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Abstract 
This note deals with some classes of bounded subsets in a quasi-metric space. 
We study and compare the bounded sets, totally-bounded sets and the Bour-
baki-bounded sets on quasi metric spaces. For example, we show that in a 
quasi-metric space, a set may be bounded but not totally bounded. In addi-
tion, we investigate their bornologies as well as their relationships with each 
other. For example, given a compatible quasi-metric, we intend to give some 
necessary and sufficient conditions for which a quasi metric bornology coin-
cides with the bornology of totally bounded sets, the bornology of bourbaki 
bounded sets and bornology of bourbaki bounded subsets. 
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1. Introduction 

The theory of bounded sets on metric spaces has been studied by many authors 
with different motivations. For instance, Kubrusly and Willard proved that a me-
tric space ( ),X d  is totally bounded if and only if every sequence in X has a 
Cauchy subsequence. In 2012, Olela Otafudu investigated total boundedness of 
the u-injective hull of a totally bounded T0-ultra-quasi-metric space. He first de-
fined a set to be bounded if it is contained in a double ball and total bounded if it 
is contained in the union of finite number of ( )sqτ -open balls. He then proved 
that total boundedness is preserved by the ultra-quasimetrically injective hull of 
a T0-ultra-quasi-metric space (see ([1], Proposition 5.4.1)). 

According to Cobzas ([2], p. 63), a quasi-pseudometric space ( ),X q  is said 
to be totally bounded if for each 0ε >  there exists a finite subset  
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{ }1 2 3, , , , kM x x x xε = 
 of X such that ( )1

,s
k

jj q
X B x ε

=
⊆


. As it is known, in 
metric spaces precompactness and total boundedness are equivalent notions, a 
result that is not true in quasi-metric spaces (see ([2], Proposition 1.2.21)). In 
quasi metric spaces, Mukonda and Otafudu have defined a set to be Bourbaki 
bounded if for each 0ε >  and a nutural number n, there exists a finite subset 

{ }1 2 3, , , , kM x x x xε = 
 of X such that ( )1

,k n
q jj

X B x ε
=

⊆


. 
Morever, our recent work [3] has extended the concept of bornology from 

metric settings to the framework of quasi-metrics. Naturally, this has led to the 
speculation of what is the relationship between the bornology of bounded sets 
and other types of bornologies on quasi-metric spaces. Toachieve this, a careful 
study of bornologyof bounded sets, bornology of totally bounded sets and bor-
nolgies of bourbaki bounded sets in quasi-pseudometric spaces is required. 

In this present work, we intend to generalize some classical bornological re-
sults of Garrido and Meroño [4] on classes of bounded sets from metric spaces 
to the category of quasi-metric spaces. For instance, given a compatible qua-
si-metric, we intend to give some necessary and sufficient conditions for which a 
bornology of totally bounded sets and bornology of bourbaki bounded sets coin-
cide with our quasi-metric bornology studied in [5]. 

2. Preliminaries 

This section recalls and introduces the terminology and notation for quasi-metric 
spaces we will use in the sequel. Further details about theory of asymmetric to-
pology can be found in [2] [6] [7]. 

Definition 2.1. Let X be a set and let [ ): 0,q X X× → ∞  be a function map-
ping into the set [ )0,∞  of the nonnegative reals. Then, q is called a quasi-pseu- 
dometric on X if 

1) ( ), 0q x x =  whenever x X∈ . 
2) ( ) ( ) ( ), , ,q x z q x y q y z≤ +  whenever , ,x y z X∈ .  
We say q is a T0-quasi-metric provided that q also satisfies the following con-

dition: 

( ) ( ), 0 , implies .q x y q y x x y= = =  

If q is a quasi-pseudometric on a set X, then [ )1 : 0,q X X− × → ∞  defined by 
( ) ( )1 , ,q x y q y x− =  for every ,x y X∈ , often called the conjugate quasi-pseu- 

dometric, is also quasi-pseudometric on X. The quasi-pseudometric on a set X 
such that 1q q−=  is a pseudometric. Note that if ( ),X q  is a quasi-metric space, 
then { }1 1max ,sq q q q q− −= = ∨  is also a metric. 

Remark 2.2. [2] Let ( ),X q  be a quasi-pseudometric space. The open ball of 
radius 0ε >  centred at x X∈  is the set ( ) ( ){ }, : ,qD x y X q x yε ε= ∈ < . The 
collection of open balls yields a base for the topology ( )qτ  and it is called the 
topology induced by q on X. Similarly, the closed ball of radius 0ε ≥  centred at 
x X∈  is the set [ ] ( ){ }, : ,qD x y X q x yε ε= ∈ ≤ . If ( ),X q  is a quasi-pseudo- 

metric space, then the pair [ ] [ ]{ }, ; ,tq q
D x r D x s  where x X∈  and [ ), 0,r s∈ ∞  

is called a double ball. In general, ( )( ) ( )( ){ }, ; ,tq i i i iqi I i I
D x r D x s

∈ ∈
, with ix X∈  
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and [ ), 0,i ir s ∈ ∞ , is called the family of double balls. 
Note that the set ( ) ( ){ }, : ,qD x y X q x yε ε= ∈ <  is a ( )tqτ -closed set, but 

not ( )qτ -closed in general. The following inclusions holds: 

( ) ( ) ( ) ( ), , and , , .s s tqq q q
D x D x D x D xε ε ε ε⊂ ⊂  

Definition 2.3. ([3], Definition 4.1) Let ( ),X q  be a quasi-pseudometric. An 
arbitrary subset A is called q-bounded if only if there exists x X∈ , 0r >  and 

0s >  such that ( ) ( )1, ,q q
A D x r D x s−⊆ 

. 
Definition 2.4. Let ( ),X q  be a quasi-pseudometric space and F X⊆ . We say 

that F is totally bounded, if for any 0δ >  there exists a finite subset  
{ }1 2, , , kf f f

 of X such that  

( )
1

, .
k

q i
i

F D f δ
=

⊆


 

Definition 2.5. Let ( ),X q  be a quasi-pseudometric space and F X⊆ . We 
say that F is q-Bourbaki-bounded, if for any 0δ >  there exists a finite subset 

{ }1 2, , , kf f f
 of X and for some positive integer n such that  

( )
1

, .
k

n
q i

i
F D f δ

=

⊆


 

Definition 2.6. A bornology on a set X is a collection B  of subsets of X 
which satisfies the following conditions: 

1) B  forms a cover of X, i.e. X =


B ; 
2) for any B∈B , and A B⊆ , then A∈B ; 
3) B  is stable under finite unions, i.e. if 1 2, , , nX X X ∈ B , then  

1
.

n

i
i

X
=

∈


B  

If we take a nonempty set X and a bornology B  on X, then the pair ( ),X B  
is called a bornological universe. For every nonempty set X, the family  

{ }: is finiteB X B= ⊂B  is the smallest bornology on X.  
Recall from [3] that the bornology of quasi-pseudometric bounded sets is de-

noted by ( )q XB . However, in [8], the family of totally bounded subsets and bou-
bark bounded sets their bornologies are denoted by ( )q XTB  and ( )q XBB  
respectively. We will compare these bornologies in the next sections. 

Let ( ),X q  be a T0-quasi-metric space. Then ( ),X q  is called bicomplete pro-
vided that the metric space ( ), sX q  is complete. A mapping f between two qu-
asi-metric spaces ( ),X q  and ( ),Y ρ  is said to be quasi-isometry if  

( ) ( )( ) ( ), ,q f x f y x yρ=  for all ,x y  in X.  
A bicompletion of a quasi-metric space ( ),X q  is a bicomplete quasi-metric 

space ( ),X q   in which ( ),X q  can be quasi-isometrically embedded as a ( )sqτ 

-dense subspace. 
We recall the concepts of asymmetric norms and semi-Lipschitz functions in 

quasi-metric spaces. 
Definition 2.7. [2] An asymmetric norm on a real vector space X is a function 
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[ ): 0,X⋅ → ∞  satisfying the conditions: 
1) 0x x= − =  then 0x = ; 
2) ax a x= ; 
3) x y x y+ ≤ + ,  

for all ,x y X∈  and 0a ≥ . Then the pair ( ),X ⋅  is called an asymmetric 
normed space.  

The conjugate asymmetric norm ⋅  of ⋅  and the symmetrized norm ⋅  
of ⋅  are defined respectively by 

{ }: and : max , for any .x x x x x x X= − = ∈  

An asymmetric norm ⋅  on X induces a quasi-metric |q ⋅  on X defined by 

( )| , for any , .q x y x y x y X⋅ = − ∈


 

If ( ),X ⋅  is a normed lattice space, then the function :x x+=  with  
{ }max ,0x x+ =  is an asymmetric norm on X. 

Definition 2.8. Let ( ),X q  be a quasi-metric space and ( ),Y ⋅  be an asym-
metric normed space. Then a function ( ) ( ): , ,X q Yϕ → ⋅  is called k-semi-Lips- 
chitz (or semi-Lipschitz) if there exists 0k ≥  such that 

( ) ( ) ( ), for all , .x y kq x y x y Xϕ ϕ− ≤ ∈              (1) 

A number k satisfying inquality (1) is called semi-Lipschitz constant for ϕ .  

3. Some Results of Boundedness in Quasi-Metric Spaces 

This section is as a result of the distinction that we gave in [3] about the bornol-
ogies ( )q XB  and ( )sq

XB . We will investigate further the connection between 
the bornologies ( )sq

XB , ( )q XB , ( )q XTB  and ( )q XBB . 
Lemma 3.1. If ( ),X q  is a quasi-metric space. Then the following statement 

is true: 

( ) ( )s qq
X X⊆B B                         (2) 

and the quasi-metric bornologies ( )q XB  and ( )tq
XB  are equivalent. 

Proof. Let ( )sq
A X∈B , then A is sq -bounded. By Remark 2.2, A is q- 

bounded too. Thus ( )qA X∈B . The equivalence of ( )q XB  and ( )tq
XB  

comes from the fact that any subset A of X is q-bounded if and only if it is tq - 
bounded.                                                        □ 

The converse of Lemma 3.1 above does not holds. i.e., a set on a quasi-metric 
can be q-bounded but not sq -bounded (check ([3], Remark 4.2)). 

Definition 3.2. ([6], p.85) Let ( ),X q  be a T0-quasi-metric space. Then ( ),X q  
is called joincompact provided that the metric space ( ), sX q  is compact.  

Theorem 3.3. (Compare ([9], Theorem 3.78).) Let ( ),X q  be a T0-quasi- 
metric space. A set B X⊆  is joincompact if and only if B is both bicomplete 
and totally bounded. 

Proof. We leave this proof to the reader.                             □ 
We rephrase the above theorem in the following Corrolary as proved by Fletch-

er and Lindgreen in quasi-uniform spaces (see ([7], p. 65)). 
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Corollary 3.4. ([7], Proposition 3.36) Let ( ),X q  be a T0-quasi-metric space. 
Then ( ),X q  is totally bounded if and only ( ), sX q   is compact.  

Definition 3.5. ([2], Definition 1.44) Let ( ),X q  be a T0-quasi-metric space. 
Then ( ),X q  is called supseparable provided that the metric space ( ), sX q  is 
separable.  

Proposition 3.6. (Compare ([9], Proposition 3.72)) A totally bounded qua-
si-pseudometric space ( ),X q  is supseparable. 

Proof. Suppose ( ),X q  is totally bounded, for any positive interge n, we can  

find a finite set nA X⊆  such that for all x X∈ , ( ) 1,s
nq x A

n
< . Now let  

nn
B A

∈
=
  . The set B is either finite or infinitely countable, thus countable. To 

show the ( )sqτ -density of B, let us pick x X∈ , then we have  

( ) ( ) 1, ,s s
nq x B q x A

n
≤ <  implying that ( ), 0sq x B =  and ( ) ( )cl sq

x B
τ

∈ . This  

proves that x is a sq -limit point of B and hence B is a ( )sqτ -dense subset of X. 
Consequently, ( ), sX q  separable and by Definition 3.5, ( ),X q  is supsepara-
ble.                                                             □ 

The next example shows that for finite dimension spaces, total boundedness 
coincide with boundedness. 

Example 3.7. If we equip a real unit interval [ ]0,1X =  with the T0-quasi- 
metric ( ) { }, max ,0q x y x y= − , then the pair ( ),X q  is both q-bounded and 
totally bounded space. 

Proof. It can be seen that X is q-bounded. Now If we pick { }0,1  to be a finite 
subset of [ ]0,1X =  and 1 2ε = , then 

( ) ( )1 2 1 20, 1, .s sq q
X B B⊂ 

                    □ 

The next Lemma proves that for infinite dimension spaces, total boundedness 
and quasi-metric boundedness are two different notions. 

Lemma 3.8. Let ( ),X q  be a quasi-metric space, then ( ) ( )q qX X⊆TB B . 
Proof. Let ( )qB X∈TB . For 0ε > , there exists a finite subset  

{ }1 2 3, , , , kF x x x xε = 
 of B such that ( )1

,s
k

jj q
B B x ε

=
⊆


. The set B is a finite 
family of sq -bounded subsets thus its is sq -bounded. Hence ( )qB X∈B  by 
Lemma 3.1.                                                      □ 

The following example illustrates the converse of Lemma 3.8 above. 
Example 3.9. Let us equip the set of natural numbers   with the T0-quasi- 

metric 

( )
if

,
1 if
x y x y

q x y
x y

− ≥
=  <

 

The T0-quasi-metric space ( ),q  is q-bounded but not q-totally bounded. 
Proof. For all ,x y∈  we can find 0k ≥  such that ( ),q x y k≤ . But any fi-

nite set { }1 2 3, , , , nx x x x ⊂   with the discrete metric sq , the set   can not be 
covered by ( ),s iq

D x ε  for 1 i n≤ ≤ . Hence, ( ),q  is not q-totally bounded. □ 
It is important to note that ( )sq

XTB  is a metric bornology in the sense of 
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Beer et al. [10]. 
Definition 3.10. Let ( ),X q  be a quasi-pseudometric space and 0δ > . For 

any F X∅ ≠ ⊂ , we define the δ -enlargement ( ),qD F δ  of F by 

( ) ( ){ } ( ), : : dist , ,q q
f F

D F x X F x D f xδ δ
∈

= ∈ < =


 

and 

( ) ( ){ } ( ), : : dist , , .t t
t

q q
f F

D F x X F x D f xδ δ
∈

= ∈ < =


 

Furthermore, 

( ) ( ) ( ){ } ( ), max , , , , .s t sqq q q
f F

D F D F D F D f xδ δ δ
∈

= =


 

Remark 3.11. For a given quasi-pseudometric space ( ),X q . For any 0δ >  
and ,x y X∈ . It is easy to see that if ( ) 0

n
i i

x
=

 is a δ -chain in ( ), sX q  of length 
n from x to y, then ( ) 0

n
i i

x
=

 is also a δ -chain in ( ),X q  and in ( ), tX q  of length 
n from x to y. We have 

( ) ( ), ,s
n n

qq
D x D xδ δ⊆                         (3) 

and 

( ) ( ), , .s t
n n
q q

D x D xδ δ⊆                        (4) 

Lemma 3.12. Let ( ),X q  be a quasi-pseudometric space and for any , 0ε δ > . 
We have ( )( ) ( ), , ,q q qD D F D Fε δ ε δ⊂ + .  

Lemma 3.13. Let ( ),X q  be a quasi-pseudometric space and 0δ > . For any 
x X∈  and 0,1,2,n =  , we have ( ) ( )1, , .n n

q qD x D xδ δ+⊆  
Corollary 3.14. Let ( ),X q  be a quasi-pseudometric space and 0δ > . If there 

exists a δ -chain of length n from x to y in ( ), tX q , then there exists a δ -chain 
of length n from y to x in ( ),X q  whenever ,x y X∈ .  

Lemma 3.15. If ( ),X q  is a quasi-metric space. Then the following statement 
is true: 

( ) ( )s qq
X X⊆BB BB                       (5) 

and the quasi-metric bornologies ( )q XBB  and ( )tq
XBB  are equivalent. 

Proof. Let 0δ > . Suppose that ( )sq
F X∈BB . Then there exists a finite set 

{ }1 2, , , kf f f X⊂
 such that  

( )
1

,s

k
n

iq
i

F D f δ
=

⊆


 

for some positive integer n. By inclusion (3) we have ( )1
,k n

q ii
F D f δ

=
⊆


 for 
some positive integer n. Hence ( )qF X∈BB . Note that Corollary 3.14 con-
firms the equivalence of ( )q XBB  and ( )tq

XBB .                    □ 
The converse of the above lemma does not always hold. Let us determine this 

from the following example. 
Example 3.16. Consider the four point set { }1,2,3,4X = . If we equip X with 

T0-quasi-metric q defined by the distance matrix 
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0 1 2 1
1 0 1 2
2 1 0 1
2 1 1 0

Q

 
 
 =
 
 
 

 

that is, ( ) ,, i jq i j q=  whenever ,i j X∈ . The symmetrized metric sq  of q is 
induced by the matrix 

0 1 2 2
1 0 1 2
2 1 0 1
2 2 1 0

sQ

 
 
 =
 
 
 

 

Let 1,5 0δ = > . If we consider the sequence ( ) ( )2

0
: 4, 2,1i i

f
=

= . Then we have  

( ) ( ) ( ) ( )0 1 1 2, 4, 2 1 , 2,1 .q f f q f f q δ= = = = <  

Hence the sequence ( ) ( )2

0
: 4, 2,1i i

f
=

=  is a δ -chain in ( ),X q  of length 2 from 
4 to 1. But the same sequence ( ) ( )2

0
: 4, 2,1i i

f
=

=  is not a δ -chain in ( ), sX q  of 
length 2 from 4 to 1 because ( ) ( )0 1, 4, 2 2 .s sq f f q δ= = >   

We state the following lemma that we will use in our next proposition. 
Lemma 3.17. Let ( ),X q  be a quasi-pseudometric space. For some positive 

integer n, 0δ >  and x X∈ , we have 

( ) ( )
1 1

, , .
k k

n
q i q i

i i
D x D x nδ δ

= =

⊆
 

 

Proof. Let ( )1
,k n

q ii
y D x δ

=
∈


, then for some j with 1 j k≤ ≤ , ( ),n
q jy D x δ∈ . 

Moreover, for some j with 1 j k≤ ≤ , there exists { }0 1, , , nf f f
 a δ -chain of 

length n from jx  to y such that 0 jf x= , nf y=  and ( )1,i iq f f δ− <  for all i 
with 1 i n≤ ≤ . Furthermore, we have 

( ) ( ) ( ) ( ) ( )0 0 1 1 2 1, , , , ,

.
j n n nq x y q f f q f f q f f q f f

nδ δ δ δ
−= ≤ + + +

< + + + <





 

Thus, for some j with 1 j k≤ ≤ , ( ),q jy D x nδ∈ . Hence, ( ),k
q ii i

y D x nδ
=

∈


. □ 
Proposition 3.18. Given a quasi-pseudometric space ( ),X q . If F is a subset 

of X and 0δ > , then we have the following conditions: 
1) ( ) ( )q qX X⊆TB BB . 
2) ( ) ( )q qX X⊆BB B .  
Proof.  
1) Let 0δ > . Suppose ( )qF X∈TB  then there exists a set  

{ }1 2, , , kf f f X⊆
 such that  

 ( ) ( ) ( )1 1

1 1 1
, , ,s s

k k k

i i q iq q
i i i

F D f D f D fδ δ δ
= = =

⊆ = ⊆
  

 

for some positive integer 1n = . Therefore, ( )qF X∈BB . 
2) Since ( )qF X∈BB  there exists a set { }1 2, , , kx x x X⊆

 and some pos-
itive integer n such that for 0δ >  we have ( )1

,k n
q ii

F D x δ
=

⊆


. By Lemma 
3.17, ( ) ( )1 1

, ,k kn
q i q ii i

F D x D x nδ δ
= =

⊆ ⊆
 

. Hence, ( )qF X∈B .          □ 
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Let us provide the summary of the connections between these bornologies in 
the following remark. 

Remark 3.19. If ( ),X q  is a quasi-pseudometric space, then we have the fol-
lowing inlusions: 

( ) ( ) ( ) ( )sq q qq
X X X X⊆ ⊆ ⊆TB BB BB B  

But if ( ),X ⋅  is an asymmetric normed space, then we have 

( ) ( )
| |

.q qX X
⋅ ⋅

=
 

BB B  

We have provided the proof in Proposition 4.1.  

4. Main Results on Bornologies 

One would still wonder, if is it indeed posible to find a quasi-metric metric q′  
equivalent to q such that ( ) ( )q qX X′ =B BB  or ( ) ( )q qX X′ =BB TB . 

Proposition 4.1. Suppose that ( ),X ⋅  is an asymmetric normed space. Then 
we have the following: 

( ) ( )
| |

.q qX X
⋅ ⋅

=
 

BB B  

Proof. For ( ) ( )
| |q qX X
⋅ ⋅

⊆
 

BB B  follows from Proposition 3.18 (b). 
For ( ) ( )

| |q qX X
⋅ ⋅

⊇
 

BB B , suppose that F is |q ⋅ -bounded then  
( )

| 0 ,qF D x ε
⋅

⊆


 for some 0x X∈  and 0ε > . For any 0δ > , there exists  

n∈  such that 
n
ε δ< . 

Let f F∈ . We define ( )0 0:i
iz x f x
n

= + −  whenever i with 1 i n≤ ≤  and 

0 0z x= . Then 

( )

( ) ( )

( )

| 1 1

0 0 0 0

0
0

,

1

1 .

i i i iq z z z z

i ix f x x f x
n n

x f x f
n n n n

ε δ

⋅ − −= −

−   = + − − + −      

= − = − < <



 

Thus, for any f F∈  we have obtained a δ -chain of length n on ( )|,X q ⋅  
from 0z  to f. Therefore, ( )

|

1
0

,n
q kk

f D z δ
⋅=

∈




.                         □ 
Definition 4.2. [11] Given a Hilbert cube [ ]0,1H =  , the product topology is 

defined in a usual way by a quasi-pseudometric 

( ) ( )
1

,
,

2
n n

q n
n

u x y
x yρ

∞

=

= ∑  

where ( ) { }, max ,0n n n nu x y x y= − .  
Theorem 4.3. ([11], Theorem 3.10) Every supseparable quasi-metric space is 

embeddable as subspace of the Hilbert cube [ ]0,1H =  .  
Theorem 4.4 (Tychonoff’s Theorem). The topological product of a family of 

compact spaces is compact.  
Theorem 4.5. (Compare ([10], Theorem 3.1).) Let ( ),X q  be a quasi-metric 

space and let 0x X∈ . The following conditions are equivalent: 
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1) There exists an equivalent quasi-metric ρ  such that ( ) ( )q X Xρ=B TB . 
2) The quasi-metric space ( ),X q  is supseparable. 
3) There is an embedding Φ  of X into some quasi-metrizable space Y such that 

the family ( ) ( ) ( )( )10 0cl , , : ,s
Y

q qq
C x n C x s n s

τ −
  Φ ∈    

   is cofinal in ( )0 YK . 

4) There exists an equivalent quasi-metric ρ  with  

( ) ( ) ( )q X X Xρ ρ= =B TB B .  
Proof.  
1⇒ 2: If there exists an equivalent quasi-metric space ρ  such that  

( ) ( )q X Xρ=B TB , then 
1

n
ii

X B
=

=


 where iB  are ρ -totally bounded sub-
sets. This means that X is a countable union of ρ -totally bounded sets, thus its 
ρ -totally bounded and by Proposition 3.6, the quasi-metric space ( ),X q  is 
supseparable. 

2⇒ 3: First case: If q is bounded, then by Theorem 4.3, we can find an embed-  

ding ( ) [ ]( ): , 0,1 , qX q ρΦ →  . Let ( ) ( )( )cl s
q

Y X
τ ρ

= Φ  and choose ,n s∈  so 

that ( ) ( ) ( )( )10 0cl , ,s
q

q q
Y C x n C x s

τ ρ −
 = Φ  

 . Since [ ]0,1   is joincompact with  

respect to product topology, its subset Y is joincompact and confinal in ( )0 YK . 
Second case: If q is unbounded, consider { }:ix i∈  as a ( )sqτ -dense sub-

set in X. For each i in  , Let us define :if X ⇒   by ( ) ( ),i if x q x x= . Now 
if A is a nonempty ( )sqτ -closed subset of X and x A∉  then we can choose 

ix  with ( ) ( ), ,s s
i iq x x q A x<  and ( ) ( ) ( )( )cli iqf x f Cτ∉ . From the choice of 

ix , the set { }:if i∈  separates points from ( )sqτ -closed sets and we can de-
fine an embedding : XΦ →   by ( ) ( ){ } 1i i

x f x
∞

=
Φ =  equipped with the 

product topology. 
Now let p be a quasi-metric compatible with the product topology on  , we  

now prove that ( ) ( )cl sp
Y X

τ
= Φ ⊆   equipped with the relative topology is  

cofinal in ( )0 YK . If n∈  is chosen arbitrary then for each i∈ ,  

( ) ( )( )10 0, ,i q q
f C x n C x s−  is q-bounded, so by the Theorem 4.4,  

( ) ( ) ( )( )10 0cl , ,s q qp
Y C x n C x s

τ −
 = Φ  

  is joincompact as it is contained in a 

product  . Suppose ( ) ( ) ( )( )10 0cl , ,s q qp
Y C x n C x s

τ −
 = Φ  

  is not confinal  

in ( )0 YK . Let ( )0 \B Y Y∈K  then for each n∈ , take ny B∈  and pick  

nx X∈  with ( )0,nq x x n>  and ( )( ) 1;s
n np y x

n
Φ < . 

By the joincompactness of B and the quasi-metrizability of Y, we can find 
some sq -subsequence { }

1kn k
y

∞

=
 of { } 1n n

y ∞

=
 such that ( )0, 0

k

s
np y y = . This im-

plies that ( )( )0, 0
knq x yΦ = . But this is not possible, since q is unbounded. 

3⇒ 4: If ( ),X ρ  is an quasi-metric equivalent to q then ( ) ( )q X Xρ=B B  
by ([3], Theorem 5.4). To prove that ( ) ( )q qX X=B TB , let ( )B Xρ∈TB  and  
( ),Y ρ  be a bicompletion of ρ . Since ρ  is bicomplete by, the set ( ) ( )cl s B

τ ρ
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is compact. Given the cofinality of ( )0 YK , let us choose n∈  with  

( ) ( ) ( ) ( ) ( )( )10 0cl cl , ,s s q q
B C x n C x s

τ ρ τ ρ −⊆
 

 . But this means that 

( ) ( ) ( )( ) ( ) ( )1 10 0 0 0cl cl , , , , .s s q qq q q q
B B C x n C x s C x n C x s− −⊆ ⊆ =   

Thus ( )qB X∈B  and it follows that ( ) ( )qX Xρ ⊆TB B . For the reverse in-
clusion. If ( )qB X∈B , we can choose n∈  with ( ) ( )10 0, ,q q

B C x n C x s−⊆ 
.  

The ( ) ( ) ( )( )10 0cl , ,s q q
B C x n C x s

τ ρ −⊆


  is compact and ρ -totally bounded.  

Therefore, ( )B Xρ∈TB . The equivalence 4⇒ 1 follows from ([3], Theorem 
5.4).                                                            □ 

Definition 4.6. (Compare ([10], Definition 3)). Let ( ),X q  be a T0-quasi- 
metric space. Given the point p X∉  and a quasi-metric bornology ( )q XB  
on X we can form the one-point extension of X associated with ( )q XB  by a 

{ }X X p′ = 
.  

If ( )qτ  is the topology X, then the corresponding topology on X ′  is de-
fined by 

( ) { } ( ) ( ) ( ){ }\ : cl .qqq p X B B B Xττ = ∈  B  

The quasi-metric bornology associated with X ′  is denoted by ( )q X ′B . 
Remark 4.7. If 0  is a ( )qτ -closed base of the bornology then  

{ }{ }0\ :p X B B∈   forms a ( )qτ -neighbourhood base at the point p.  
Lemma 4.8. Let ( ),X q  be a T0-quasi-metric space. If the bornology ( )qB X  

is quasi-metrizable then the associated bornolgy ( )qB X ′  on X ′  is quasi-me- 
trizable.  

Theorem 4.9. (Compare ([10], Theorem 3.4)) Let ( ),X q  be a quasi-metric 
space The following conditions are equivalent: 

1) ( )q XTB  has a countable base; 
2) There exists an equivalent quasi-metric q′  such that ( ) ( )q qX X′=TB B  
3) The one-point extension of X associated with ( )q XTB  is quasi-metrizable. 
4) The one-point extension of X associated with ( )q XTB  has a ( )qτ -neigh- 

borhood base at the ideal point.  
Proof.  
1⇒ 2: Since ( )q XTB  has a countable base by Hu’s theorem (see ([3], Theo-

rem 4.18)) there exists an equivalent quasi-metric q′  such that  

( ) ( )q qX X′=TB B . 
2⇒ 3: By (2), ( ) ( )q qX X′=TB B . From Lemma 4.8 ( )q X ′B  on X ′  is qu-

asi- metrizable thus ( )q X ′TB  is quasi-metrizable. 
3⇒ 4 Since the bornology ( )q X ′TB  has a ( )sqτ -closed base, thus by the 

Remark 4.7 ( )q X ′TB  has a ( )sqτ -neighborhood base at the ideal point. 
4⇒ 1: If ( )q X ′TB  have a ( )sqτ -neighborhood base at each point, then 

( )q XTB  has countable base.                                       □ 
Definition 4.10. Let ( ),X q  be a quasi-metric space and ( ),Y ⋅  be an asym-

metric normed space. A function ( ) ( ): , ,X q Yϕ → ⋅  is called semi-Lipschitz in 
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the small if there exists 0δ >  and 0k ≥  such that if ( ),q x y δ<  then  
( ) ( ) ( ),x y kq x yϕ ϕ− ≤ .  

The following lemma follows directly from the definitions of semi-Lipschitz in 
the small function and uniformly continuous. 

Lemma 4.11. Let ( ),X q  be a quasi-metric space and ( ),Y   be an asym-
metric normed space. If a function ( ) ( ): , ,X q Yϕ → ⋅  is semi-Lipschitz in the 
small, then ( ) ( ): , ,X q Yϕ → ⋅  is uniformly continuous.  

Theorem 4.12. (Compare ([12], Theorem 3.4)) Let ( ),X q  be a quasi-metric 
space and F X∅ ≠ ⊆ . Then the following conditions are equivalent: 

1) ( )qF X∈BB ; 
2) if ( ),Y ⋅  is an asymmetric normed space and ( ) ( ): , ,X q Yϕ → ⋅  is un-

iformly continuous, then ( ) ( )
|qF Yϕ
⋅

∈


B ; 
3) if ( ),Y ⋅  is an asymmetric normed space and ( ) ( ): , ,X q Yϕ → ⋅  is semi- 

Lipschitz in the small function, then ( ) ( )
|qF Yϕ
⋅

∈


B ; 
4) if ( ) ( ): , ,X q uϕ →   is semi-Lipschitz in the small function, then  
( ) ( )uFϕ ∈ B .  
Proof.  
(1)⇒ (2) If ( ) ( ): , ,X q Yϕ → ⋅  is uniformly continuous then there exists 

0δ >  such that whenever ,x y X∈  with ( ),q x y δ< , we have 

( ) ( )( ) ( ) ( )| , 1.q x y x yϕ ϕ ϕ ϕ⋅ = − <


                (6) 

By the q-Bourbaki-boundedness of F, there exists { }1 2: , , , mA a a a X= ⊆
 such 

that 

( )
1

,
m

n
q i

i
F D a δ

=

⊆


 

for some positive integer n. If we take f artbitrary in F, then there exists k with 
1 k m≤ ≤  such that ( ),n

q kf D a δ∈ . Then for some k with 1 k m≤ ≤ , there ex-
ists a δ -chain { }0 1, , , nf f f

 with 0 kf a= , nf f=  and 

( )1, whenever with 1 .i iq f f i i mδ− < ≤ ≤              (7) 

It follows from the uniform continuity of ϕ  and inequality (6) that 

( ) ( )( )| 1 , 1 whenever with 1 .i iq f f i i mϕ ϕ⋅ − < ≤ ≤


         (8) 

Hence, for some k with 1 k m≤ ≤ , we have 

( ) ( )( ) ( ) ( ) ( ) ( ).| .| 0 .| 0 1 .| 1 2 .| 1, , , , , .k n n nq a f q f f q f f q f f q f f nϕ ϕ −= ≤ + + + <
    

  

Thus, ( ) ( )( ).|1
,m

q ii
f D a nϕ ϕ

=
∈





 for any f F∈  and ( ) ( )( ),qF D A nϕ ϕ⊆ . 
Therefore, ( )Fϕ  is .|q



-bounded. 
(2)⇒ (3) Follows from Lemma 4.11. 
(3)⇒ (4) Follows directly by replacing ( ),Y ⋅  with ( ),u  in (3). 
(4)⇒ (1). Suppose that F is not q-Bourbaki-bounded. Then there exists a 

0δ >  such that if { }1 2, , , kf f f X⊆
 and a positive integer n, we have  

( )1
,k n

q ii
F D f δ

=
⊆/  . We have two cases on the structure of F. 
Case 1: If f F∈ , then there exists a positive integer n such that for all j∈   
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( ), .n
qF D f F f

δ
δ =    

Let 1f  be an arbitrary point of F. We choose a positive integer 1n  such that  

 ( )1
1 1, .n

qF D f F f
δ

δ =    

Since F is not q-Bourbaki-bounded, there exists 2f F∈  such that  
( )1

2 1,n
qf D f δ∉ . It follows that 1 2f f

δ δ
≠   by the choice of 1n . 

One chooses another 2n +∈  such that 2 1n n>  and  
( )2

2 2,n
qF D f F f

δ
δ =   . Moreover, since ( )22

1
,n

q jj
F D f δ

=
⊆/  , we can find 

( )3 3 2\f F f f
δ δ

∈   . Continuing this procedure by induction, we can find a se-
quence ( jf ) with distinct terms in F such that for any i j≠  we have i jf f

δ δ
≠  . 

Therefore, we define a function ( ) ( ): , ,X q u→   by 

( )
if for some

0 otherwise.
jj x f j

x δϕ


= 



 

It follows that the function ϕ  is constant on ( ),qD x δ  and it is unbounded on 
F since ( )jf jϕ = . Therefore, the function ϕ  is semi-Lipschitz in the small 
function. 

Case 2: If there exists f F∈  and for all positive integer n, there exists j∈  
such that  

( ) ( ), , .n n j
q qF D f F D fδ δ+⊂   

For x fδ , let ( )n x  be the smallest positive integer n such that 

( ), .n
qx F D f δ∈                          (9) 

We then define the function ( ) ( ): , ,X q uϕ →   by 

( ) ( )( ) ( ) ( )( )11 dist , , if and

0 otherwise.

n x
q qn x x D f x f x f

x δδ δ
ϕ

− − + ≠= 



 

By definition, the function ϕ  is unbounded on F. We now have to show that 
if x y≠  and ( ),q x y δ< , then for 2k =  

( ) ( )( ) ( ), , .u x y kq x yϕ ϕ ≤  

If either x or y is not related to f with respect to δ , then since x y≠ , both x 
and y are not related to f with respect to δ  and  

 ( ) ( )( ) ( ), 0 2 , .u x y q x yϕ ϕ = <  

If x fδ  and y fδ , then we have some cases on ( )n x  and ( )n y : 
If ( ) ( )n x n y> . Suppose that ( ) 0n y =  then y f=  and ( )0 ,q x y δ< <  

which implies that ( ),qy D x δ∈  hence ( ) 1n x = . 
Furthermore, 

( ) ( )( ) ( ) ( )( )
{ }( )

( ) ( )

0, 1 1 dist , , ,0

dist ,

, 2 , .

q q

q

u x y u x D f

x y

q x y q x y

ϕ ϕ δ δ = − + 
=

= <

 

If ( ) 1n y ≥  and ( ) ( )n x n y= , then 
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( ) ( )( ) ( ) ( )( ) ( ) ( )( ){ }
( ) ( )

1 1, max dist , , dist , , ,0

, 2 , .

n x n x
q q q qu x y x D f y D f

q x y q x y

ϕ ϕ δ δ− − = − 
≤ <

 

If ( ) 1n y ≥  and ( ) ( )n x n y>  (i.e., ( ) ( ) 1n x n y= + ) with ( ) ( )x yϕ ϕ≤ , 
then there is nothing to prove since ( ) ( )( ) ( ), 0 2 ,u x y q x yϕ ϕ = < . 

If ( ) ( )x yϕ ϕ> , then 

( ) ( )( ) ( ) ( )

( )( ) ( ) ( )( )
( )( ) ( ) ( )( )

( )( ) ( )( ) ( ) ( )( )
( )( ) ( ) ( )( )

1

1

1 1

1

,

1 dist , ,

1 dist , ,

1 1 1 dist , ,

1 dist , , .

n x
q q

n y
q q

n y
q q

n y
q q

u x y x y

n x x D f

n y y D f

n y n y x D f

n y y D f

ϕ ϕ ϕ ϕ

δ δ

δ δ

δ δ δ

δ δ

−

−

+ −

−

= −

 = − + 
 − − + 

= + − − − −

 − − − 

 

Furthermore, 

( ) ( )( )
( ) ( )( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )

1

1

,

dist , , 1 dist , ,

, dist , , dist , , .

n y n y
q q q q

n y n y
q q q q

u x y

x D f n y y D f

q x y y D f y D f

ϕ ϕ

δ δ δ δ

δ δ δ

−

−

 = + − − − 

≤ + + −

 

Since ( )n w  is the smallest n such that ( ),n
qy F D f δ∈  , it therefore means 

( ) ( )( )dist , , 0.n y
q qy D f δ =  

Thus, we have 

( ) ( )( ) ( ) ( ) ( )( )1, , dist , , .n y
q qu x y q x y y D fϕ ϕ δ δ−≤ + −          (10) 

We claim that, 

( ) ( ) ( )( )1, dist , , .n y
q qq x y y D fδ δ−− ≤                (11) 

Suppose otherwise, i.e., ( ) ( )( ) ( )1dist , , ,n y
q qy D f q x yδ δ− < − , then 

( ) ( )( ) ( ) ( ) ( )( )
( ) ( )

1 1dist , , , dist , ,

, ,
.

n y n y
q q q qx D f q x y y D f

q x y q x w

δ δ

δ
δ

− −≤ +

< + −

<

 

So ( ) ( )1 ,n y
qx D f δ−∈  which implies that ( ) ( ) 1 1n x n y≤ − +  but this is a con-

tradiction since ( ) ( )n x n y> . 
Combining (10) and (11) we have  

 ( ) ( )( ) ( ) ( ) ( ), , , 2 , .u x y q x y q x y q x yϕ ϕ δ δ≤ + − + ≤  

Therefore, the proof is complete.                                     □ 
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