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Abstract 
We denote  ,  ,   the sets of natural, real and complex numbers respec-
tively. Let ( )nλ , n∈  be an unbounded sequence of complex numbers. 
Costakis has proved the following result. There exists an entire function f with 
the following property: for every ,x y∈  with 0 x y< < , every  

( )0,1θ ∈  and every a∈  there is a subsequence of natural numbers ( )nm , 
n∈  such that, for every compact subset L ⊆  ,  

[ ] [ ]
( )2

, 0,
sup sup sup e 0

n

it
m

r x y t z L
f z r a

θ
λ π

∈ ∈ ∈
+ − →  as n →∞  (*). In the present paper 

we show that the constant function a cannot be replaced by any non-constant 
entire function G. This is so even if one demands the convergence in (*) only 
for a single radius r and a single positive number θ . This result is related 
with the problem of existence of common universal vectors for an uncounta-
ble family of sequences of translation operators. 
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1. Introduction 

We denote ( )  the set of entire functions endowed with the topology u  
of uniform convergence on compacta. 

Let a∈ . We denote :at →   the translation function with the formula 
( )at z z a= +  for every z∈ . 
We consider the translation operator ( ) ( ):aT →    with the formula 
( )a aT f f t=   for every ( )f ∈  . The operator aT  is a linear and continuous 

operator. 
We write 1

a aT T=  and  
1 for 1,2, .n n

a a aT T T n+ = =   

Birkhoff proved [1] that there is ( )f ∈   so that  
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( ){ } ( ) { }, , where \ 0 .n
aT f n a∈ = ∈    

In modern language this means that the operator aT  is hypercyclic, or in other 
words the sequence of operators ( )n

aT , n∈  is hypercyclic. 
His proof was constructive. 
Let ( )n n

a
∈  be an unbounded sequence of complex numbers. Luh proved [2] 

that there is ( )f ∈   so that  

( ){ } ( ), .
naT f n∈ =   

Gethner and Shapiro [3] and Grosse-Erdmann [4] have also proved the above 
results by using the Baire’s Category Theorem. In particular, we denote  

( ) ( ) ( ){ } ( ){ }| | .
n na aT f T f n= ∈ ∈ =      

Then, the set ( )naT  is a Gδ  and dense subset of ( ) . This means that 
the sequence of operators ( )naT , n∈  is hypercyclic. Let ( )m m

b
∈  be a se-

quence of non-zero complex numbers. Based on the previous result, the set  

( )m nb a
m

T
∈



  is a Gδ  and dense subset of ( ) . This is a simple consequence 

of Baire’s Category Theorem. 
Costakis and Sambarino [5] established a notable strengthening of Birkhoff’s 

result. More specifically, they proved that the set  

{ }
( ) ( ){ } ( ){ }

\ 0
| ,n

a
a

f H T f n H
∈

∈ ∈ =



    

contains a Gδ  and dense subset of ( ) . 
The important element here is the uncountable range of a, because Baire’s 

Category Theorem is not applied for the intersection of an uncountable family of 
sets. 

Furthermore, Costakis [6] proved a more general result, that is, the set  

( )
( )0,1

nba
b C

T
∈


  contains a Gδ  and dense subset of ( ) , where na  is an  

unbounded and specific sequence of complex numbers and  
( ) { }0,1 | 1C z z= ∈ = . 
The proof of this result follows a similar method to the one used to prove a 

similar result in [5]. In the same article [6], Costakis examined a simpler and 
more specific case of the above result. In particular: 

In the above set, the request is to find an entire function f, so that:  

( ){ } ( ) ( ): for every 0,1 .nf z n Cλ α α+ ∈ = ∈   

Firstly, Costakis proved in [6] that there is some ( )f ∈  , so that the set of 
constant functions is a subset of ( ){ }:nf z nλ α+ ∈  for every ( )0,1Cα ∈ . 

This result offered a different and notable proof. In fact, he proved something 
stronger in this case, by adding a stronger condition of convergence. More spe-
cifically, Costakis proved the following result: 

Let ( )n n
λ

∈  be a sequence of non-zero complex numbers, so that nλ →∞ . 
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We have the set: 
( ) { ( ) |fλ = ∈    for every ,x y∈  such that 0 x y< < , for every  

( )0,1θ ∈  and for every α ∈  there is a sequence ( )n n
m m

∈
=  , so that  

{ },n nm nλ∈ ∈ , for every n∈ , so that, for every compact subset L ⊆    

[ ] [ ]
( )2

, 0,
sup sup sup e 0it

n
r x y t z L

f z m r a
θ∈ ∈

π

∈
+ − →  as }n → +∞ . 

Costakis [6] proved that the above set ( )λ  is a Gδ  and dense subset of 
( ) . However, he did not use this method in the general case and gave a 

completely different proof in the general case. 
Therefore, it is reasonable to ask if we can deal with the general case by im-

itating the proof of the above specific case. In this paper, we shall prove that this 
cannot be done. More specifically, we will prove here the following result: 

Let ( )n n
λ λ

∈
=   be a given sequence of non-zero complex numbers, so that 

nλ →∞ , ( )0,1θ ∈  and ( )G∈  , where θ  is a given number and G is a 
given non constant function. We shall consider the set ( ) { ( ), , |G fλ θ = ∈    
there exists a sequence ( )n n

m m
∈

=  , where { },n km kλ∈ ∈  for every n∈ ,  
so that for every compact set L ⊆   

( ) [ ]
( ) ( )2

, 0,
sup e 0it

n
t z L

f z m G z
θ∈

π

×
+ − →  as 

}n → +∞ . 

Our main result is that ( ), ,Gλ θ = ∅ , that confirms that we cannot achieve 
the general result of Costakis [6] by giving a proof similar to the proof of the 
specific case of constant functions. 

The paper is organized as follows:  
After the introduction in Section 1, we shall prove Proposition 2.1 that is a 

specific case of our main result, in the case that ( )G∈   is not a constant 
function, so that ( )0 0G′ ≠ . 

In order to prove Proposition 2.1, we shall use 3 lemmas. 
In Section 2, we shall analyze the proofs of the 3 lemmas. 
In Section 3, we shall give a helping corollary and the proof of our main result 

in Theorem 4.2. 
There are several results concerning the existence or non-existence of com-

mon hypercyclic vectors for translation operators, see [5]-[11].  

2. A Specific Case 

We fix a positive number θ  and a sequence ( )n n
λ λ

∈
=   from complex num-

bers. 
We define ( )  for the set of entire functions. We fix ( )G∈  . 
Now we state and prove a specific case of our main result.  
Proposition 2.1. Let ( )n n

λ λ
∈

=   be a sequence of non-zero complex num-
bers, so that nλ →∞ . We assume also that ( )0,1θ ∈  and ( )G∈  , so that 

( )0 0G′ ≠ . Then we have: ( ), ,Gλ θ = ∅ .  
Proof. So, as to provide a proof by contradiction, we suppose that  
( ), ,Gλ θ ≠ ∅ . Let ( ), ,F Gλ θ∈ . Then by Lemma 3.1 there is a subsequence 
( )n n

m m
∈

=   of λ , from different terms so that for every compact subset L of 
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   

( ) [ ]
( ) ( )2

, 0,
sup e 0 as .it

n
t z L

F z m G z n
θ∈ ×

π+ − → → +∞            (1) 

Now, we use (1) with { }0L =  and 0t =  and we get  

( ) ( )0 as .nF m G n→ →∞                     (2) 

If we use (1) with { }0L =  and t θ=  we get  

 ( ) ( )2e 0 as .i
nF m G nθπ → → +∞                   (3) 

Subtracting the above two convergence (2) and (3) we get that  

( ) ( )2e 0 as .i
n nF m F m nθπ − → →∞                 (4) 

We have by complex analysis  

 ( ) ( ) ( )2
2

, e
d e for every 1,2, .i

n n

i
n nm m

F z z F m F m nθ
θ

π
π

 
 

′ = − =∫      (5) 

By (4), (5) we take:  

 ( )2, e
d 0 as .i

n nm m
F z z nθπ 

 
′ → →∞∫                  (6) 

Based on Lemma 3.2 and (1) we get that for every compact subset L of    

 
( ) [ ]

( ) ( )2

, 0,
sup e 0 as .it

n
t z L

F z m G z n
θ

π

∈ ×
′ ′+ − → →∞           (7) 

The above convergence (7) for { }0L =  gives  

 
[ )

( ) ( )2

0,
sup e 0 0 as .i

n
t

F m G nθ

θ

π

∈
′ ′− → →∞             (8) 

Now setting f F ′= , to the above convergence (6), (8) and Lemma 3.3 we take a 
contradiction and the proposition follows.                                

In the following pages, we shall prove the lemmas we have used in the above 
Proposition 2.1.  

3. Proofs of 3 Lemmas 

Lemma 3.1. Let ( )n n
λ λ

∈
=   be a sequence of non-zero complex number and 

θ  be a positive number. We suppose that ( ), ,f Gλ θ∈ , where G is an entire 
function so that ( )0 0G′ ≠ . Then, the sequence ( )n n

m m
∈

=  , which satisfies 
the condition of ( ), ,Gλ θ , that is for every compact subset L G⊆ , 

( ) [ ]
( ) ( )2

, 0,
sup e 0it

n
t z L

f z m G z
θ∈

π

×
+ − →  as n → +∞ , is an infinite subset of   

and can be chosen to be a subsequence of λ  from different terms.  
Proof. We set  

( ) [ ]
( ) ( )2

, 0,
sup e , 0,1,2, ,it

n n
t z L

a f z m G z n
θ∈ ×

π= + − =   

for some specific compact subset L ⊆  . 
We suppose that 0na =  for some n∈ . Let 0z L∈ . Because of 0na = , we 

have ( ) ( )2
0 0e it

nf z m G zπ+ =  for every [ ]0,t θ∈ . Because of 0nm ≠ , based on 
our hypothesis, we take that the function f is a constant by the principle of ana-
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lytical continuation, so we have ( ) ( )0f z G z=  for every z∈ . As a result,  

( ) ( ) ( ) ( ) [ ]2
0e for every , , 0,it

nf z m G z G z G z z n t θπ+ − = − ∈ ∈ ∈   and 

( ) [ ]
( ) ( ) ( ) ( )2

0
, 0,

sup e supit
n n

t z L z L
a f z m G z G z G z

θ∈ × ∈

π= + − = −  

for every n∈ , [ ]0,t θ∈  and compact set L ⊆  . 
So, for specific compact set L ⊆   we have ( ) ( )0G z G z=  for every z L∈  

thus function G is a constant function ( ) ( )0G z G z= , for every z∈ , which is 
false because ( )0 0G′ ≠ , according to our hypothesis. 

So, we have 0na ≠  for every n∈ . We suppose that the set { },nm n∈  is 
finite. Then, we have that the set { },na n∈  is finite and because 0na →  we 
get that there is some 0ν ∈ , so that 

0
0na aν= =  for every n∈ , 0n ν≥ , 

that is false. Thus, the set { },nm n∈  is infinite and this implies that there is a 
subset { } { }, ,n nm n m n′ ∈ ⊆ ∈  , so that nm′ , n∈  to be a sequence of λ , 
from different terms.                                                 

Lemma 3.2. Let ( )n n
m m

∈
=   be a sequence of complex numbers, θ  be a 

positive number and ,f g  be two entire functions. We suppose that for every 
compact subset L of   we have:  

( ) [ ]
( ) ( )2

, 0,
sup e 0 as .it

n
t z L

f z m g z n
θ∈ ×

π+ − → → +∞  

Then, for every compact subset L of  :  

( ) [ ]
( ) ( )2

, 0,
sup e 0 as .it

n
t z L

f z m g z n
θ

π

∈ ×
′ ′+ − → →∞  

Proof. We fix some compact subset L of  . Let 0n ∈ , so that L is a subset 
of ( )00,D n , where ( ) { }0, |D p z z p= ∈ <  for every 0p > . 

It is easy to see that  

 
( )

( )
0

0
0

0,
, 0, 2 .

3z D n

n
D z D n

∈

  ⊆ 
 



                 (1) 

We shall consider the sequence of functions nF , 1,2,n =  , [ ]: 0,nF θ × →  , 
so that ( )( ) ( ) ( )2, e it

n nF t z f z m g zπ= + − , for every ( ) [ ], 0,t z θ∈ × , n∈  
and their partial functions  

( ) ( )( ) ( ) [ ], for every , 0, .t
n nF z F t z t z θ= ∈ ×  

Based on the hypothesis, we conclude that for every compact subset K ⊆   we 
have:  

[ ]0,
0 asn KF n

θ ×
→ → +∞  

where  

[ ] [ ]
( )0,

0,
sup for 1,2, .n nK

w K
F F w n

θ
θ

×
∈ ×

= =   

Let some 0 0ε > . We set 0 0
1 3

n ε
ε = . 

Based on our hypothesis, there is a natural number 0ν ∈ , so that for every 
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n∈ , 0n ν≥ , [ ] 2 0
10, nn DF

θ
ε

×
< , where we applied our hypothesis for  

 
02 .nK D=                            (2) 

We fix some [ ]0 0,t θ∈ . Then, function 0t
nF  is entire for every n∈ . 

Let some 
0nz D∈ . 

Based on Canchy’s estimates we have:  

 ( ) ( ) ( ) [ ]
0 0

2 00
0,

0 0,
3

3 3sup ,
n

t t
n n n D

n
w D z

F z F w F
n n θ ×

 ∈  
 

′ ≤ ≤           (3) 

where for the second inequality we used relation (1). 
Based on inequality (3), we have:  

( ) [ ]
( ) ( ) [ ] 2 0

2
0,

, 0, 0

3sup e , for every .
n

it
n n D

t z L
f z m g z F n

n θ
θ

π
×

∈ ×
′ ′+ − ≤ ∈   (4) 

Based on (2) and (4) we have that for every n∈ , 0n ν≥ :  

 
( ) [ ]

( ) ( )2
0

, 0,
sup e .it

n
t z L

f z m g z
θ

ε
∈ ×

π′ ′+ − <                (5) 

This gives that:  

( ) [ ]
( ) ( )2

, 0,
sup e 0 as ,it

n
t z L

f z m g z n
θ∈ ×

π′ ′+ − → → +∞  

that implies the desired result for every compact subset L of  .              
Lemma 3.3. Let ( )n n

m
∈  be a sequence of complex numbers, so that nm →∞ , 

( )0,1θ ∈  and a∈ , 0a ≠ . 
Then, there is no entire function f, so that:  

[ ]
( )2

0,
sup e 0it

n
t

f m a
θ∈

π − →  and 

( )2, e
d 0 as .i

n nm m
f z z nθπ 

 
→ → +∞∫  

Proof. To take a contradiction we suppose that there exists an entire function 
f that satisfies the above two convergence. 

We have the curves [ ]: 0,nγ θ →  , where ( ) 2e it
n nt mγ π=  for every [ ]0,t θ∈ , 

n∈ . We also have [ ]( ): 0,n nγ γ θ∗ =  for 1,2,n =  . 
Because nm →∞ , we use only the terms nm , n∈ , such that 0nm ≠ , for 

some n big enough. 
Based on Cauchy’s Theorem we have:  

 ( ) ( ) ( )2, e
d d for every 1,2, .i

n n nm m
f z z f z z nθ γ ∗π 

 
= =∫ ∫        (1) 

Let :A →   be the constant function, so that ( )A z a=  for every z∈ . 
We also have:  

 ( ) ( )2
2

, e
d e for every 1, 2, .i

n n

i
n nm m

A z z a m m nθ
θ

π
π

 
 

= − =∫      (2) 

We fix 
2

0

e 1
0,

2

ia θ

ε
π ⋅ −

π
 ∈
 
 

. 
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We can write down the first of the two convergences of hypothesis as follows:  

 ( )sup 0 as .
nz

f z a n
γ ∗∈

− → → +∞                  (3) 

By our hypothesis (1) and (3) we take that there is some 0ν ∈ , so that for 
every n∈ , 0n ν≥  has as follows:  

 ( ) 0sup
nz

f z a
γ

ε
∗∈

− <  and                     (4) 

( ) 0d , 0.
n

nf z z m
γ

ε∗ < ≠∫                    (5) 

Based on (2), Cauchy’s Theorem, (4) and the simple properties of the complex 
integrals, we have:  

 ( ) ( )2
0d e 2 .

n

i
n n nf z z a m m mθ

γ
ε∗

π π− − <∫            (6) 

Based on (4), (5), (6), triangle inequality and the specific of 0ε  we assume that 
for every n∈ , 0n ν≥ , the following applies:  

 0
2

0e 1 2n i
m

a θ

ε
επ

<
− − π

                  (7) 

(where 2
0e 1 2 0ia θ επ π− − >  from the certain choice of 0ε ). 

Inequality (7) and the fact that nm →∞  gives a contradiction and this com-
pletes the proof of this lemma.                                          

4. The Main Result 

In order to prove the main result, we also need the following corollary of Lemma 
3.2.  

Corollary 4.1. Let ( )n n
m

∈  be a sequence of complex numbers, θ  be a posi-
tive number and f, g be two entire functions. 

We suppose that for every compact subset L of   the following shall apply:  

( ) [ ]
( ) ( )2

, 0,
sup e 0 as .it

n
t z L

f z m g z n
θ∈ ×

π+ − → → +∞  

Then, for every compact subset L of   and ν ∈   

( ) [ ]

( ) ( ) ( ) ( )2

, 0,
sup e 0 as .it

n
t z L

f z m g z nν ν

θ∈ ×

π+ − → → +∞  

Proof. It is simple implication of Lemma 3.2 by induction. 
Now, we are ready to prove the main result of this article.                  
Theorem 4.2. Let ( )n n

λ λ
∈

=   be a sequence of non-zero complex numbers, 
so that nλ →∞ , ( )0,1θ ∈  and ( )G∈  , where G is not a constant func-
tion. 

Then, we have: ( ), ,Gλ θ = ∅ .  
Proof. We shall prove the Theorem by distinguishing two cases.  

● Case 1  
( )0 0G′ ≠ . 

The result is supported by Proposition 1.  
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● Case 2  
( )0 0G′ = .  

We shall distinguish two cases here:  
1) ( ) ( )0 0G ν =  for every ν ∈ . 

Provided that ( )G∈   we have ( )
( ) ( )

0

0
!

G
G z z

ν
ν

ν ν

+∞

=

= ∑  for every z∈ ,  

so we have ( ) 0G z =  for every z∈ , which is false because G is not a con-
stant function in our hypothesis.  

2) There is a ν ∈ , 2ν ≥  so that ( ) ( )0 0G ν ≠ . 
Let ( ) ( ){ }0 min | 0 0G νν ν= ∈ ≠ , that is 0ν  is the smallest natural number, 

so that ( ) ( )0 0 0G ν ≠ . Of course, 0 2ν ≥ . 
We suppose that ( ), ,Gλ θ ≠ ∅ . Let ( ), ,f Gλ θ∈ . Then, there is a se-

quence ( )n n
m

∈ , so that { },n nm nλ∈ ∈  for every n∈ , where for every 
compact subset L ⊆    

( ) [ ]
( ) ( )2

, 0,
sup e 0 as .it

n
t z L

f z m G z n
θ∈ ×

π+ − → → +∞  

Based on the above Corollary 4.1, we take that for every compact subset L ⊆    

 
( ) [ ]

( ) ( ) ( ) ( )0 01 12

, 0,
sup e 0 as .it

n
t z L

f z m G z nν ν

θ

− −

∈

π

×
+ − → → +∞         (1) 

Because ( ) ( )0 0 0G ν ≠  we take that the function ( ) ( )0 1G ν − ∈   is not a con-
stant function. Of course, the function ( ) ( )0 1f ν − ∈  . 

Based on (1) and Proposition 2.1 we have a contradiction, because, according 
to (1), we have ( ) ( )( )0 01 1, ,f Gν νλ θ− −∈ , that is ( )( )0 1, ,G νλ θ − ≠ ∅  that is 
false by Proposition 2.1. 

The proof of our main result is complete now.                           
Let us compare now the main result of this article, that is Theorem 4.2, with 

the result of Costakis and Sambarino [5], in order to see what is new in thew 
present paper. As we said in the introduction in [5] the authors proved that the 
intersection  

{ }
( ) ( ){ } ( ){ }

\ 0
| ,n

a
a

A f T f n
∈

= ∈ ∈ =



     

contains a Gδ  and dense subset of ( )  and so it is non-empty. Let f A∈ . 
Then by the definition of A if we choose a non-zero complex number a and an 
entire function g then there exists a subsequence ( )n n

m
∈  of natural numbers 

so that  

( ) uniformly on compacta as .nm
aT f g n→ → +∞  

Therefore, for every pair ( ) { }( ) ( ), \ 0a g ∈ ×   as above the sequence  
( )n n
m

∈  depends on this pair. 
However, the convergence in set ( )λ  in the introduction [6] does not de-

pend on the specific complex number 2e itr π  where [ ],r x y∈  and [ ]0,t θ∈  and 
it is achieved simultaneously for all these numbers. 

In this direction an open question for us, up to now, is the following  
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Question:  
Can we achieve the convergence in the set ( )λ  simultaneously for all num-

bers 2e itr π  where [ ],r x y∈ , [ ]0,t θ∈ , for specific ,x y∈ , x y<  and  
( )0,1θ ∈ , but not uniformly? 

More formal, the question is the following: “We choose a non constant entire 
function g and a positive number ( )0,1θ ∈ . Does there exist an entire function 
f and a sequence of natural ( )n n

m
∈ , so that for every [ ]0,t θ∈  and compact  

set L ⊆   ( )2sup e 0it
n

z L
f z m g

∈

π+ − →  as n → +∞  ?” 
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