup ,
n

t t
n n n D

n
w D z

F z F w F
n n θ ×

 ∈  
 

′ ≤ ≤           (3) 

where for the second inequality we used relation (1). 
Based on inequality (3), we have:  

( ) [ ]
( ) ( ) [ ] 2 0

2
0,

, 0, 0

3sup e , for every .
n

it
n n D

t z L
f z m g z F n

n θ
θ

π
×

∈ ×
′ ′+ − ≤ ∈   (4) 

Based on (2) and (4) we have that for every n∈ , 0n ν≥ :  

 
( ) [ ]

( ) ( )2
0

, 0,
sup e .it

n
t z L

f z m g z
θ

ε
∈ ×

π′ ′+ − <                (5) 

This gives that:  

( ) [ ]
( ) ( )2

, 0,
sup e 0 as ,it

n
t z L

f z m g z n
θ∈ ×

π′ ′+ − → → +∞  

that implies the desired result for every compact subset L of  .              
Lemma 3.3. Let ( )n n

m
∈  be a sequence of complex numbers, so that nm →∞ , 

( )0,1θ ∈  and a∈ , 0a ≠ . 
Then, there is no entire function f, so that:  

[ ]
( )2

0,
sup e 0it

n
t

f m a
θ∈

π − →  and 

( )2, e
d 0 as .i

n nm m
f z z nθπ 

 
→ → +∞∫  

Proof. To take a contradiction we suppose that there exists an entire function 
f that satisfies the above two convergence. 

We have the curves [ ]: 0,nγ θ →  , where ( ) 2e it
n nt mγ π=  for every [ ]0,t θ∈ , 

n∈ . We also have [ ]( ): 0,n nγ γ θ∗ =  for 1,2,n =  . 
Because nm →∞ , we use only the terms nm , n∈ , such that 0nm ≠ , for 

some n big enough. 
Based on Cauchy’s Theorem we have:  

 ( ) ( ) ( )2, e
d d for every 1,2, .i

n n nm m
f z z f z z nθ γ ∗π 

 
= =∫ ∫        (1) 

Let :A →   be the constant function, so that ( )A z a=  for every z∈ . 
We also have:  

 ( ) ( )2
2

, e
d e for every 1, 2, .i

n n

i
n nm m

A z z a m m nθ
θ

π
π

 
 

= − =∫      (2) 

We fix 
2

0

e 1
0,

2

ia θ

ε
π ⋅ −

π
 ∈
 
 

. 
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We can write down the first of the two convergences of hypothesis as follows:  

 ( )sup 0 as .
nz

f z a n
γ ∗∈

− → → +∞                  (3) 

By our hypothesis (1) and (3) we take that there is some 0ν ∈ , so that for 
every n∈ , 0n ν≥  has as follows:  

 ( ) 0sup
nz

f z a
γ

ε
∗∈

− <  and                     (4) 

( ) 0d , 0.
n

nf z z m
γ

ε∗ < ≠∫                    (5) 

Based on (2), Cauchy’s Theorem, (4) and the simple properties of the complex 
integrals, we have:  

 ( ) ( )2
0d e 2 .

n

i
n n nf z z a m m mθ

γ
ε∗

π π− − <∫            (6) 

Based on (4), (5), (6), triangle inequality and the specific of 0ε  we assume that 
for every n∈ , 0n ν≥ , the following applies:  

 0
2

0e 1 2n i
m

a θ

ε
επ

<
− − π

                  (7) 

(where 2
0e 1 2 0ia θ επ π− − >  from the certain choice of 0ε ). 

Inequality (7) and the fact that nm →∞  gives a contradiction and this com-
pletes the proof of this lemma.                                          

4. The Main Result 

In order to prove the main result, we also need the following corollary of Lemma 
3.2.  

Corollary 4.1. Let ( )n n
m

∈  be a sequence of complex numbers, θ  be a posi-
tive number and f, g be two entire functions. 

We suppose that for every compact subset L of   the following shall apply:  

( ) [ ]
( ) ( )2

, 0,
sup e 0 as .it

n
t z L

f z m g z n
θ∈ ×

π+ − → → +∞  

Then, for every compact subset L of   and ν ∈   

( ) [ ]

( ) ( ) ( ) ( )2

, 0,
sup e 0 as .it

n
t z L

f z m g z nν ν

θ∈ ×

π+ − → → +∞  

Proof. It is simple implication of Lemma 3.2 by induction. 
Now, we are ready to prove the main result of this article.                  
Theorem 4.2. Let ( )n n

λ λ
∈

=   be a sequence of non-zero complex numbers, 
so that nλ →∞ , ( )0,1θ ∈  and ( )G∈  , where G is not a constant func-
tion. 

Then, we have: ( ), ,Gλ θ = ∅ .  
Proof. We shall prove the Theorem by distinguishing two cases.  

● Case 1  
( )0 0G′ ≠ . 

The result is supported by Proposition 1.  
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● Case 2  
( )0 0G′ = .  

We shall distinguish two cases here:  
1) ( ) ( )0 0G ν =  for every ν ∈ . 

Provided that ( )G∈   we have ( )
( ) ( )

0

0
!

G
G z z

ν
ν

ν ν

+∞

=

= ∑  for every z∈ ,  

so we have ( ) 0G z =  for every z∈ , which is false because G is not a con-
stant function in our hypothesis.  

2) There is a ν ∈ , 2ν ≥  so that ( ) ( )0 0G ν ≠ . 
Let ( ) ( ){ }0 min | 0 0G νν ν= ∈ ≠ , that is 0ν  is the smallest natural number, 

so that ( ) ( )0 0 0G ν ≠ . Of course, 0 2ν ≥ . 
We suppose that ( ), ,Gλ θ ≠ ∅ . Let ( ), ,f Gλ θ∈ . Then, there is a se-

quence ( )n n
m

∈ , so that { },n nm nλ∈ ∈  for every n∈ , where for every 
compact subset L ⊆    

( ) [ ]
( ) ( )2

, 0,
sup e 0 as .it

n
t z L

f z m G z n
θ∈ ×

π+ − → → +∞  

Based on the above Corollary 4.1, we take that for every compact subset L ⊆    

 
( ) [ ]

( ) ( ) ( ) ( )0 01 12

, 0,
sup e 0 as .it

n
t z L

f z m G z nν ν

θ

− −

∈

π

×
+ − → → +∞         (1) 

Because ( ) ( )0 0 0G ν ≠  we take that the function ( ) ( )0 1G ν − ∈   is not a con-
stant function. Of course, the function ( ) ( )0 1f ν − ∈  . 

Based on (1) and Proposition 2.1 we have a contradiction, because, according 
to (1), we have ( ) ( )( )0 01 1, ,f Gν νλ θ− −∈ , that is ( )( )0 1, ,G νλ θ − ≠ ∅  that is 
false by Proposition 2.1. 

The proof of our main result is complete now.                           
Let us compare now the main result of this article, that is Theorem 4.2, with 

the result of Costakis and Sambarino [5], in order to see what is new in thew 
present paper. As we said in the introduction in [5] the authors proved that the 
intersection  

{ }
( ) ( ){ } ( ){ }

\ 0
| ,n

a
a

A f T f n
∈

= ∈ ∈ =



     

contains a Gδ  and dense subset of ( )  and so it is non-empty. Let f A∈ . 
Then by the definition of A if we choose a non-zero complex number a and an 
entire function g then there exists a subsequence ( )n n

m
∈  of natural numbers 

so that  

( ) uniformly on compacta as .nm
aT f g n→ → +∞  

Therefore, for every pair ( ) { }( ) ( ), \ 0a g ∈ ×   as above the sequence  
( )n n
m

∈  depends on this pair. 
However, the convergence in set ( )λ  in the introduction [6] does not de-

pend on the specific complex number 2e itr π  where [ ],r x y∈  and [ ]0,t θ∈  and 
it is achieved simultaneously for all these numbers. 

In this direction an open question for us, up to now, is the following  
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Question:  
Can we achieve the convergence in the set ( )λ  simultaneously for all num-

bers 2e itr π  where [ ],r x y∈ , [ ]0,t θ∈ , for specific ,x y∈ , x y<  and  
( )0,1θ ∈ , but not uniformly? 

More formal, the question is the following: “We choose a non constant entire 
function g and a positive number ( )0,1θ ∈ . Does there exist an entire function 
f and a sequence of natural ( )n n

m
∈ , so that for every [ ]0,t θ∈  and compact  

set L ⊆   ( )2sup e 0it
n

z L
f z m g

∈

π+ − →  as n → +∞  ?” 
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