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Abstract 
A model for both stochastic jumps and volatility for equity returns in the area 
of option pricing is the stochastic volatility process with jumps (SVPJ). A 
major advantage of this model lies in the area of mean reversion and volatility 
clustering between returns and volatility with uphill movements in price as-
serts. Thus, in this article, we propose to solve the SVPJ model numerically 
through a discretized variational iteration method (DVIM) to obtain sample 
paths for the state variable and variance process at various timesteps and rep-
lications in order to estimate the expected jump times at various iterates re-
sulting from executing the DVIM as n increases. These jumps help in esti-
mating the degree of randomness in the financial market. It was observed that 
the average computed expected jump times for the state variable and variance 
process is moderated by the parameters   (variance process through mean 
reversion), Θ  (long-run mean of the variance process), σ  (volatility variance 
process) and λ  (constant intensity of the Poisson process) at each iterate. 
For instance, when 0.0,Θ 0.0, 0.0σ= = =  and 1.0λ = , the state variable 
cluttered maximally compared to the variance process with less volatility clut-
tering with an average computed expected jump times of 52.40607869 as n 
increases in the DVIM scheme. Similarly, when 3.99,Θ 0.014, 0.27σ= = =  
and 0.11λ = , the stochastic jumps for the state variable are less cluttered com-
pared to the variance process with maximum volatility cluttering as n increases 
in the DVIM scheme. In terms of option pricing, the value 52.40607869 sug-
gest a better bargain compared to the value 20.40344029 due to the fact that it 
yields less volatility rate. MAPLE 18 software was used for all computations in 
this research. 
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1. Introduction 

The stochastic volatility process with jumps (SVPJ) is governed by the stochastic 
differential equation (SDE) [1] [2] [3] 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

1

2

d d d 1 d ,

d Θ d d d ,

S t t V t W t j M t S t

V t V t t V t W t M t

λµ κ

σ δ

 = − + + + −   
= − + + 

      (1.1) 

where parameters are detailed in Table 1, and ( )dM t  being the Poision process.  
The SVPJ was introduced by Andrew Matytsin in 1999 [4]. Special cases of the 

SVPJ are the Heston’s stochastic volatility and Merton’s jump diffusion models. 
The classical Black-Scholes model is the foundation of the Merton’s model 
which has the advantage of replicating asset returns that are discontinuous. The 
jumps, however, do not depend on the diffusion. Bate [5] was first to merge the 
above two powerful models in order to ascertain the risk neutral mean for the 
variances and asset value. Thus, Bate’s stochastic volatility with jump is obtained 
by setting 0δ = , with Brownian motion being correlated as  

( ) ( )1 2d d dE W t W t tα=                       (1.2) 

Eraker et al., [6] following the Bate’s procedure developed a model introduc-
ing jumps in volatility as given below: 

( )

( )

d d d d ,

d Θ d d d

s s
t t t t t t

v v
t t t t t t

S t V W j M S

V V t V W M

µ

σ δ

 = + +   
= − + + 

            (1.3) 

The authors considered the strategy called the “likelihood—base estimation” to 
provide estimates of jump times, parameters and spot volatility [7] [8]. 

Over the years, many works by mathematicians on the numerical evaluation 
of these models have been on the increase. However, the variational iteration 
method in a discretized setting has not been implemented in literature in the 
evaluation of these models.  

Thus, the objective of this paper is to seek the numerical solution of the SVPJ 
through a discretized variational iteration method (DVIM) to obtain sample paths 
for the state variable and variance process at different timesteps and replications  
 
Table 1. Parameters description. 

Parameters Description 

κ  
  
δ  
σ  
Θ  

( )M t  

λ  
µ  

( )W t  

Risk-neutral drift. 
Variance process through mean reversion. 
Volatility jump step size. 
Volatility variance process.  
Long-run mean of the variance process. 
Poisson process with intensity λ . 
Constant intensity of the Poisson process ( )M t . 

Wiener process of two-dimension with correlation a.  
Lognormal random variable with variance 2β  and mean α . 
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in order to estimate the expected jump times. In this approach, the standard 
variational iteration method as proposed by He [9] [10] [11] [12] is being discre-
tized in time within the time interval [ ]0,T  with equidistant step size Tδ  in 
order to estimate the expected jump times.  

The method is quite robust in its analysis as it discretizes the state and variance 
parameters in a stochastic jump process. The method is easy to implement without 
making any weak assumptions or perturbation to produce convergent solutions 
that depict the degree of randomness in the area of option price in real time. 

The parameters ,α β  and µ  are related by [13] [14] 
21

2e 1
α β

µ
+

= −                          (1.4) 

2. Materials and Methods 
Discretized Variational Iteration Method 

Early numerical studies coupled with theoretical investigations by Wright [15], 
Clements and Anderson [16] and others [17] [18] [19] [20] [21] revealed that 
not every heuristic discrete time approximation of a stochastic differential equa-
tion converges absolutely to the solution process as the maximum step size tends 
to zero. As revealed, one cannot simply employ deterministic solvers of ordinary 
differential equations for stochastic differential equations. Thus, the need for a 
careful and systematic investigation through the time discretized variational ite-
ration method for the solution process of (1.1) cannot be over-emphasized.  

Now, we consider a discretization ( )δγ  with 

0 1 20 , 0,N T Nγ γ γ γ= < < < < = ≥                (2.1) 

over the time interval [ ]0,T  with  

,T
N

δ =                            (2.2) 

being the equidistant step size.  
An Ito process { }, 0tS S t= ≥  with initial condition 0 0S s= , has the diffe-

rential form  

( ) ( )d d dt t t tS a S t b S W= + ,                   (2.3) 

is called the Ito stochastic differential equation [22], where ( )ta S  and ( )tb S  
are the drift and diffusion coefficients respectively. 

Now, the mathematical formulation of the proposed method for the SVPJ 
process is as follows: 

We construct a correction functional for the SVPJ process as 
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       (2.4) 
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subject to the initial conditions 

0 0 0 0 ,,S s V v= =                        (2.5) 

with  

1n n nγ γ+∆ = − ,                        (2.6) 

1n nnW W Wγ γ+
∆ = −                       (2.7) 

and  

1n nnM M Mγ γ+
∆ = − ,                     (2.8) 

for ( )( )0 1 1n N= − . 
The 1λ  and 2λ  are the Lagrange multipliers which can be obtained through 

the variational theory. Here, ( ) 1, ,n n nW s W +∆ ∆ ∆    and ( )nM s∆  are restricted 
variables. We take the variation δ  on both sides of (2.4) as follows: 
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      (2.9) 

Solving (2.9), we have, 

11 0t sλ
=

+ =  and 21 0t sλ
=

+ = . 

1 2 1λ λ⇒ = = − .                     (2.10) 

The scheme (2.4) only produces approximations at the times of discretization. 
For intermediate iterations, values from previous discretization point could be 
used. It should be noted that nW∆  in (2.7) are normally distributed random va-
riables ( )0, nN ∆  with means and variances given as [23] [24] [25] 

 ( ) ( )( ) ( )( )20, 0, 0 1 1 .n nE W E W n N∆ = ∆ = = −         (2.11) 

3. Sample Paths Approximation 

Usually, solutions of stochastic differential equations are difficult to achieve, so 
often times simulations are used to illustrate the trajectories of the solution 
process at the different time discretization for ( )( )0 1 1n N= − . If the solution is 
known explicitly, then, mathematical software can be used to compute the abso-
lute error using the absolute error criterion, which is given as [26] 

( )( )TS S T= −  and ( )( ) ,TV V T= −             (3.1) 

which quantify the sample path closeness at the extreme of the time interval 

[ ]0,T . To this end, the discretized variational iteration method for the SVPJ 
model corresponding to N different simulations of the Wiener and Ito processes 
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are implemented. 

4. Numerical Simulations 

Here, we use the scheme (2.4) for ( )( )0 1 1n N= −  to construct an SVPJ process 
and estimate the expected jump times with the given variable parameters in line 
with [7] [8] as follows: 

3.99,Θ 0.014, 0.27, 0.0319, 0.1, 10000,
100, 5.0, 0.1, 0.15, 0.79 and 0.11.

M
N T a

σ κ δ
α β λ

= = = = = =
= = = = = − =


 

The sample paths as shown in Figure 1(a) and Figure 1(b) respectively, ge-
nerates 10 replications with 30 timesteps for the state variable and variance 
process. The average computed expected jump times for the state variable and 
variance process is 20.40344029. 

Similarly, using different parameters 0.0,Θ 0.0, 0.0σ= = =  and 1.0λ = , 
with every other parameters remains the same as in the previous case. The sam-
ple paths for the state variable and variance process are shown in Figure 2(a) 
and Figure 2(b), respectively. It generates 10 replications with 30 timesteps. The 
average computed expected jump times is 52.40607869.  

5. Discussion of Results 

The DVIM has been applied successfully for the SVPJ process. Results were gen-
erated and presented graphically via MAPLE 18 software. The sample paths were 
generated with 10 replications and 30 timesteps to quantify the closeness at the 
extreme of the time interval [ ]0,T . It was observed that the average computed 
expected jump times, which is 20.40344029, for the state variable and variance 
process is moderated by the parameters ,Θ,σ  and λ . For instance, at each  
 

 
Figure 1. (a) Sample path for the state variable with 10 replications and 30 timesteps at different iterates; (b) Sample path for the 
variance process with 10 replications and 30 timestep at different iterates. 
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Figure 2. (a) Sample path for the state variable with 10 replications and 30 timesteps at different iterates. (b) Sample path for the 
variance process with 10 replications and 30 timestep at different iterates. 

 
iterate for n →∞ , with parameters 3.99,Θ 0.014, 0.27σ= = =  and 0.11λ = , 
the stochastic jumps for the state variable are less cluttered compared to the va-
riance process with maximum volatility cluttering as shown in Figure 1(a) and 
Figure 1(b). The value 20.40344029, in terms of option pricing implies that vo-
latility cluttering and mean reversion between equity returns experiences less 
uphill movement in price assert. In contrast, at each iterate for →∞ , with pa-
rameters when 0.0,Θ 0.0, 0.0σ= = =  and 1.0λ = , the state variable cluttered 
maximally compared to the variance process with less volatility cluttering as shown 
in Figure 2(a) and Figure 2(b), respectively. The average computed expected 
jump time is 52.40607869. In terms of option pricing, the value 52.40607869 
suggests a better bargain compared to the value 20.40344029 due to the fact that 
it yields less volatility rate. We tend to point out that the negativity of the corre-
lation parameter does not imply the curves in the figures must appear negative 
(see [1] [3] for details). 

6. Conclusion 

This paper focused on the numerical application of the SVPJ model. We have 
successfully discretized the variational iteration method for the purpose of gene-
rating sample paths with different replications and timesteps for computing the 
average expected jumps times experience in the volatility cluttering. Results ob-
tained are satisfactory and are in line with those available in literature [13] [14] 
and very relevant in the area of option pricing and Forex trading.  
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