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Abstract 

Let us consider higher dimensional canards in a sow-fast system 2 2R +  with a 
bifurcation parameter. Then, the slow manifold sometimes shows various as-
pects due to the bifurcation. Introducing a key notion “symmetry” to the 
slow-fast system, it becomes clear when the pseudo singular point obtains the 
structural stability or not. It should be treated with a general case. Then, it 
will also be given about the sufficient conditions for the existence of the cen-
ter manifold under being “symmetry”. The higher dimensional canards in the 
sow-fast system are deeply related to Hilbert’s 16th problem. Furthermore, 
computer simulations are done for the systems having Brownian motions. As 
a result, the rigidity for the system is confirmed. 
 

Keywords 
Canard Solution, Slow-Fast System, Nonstandard Analysis, Hilbert’s 16th 
Problem, Brownian Motion, Stochastic Differential Equation 

 

1. Introduction 

In 4-dimensional canards, there are three formulas, that is, the slow-fast system 
in 2 2R + , 1 3R +  and in 3 1R + . Especially, the system in 2 2R +  is a standard for-
mula. They have two kinds of vector field, i.e., slow and fast one. Although pre-
cise reasons have already been described in [1], the rank condition on the linea-
rized system of the slow and the fast equations is only applied to prove the exis-
tence of the canards. In other cases, it is complicated much more. A concrete 
system was first analyzed in 2002 [2], however, it is done by applying the indi-
rect method. 

In this paper, we take up the generalized system including a bifurcation para-
meter. When having the bifurcation, it is very complicated to analyze the system 
as it is. Setting up the system as the parameter depends on only slow vectors, it 
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becomes easy to get a simple geometrical point of view. 
Then, it is analyzed by using the direct method under a key notion of “sym-

metry”. Sue Ann Campbell once pointed it out in the concrete system. It is now 
generalized and playing an important role of catching up the bifurcation struc-
ture, in Section 2. When and why the pseudo singular point is structurally stable 
or not? It becomes clear that if “pitch-fork bifurcation” causes on the invariant 
manifold, it is unstable, and if the pseudo singular point is on the orthogonal 
complement, there is no bifurcation, that is, it is structurally stable. In Section 3, 
the reason why it happens is described. Regarding near the singular point, it is 
also very effective to prove the existence of “center manifold”. See [3] and [4]. 
Tracing a canard orbit along the vector field, the slow manifold should be con-
nected with the center manifold. Furthermore, in reality it should be confirmed 
to keep the rigidity for a certain concrete system with random noise. Therefore, 
in Section 4, some computer simulations are presented for such systems with 
Brownian motions. As the concrete system is originally based on the coupled 
neuron systems, it is very important to know the rigidity. It is done by using a 
non-standard analysis developed in [5]. 

The higher dimensional canards in the sow-fast system are deeply related to 
Hilbert’s 16th problem. The aspect of limit cycles including canard solutions 
links with polynomial systems. The reason why it links to is the following. When 
constructing canard solutions in order to get an exact solution, we take up a lo-
cal model by bowing up. Then, the system is described by the polynomials as an 
approximation. See e.g. [6] [7] [8] [9] [10]. 

2. Slow-Fast System with Bifurcation Parameter  

Consider the following system:  

 
( )

( )

d , ,
d

d , ,
d

x h x y
t

y g x y b
t

ε ε =

 =


                        (1) 

where ε  is infinitesimal, b is any constant and  

( ) ( )2 2
1 2 1 2, , , ,x x x R y y y R= ∈ = ∈  

( ) ( )4 2 4 2
1 2 1 2, : , , : .h h h R R g g g R R= → = →  

Assume that ( ) ( ), , ,g x y b g x by= , for the simplicity, and the origin is a singular 
point. 

Furthermore we assume that the system (1) satisfies the following conditions 
(A1)-(A6): 

(A1) h is of class 1C  and g is of class 2C .  
(A2) The slow manifold ( ) ( ){ }4, | , ,0 0S x y h x y= ∈ =R  is a two-dimensional 

differential manifold and intersects the set  

 ( ) ( )4, | det , ,0 0hT x y x y
x

 ∂  = ∈ =  ∂  
R               (2) 
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transversely, where  

 

1 1

1 2

2 2

1 2

h h
x xh
h hx
x x

∂ ∂ 
 ∂ ∂∂  =
 ∂ ∂∂
 ∂ ∂ 

                       (3) 

Then, the pli set  

 ( ){ },PL x y S T= ∈ ∩                       (4) 

is a one-dimensional differentiable manifold.  
(A3) Either the value of 1g  or that of 2g  is nonzero at any point of PL.  
Note that the pli set PL divides the slow manifolds S\PL into three parts de-

pending on the signs of the two eigenvalues of ( ), ,0h x y
x
∂
∂

. 

First consider the following reduced system which is obtained from (1) with 
0ε = :  

 
( )

( )

0 , ,0
d , ,
d

h x y
y g x y b
t

 =



=

                       (5) 

By differentiating ( ), ,0h x y  with respect to t, we have  

 ( ) ( ) ( )d, ,0 , ,0 , , 0
d

h x hx y x y g x y b
x t y
∂ ∂

+ =
∂ ∂

              (6) 

Then (4) becomes the following:  

 
( ) ( ) ( )

( )

1d , ,0 , ,0 , ,
d
d , ,
d

x h hx y x y g x y b
t x y
y g x y b
t

− ∂ ∂ = −   ∂ ∂ 
 =

            (7) 

where ( ), \x y S PL∈ . To avoid degeneracy in (6), we consider the time-scaled- 
reduced system:  

 

( ) ( ) ( ) ( )

( ) ( )

1 1

1

d det , ,0 , ,0 , ,0 , ,
d

d det , ,0 , ,
d

x h h hx y x y x y g x y b
t x x y

y h x y x y bg
t x

− −

−

  ∂ ∂ ∂    = −     ∂ ∂ ∂       


  ∂  =    ∂    

  (8) 

The phase portrait of the system (8) is the same as that of (7) except the region  

where ( )det , ,0 0h x y
x
∂  = ∂ 

, but only the orientation of the orbit is different. 

The following definition is described in [1].  
Definition 1. A singular point of (8), which is on PL, is called a pseudo sin-

gular point of (1). The set of pseudo singular points is denoted by PS. 

(A4) ( )rank , ,0 2h x y
x
∂  = ∂ 

, ( )rank , ,0 2h x y
y

 ∂
= ∂ 

 for any ( ), \x y S PL∈ .  

From (A4), the implicit function theorem guarantees the existence of a unique 
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function ( )y xϕ=  such that ( )( ), ,0 0h x xϕ = . By using ( )y xϕ= , we obtain 
the following system:  

( )( ) ( )( ) ( )( ) ( )( )
1 1d det , ,0 , ,0 , ,0 , , .

d
x h h hx x x x x x g x x b
t x x y

ϕ ϕ ϕ ϕ
− − ∂ ∂ ∂    = −    ∂ ∂ ∂     

(9) 

(A5) All singular points of (8) are non-degenerate, that is, the linearization of 
(8) at a singular point has two nonzero eigenvalues.  

Now, let us introduce a definition of “symmetry”. For example, see [2]. It is a 
key word through this paper. 

Definition 2. If ( ) ( )1 1 2 1 2 2 2 1 2 1, , , , , , , ,h x x y y h x x y yε ε= , and  
( ) ( )1 1 2 1 2 2 2 1 2 1, , , , , , , ,g x x y y b g x x y y b= , then the system is “symmetric” for the 

subspace ( ){ }1 2 1 2 1 2 1 2, , , | ,I x x y y x x y y= = = .  
(A6) I intersects PL transversely.  
The following definition is also described in [1].  
Definition 3. Let 1 2,λ λ  be two eigenvalues of the linearization of (8) at a 

pseudo singular point. The pseudo singular point with real eigenvalues is called a 
pseudo singular saddle point if 1 20λ λ< <  and a pseudo singular node point if 

1 2 0λ λ< <  or 1 2 0λ λ> > .  
The following theorem is established (see, e.g. [1]).  
Theorem 1. Let ( )0 0,x y  be a pseudo singular saddle or node point. If  

( )0 0trace , ,0 0h x y
x
∂  < ∂ 

, then there exists a solution which first follows the attrac-

tive part and the repulsive part after crossing PL near the pseudo singular point.  
Remark 1. Using Theorem 1, if the condition that the psuedo singular point is 

only saddle or node, then there exist canards. Therefore, the following theorems 
are given under this condition.  

Remark 2. The condition ( )0 0trace , ,0 0h x y
x
∂  < ∂ 

 implies that one of eigen-

values of ( )0 0, ,0h x y
x
∂ 
 ∂ 

 is equal to zero and the other one is negative. Notice  

that the system has two kinds of vector fields: one is 2-dimensional slow and the 
other is 2-dimensional fast one. The condition provides the state of the fast vec-
tor field.  

Remark 3. The singular solution in Theorem 1 is called a canard in 4R  with 
2-dimensional slow manifold. As a result, it causes a delayed jumping. The study 
of canards requires still more precise topological analysis on the slow vector 
field.  

Remark 4. On the subspace I, the following system is established for some b. I 
is an invariant manifold.  

 
( )

( )

1
1 1 1

1
1 1 1

d
, ,

d
d

, ,
d

x h x y
t

y g x y b
t

ε ε =

 =


                       (10) 
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Remark 5. On the set PL, det 0h
x
∂  = ∂ 

 is satisfied and at ( )0 0,x y PS∈  the 

following equation is established:  

( )( ) ( )( ) ( )( ) ( )( ) ( )( )1 2 1 2
0 0 0 0 0 0 0 0 1 0 0

1 2 2 1

, ,0 , ,0 , ,0 , ,0 , , 0.
h h h hx x x x x x x x g x x b
x x x x

ϕ ϕ ϕ ϕ ϕ
 ∂ ∂ ∂ ∂

− = 
∂ ∂ ∂ ∂ 

(11) 

Note that there exists ( )y xφ=  because of assuming rank 2h
y

 ∂
= ∂ 

.  

3. Structural Stability 

When and why the pseudo singular point has structural stability? A geometrical 
point of view to make it clear is shown in this section.  

Lemma 1. The matrix h
x
∂ 
 ∂ 

 is symmetric.  

Proof. Because the system is symmetric for the set I, it is obvious from ele-
mentary calculus.                                                 □ 

From (A6), the subspace I intersects PL transversely. Lemma 1 ensures that 
cI  also intersects PL transversely, where cI  is the orthogonal complement of  

I. Since the matrix h
y

 ∂
 ∂ 

 is also symmetric, for the sake of simplicity, suppose 

that h
y

 ∂
 ∂ 

 is identity without loss of generality. 

Lemma 2. Let ( )0 0,x y PS∈  be on I PL∩ , then it depends on the parame-
ter b. On the other hand, on cI PL∩ , it is independent of the parameter.  

Proof. Since ( )0 0,x y I PL∈ ∩ , there exists a critical value 0b b= , which de-
pends on the shape of ( )xφ  satisfying  

 
( )

( )

1 1 1

1
1 1 0 1

, ,0 0
d

,
d

h x y
y g x b y
t

=



=

                         (12) 

that is,  

 ( )( ) ( )( )1
0 0 1 0 0 0

1

, ,0 , ,0 0.
h x x g x b x
y

φ φ
∂

=
∂

                (13) 

On ( )0 0, cx y I PL∈ ∩ , for any b, satisfying  

 ( )( ) ( )( ) ( )( ) ( )( )2 1
0 0 1 0 0 0 0 2 0 0

2 2

, ,0 , , , ,0 , , 0
h hx x g x x b x x g x x b
x x

φ φ φ φ
∂ ∂

− =
∂ ∂

 (14) 

and  

( )( ) ( )( ) ( )( ) ( )( )2 1
0 0 1 0 0 0 0 2 0 0

1 1

, ,0 , , , ,0 , , 0.
h hx x g x x b x x g x x b
x x

ϕ ϕ ϕ ϕ
∂ ∂

− + =
∂ ∂

(15) 

On the set PL, from Remark 5, the above equations are established for any b. □ 
Theorem 2. Let ( )0 0,x y PS∈  be a saddle or node point. Then, if  

( )0 0, cx y I PL∈ ∩ , the pseudo singular point is structurally stable. If  
( )0 0,x y I PL∈ ∩  it is structurally unstable.  
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Proof. If ( )0 0, cx y I PL∈ ∩ , the pseudo singular point does not depend on 
the parameter b, from Lemma 2. If ( )0 0,x y I PL∈ ∩ , it depends on the para-
meter.                                                           □ 

Lemma 3. There exists a pseudo singular point ( )0 0,x y PS∈ , which is one of 
a coupled points near the subspace I.  

Proof. There exists 1 0b b b= ≈  satisfying  

 ( ) ( )0 0 0 01
1 1

1

, ,0 , , 0,
h x y g x y b
y
∂

≈
∂

                  (16) 

where ( )0 0,x y I∉  and ( )0 0y xφ= . As the system is symmetry, there exists 
another coupled pseudo singular point ( )1 1,x y  satisfying  

 ( ) ( )1 1 1 11
1 1

1

, ,0 , , 0,
h x y g x y b
y
∂

≈
∂

                  (17) 

where ( )1 1y xφ= .                                                □ 
Theorem 3. Canards near the subspace I has a center manifold, if  

0

det 0
x

f
x =

∂  = ∂ 
 and 

0

trace 0
x

f
x =

∂  < ∂ 
, where  

 ( ) ( )( ) ( )( ) ( )( )
1

, ,0 , ,0 , , .h hf x x x x x g x x b
x y

ϕ ϕ ϕ
−∂ ∂ =  ∂ ∂ 

     (18) 

Proof. One of eigenvalues is zero, corresponding eigenvector exists on the set I, 
and the other one is negative, corresponding eigenvector is on the set cI . Since  

the matrix 
0x

f
x =

∂ 
 ∂ 

 is symmetric, it is easily confirmed. Then, there are two  

possibilities. A canard orbit passing through between the pseudo singular point 

( )0 0,x y  and ( )1 1,x y  is connected with the center manifold. The second case 
is that the orbit is connected to a limit cycle satisfying (10).                □ 

4. Concrete Example 
4.1. Modified Coupled FitzHugh-Nagumo Equations 

Consider the following typical example of modified coupled FitzHugh-Nagumo 
equations. See [2] for more details.  

 

( )

( )

3
1 1

2 1

3
2 2

1 2

1
1 1

2
2 2

d
d 3
d
d 3

d 1
d
d 1
d

x xx y
t
x xx y
t

y x by
t c
y x by
t c

ε

ε


= + −




= + −

 = − +

 = − +


                      (19) 

The next equation is the time-scaled-reduced system corresponding to (19).  

 
( )

( )

2 1 1
12

2
21

2 2

1
1d .

1d 1

x by fxx c f
ft x x by

c

 − +  − −  
 = ∆ = =   − −      − + 
 

          (20) 
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There exist pseudo singular points ( )0 0,x y PS∈  of the system (19) satisfying 

d 0
d
x
t
=  in (20) which are obtained by the following. If  

( ) ( )0 0 01 02 01 02, , , ,x y x x y y=  exists on neighborhood of I PL∩ , then 1 2 1x x =  
holds. Therefore,  

 

2

01

2

02

3
01

01 02

3
02

02 01

3 9 4
2

3 9 4
2

3

3

bx
b

bx
b

x
y x

x
y x

 ± − =


 −

=



= −


 = −




                      (21) 

and  

 

2

01

2

02

3
01

01 02

3
02

02 01

3 9 4
2

3 9 4
2

3

3

bx
b

bx
b

x
y x

x
y x

 − ± = −


 +

= −



= −


 = −




                     (22) 

Remark 6. Notice that in Lemma 2, if ( )0 0,x y I PL∈ ∩ , then the critical value  

0
3
2

b b= =  holds. When 0
30
2

b b< < = , the solutions of (21) and (22) are on  

neighborhood of I but not on I, respectively, like as being described in Lemma 
3. 

If ( )0 0, cx y I PL∈ ∩ , then 1 2 1x x = −  holds. Therefore,  

 

01

02
3
01

01 02

3
02

02 01

1
1

3

3

x
x

x
y x

x
y x

= ±
 =

 = −


 = −




                       (23) 

Remark 7. The solution of (23) is structurally stable. Then  

 
( ) ( )1 2, 1, 1

1 1
1 1x x

h
x = −

− ∂  =    −∂   
                  (24) 

and  

 
( ) ( )1 2, 1, 1

81 1
1 3 .

81 1
3

x x

b
f
x c b= −

 − − ∂   = − ∂   − − 
 

           (25) 
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On the set cI , the orbit traces an attractive region before the pseudo singular 
point ( ) ( )1 2, 1, 1x x = − , which is saddle when 0 3 2b< < . Therefore there exists 
a canard by Theorem 1. 

Here, the slow vector field at the origin ( )0,0x =  is as follows.  

 
( )0,0

11 .
1x

bf
bx c=

− ∂  =    −∂   
                     (26) 

The characteristic equation of (24) is  

 2 21
2 1 0.

1
b

b b
b

λ
λ λ

λ
+ −

= + + − =
− +

               (27) 

Therefore the eigenvalues are  

 1

2

1
1

b
b

λ
λ
= − +

 = − −
                         (28) 

From (26) and Remark 6 we have the following results.  

If 31
2

b< <  then 1 0λ <  and 2 0λ < , the origin is node, that is stable.  

If 0 1b< <  then 1 0λ <  and 2 0λ > , the origin is saddle, that is unstable.  
If 1b =  then 1 0λ =  and 2 2λ = − , the origin is center. 
The fast vector field at the origin is as follows.  

 
( )0,0

0 1
.

1 0x

h
x =

 ∂  =   ∂   
                      (29) 

The characteristic equation is  

 2 1 0.λ − =                           (30) 

If 1λ = , the corresponding eigenvector ( )1 2,x x  holds  

 2 1,x x=                            (31) 

and if 1λ = − ,  

 2 1.x x= −                           (32) 

4.2. Modified Coupled FitzHugh-Nagumo Equations with  
Brownian Motions 

Now, let us consider a stochastic differential equation for a slow-fast system with 
Brownian motions ( )1B t  and ( )2B t  as the random noises modifying the 
slow-fast system (19): For [ ]0, , 0t T T∈ >   

 

( ) ( )

( ) ( )

3
1 1

2 1

3
2 2

1 2

1 1 1 1 1

2 2 2 2 2

d
d 3
d
d 3

1d d d

1d d d

x xx y
t
x xx y
t

y x by t B t
c

y x by t B t
c

ε

ε

σ

σ


= + −




= + −

 = − + +

 = − + +


               (33) 
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On the other hand, Anderson [11] showed that the Brownian motion is de-
scribed by step functions using non-standard analysis on a hyper finite time line 
by the following definition. (See also [12]). 

Definition 4. Let , 0t
tN t T
t

= ≤ ≤
∆

 and TN N= . Assume that a sequence 

of i.i.d. random variables { }, 1, ,kB k N∆ = 
 has the distribution  

{ } { } 1
2k kP B t P B t∆ = ∆ = ∆ = − ∆ =  

for each 1, ,k N=  . An extended Wiener process ( ){ }, 0B t t ≥  is defined by  

( )
1

, 0 .
tN

k
k

B t B t T
=

= ∆ ≤ ≤∑  

Rewriting the system (31) via step functions on the hyper finite time line, the 
following system (32) is obtained.  

 

( ) ( ){ }

( ) ( ){ }

( ) ( ) ( )

( ) ( ) ( )

3
1

1 1 1 2 1

3
2

2 2 1 1 2

1 1 1 1 1 1 1

2 2 1 2 2 2 2

3

3
1

1

k k

k k

k k k

k k k

xx t x t x y t

xx t x t x y t

y t y t x by t B
c

y t y t x by t B
c

ε

ε

σ

σ

−

−

−

−

  
− = + − ∆  

 
   − = + − ∆   


− = − + ∆ + ∆



− = − + ∆ + ∆

          (34) 

where  

( ) ( )1 1 2 2
1 1

,
Nt Nt

k k
k k

B t B B t B
= =

= ∆ = ∆∑ ∑  

and 1 0σ >  and 2 0σ >  are positive constants which give standard deviations 
for the Brownian motions ( )1B t  and ( )2B t , respectively. 

4.3. Simulation Results 

In this section, let us provide computer simulations for the modified coupled 
FitzHugh-Nagumo Equations (33). In (33), we assume that two Brownian mo-
tions ( )1B t  and ( )2B t  are mutually independent and note that  

 ( ) ( ) ( ) ( ) ( ) ( )2 2
1 1 1 1 2 2 1 2~ 0, , ~ 0, ,k k k kB t B t N t B t B t N tσ σ− −− ∆ − ∆  (35) 

for each 1 Tk
t

≤ ≤
∆

.  

In Figures 1-8, the line 1 2x x=  is an invariant manifold and two red points 
are psueod singular points. Furthermore, 0.01ε = , 1c =  and 0.0001t∆ =  in 
(34). The curves, which satisfy 1 2 1x x =  and 1 2 1x x = − , respectively, are pli set.  

Figure 1 1 2 0σ σ= =  (non-random) 
Figure 1 shows an orbit of ( ) ( )( ){ }1 2, , 0 7x t x t t T≤ ≤ =  satisfying the equa-

tion (34) with 1 2 0σ σ= = , 1b =  and starting from ( )1.0,1.5  near the pseudo  
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singular point ( ) ( )1 13 5 , 3 5
2 2

 
− +  

 
. The orbit converges to the invariant 

manifold 1 2x x= .  

Figure 2 1 2 0.1σ σ= =  (random) 
Figure 2 shows an orbit of ( ) ( )( ){ }1 2, , 0 7x t x t t T≤ ≤ =  satisfying the equa-

tion (34) with 1 2 0.1σ σ= = , 1b =  and starting from ( )1.0,1.5  near the pseudo  

singular point ( ) ( )1 13 5 , 3 5
2 2

 
− +  

 
. From Figure 2 we observe that the  

orbit dose not converge to the invariant manifold 1 2x x= , but it moves around 
a neighborhood of 1 2x x=  by the effect of random noises. 

Figure 3 1 2 0σ σ= =  
Figure 3 shows an orbit of ( ) ( )( ){ }1 2, , 0 7x t x t t T≤ ≤ =  satisfying the equa-

tion (34) with 1 2 0σ σ= = , 1.4b =  and starting from ( )0.8,1.5  near the 
pseudo singular point ( )0.828718,1.20668 . The orbit converges to the invariant 
manifold 1 2x x= . 

Figure 4 1 2 0.1σ σ= =  
Figure 4 shows an orbit of ( ) ( )( ){ }1 2, , 0 7x t x t t T≤ ≤ =  satisfying the equa-

tion (34) with 1 2 0.1σ σ= = , 1.4b =  and starting from ( )0.8,1.5  near the 
pseudo singular point ( )0.828718,1.20668 . From Figure 4 we observe that the 
orbit dose not converge to the invariant manifold 1 2x x= , but it moves around 
a neighborhood of 1 2x x=  by random noises. 

Figure 5 1 2 0σ σ= =  
Figure 5 shows an orbit of ( ) ( )( ){ }1 2, , 0 7x t x t t T≤ ≤ =  satisfying the equa-

tion (34) with 1 2 0σ σ= = , 1.48b =  and starting from ( )1.2,0.8  near the 
pseudo singular point ( )1.08557,0.921173 . The orbit converges to the invariant 
manifold 1 2x x= , but it moves in small steps compared with Figure 3 with 

1.4b = . 
 

 
Figure 1. 1b = , ( ) ( )( ) ( )1 20 , 0 1.0,1.5x x = , 1 2 0σ σ= = . 
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Figure 2. 1b = , ( ) ( )( ) ( )1 20 , 0 1.0,1.5x x = , 1 2 0.2σ σ= = . 

 

 
Figure 3. 1.4b = , ( ) ( )( ) ( )1 20 , 0 1.2,0.8x x = , 1 2 0σ σ= = . 

 

 
Figure 4. 1.4b = , ( ) ( )( ) ( )1 20 , 0 1.2,0.8x x = , 1 2 0.1σ σ= = . 
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Figure 5. 1.48b = , ( ) ( )( ) ( )1 20 , 0 1.2,0.8x x = , 1 2 0σ σ= = . 

 

 
Figure 6. Enlarged orbit of Figure 5. 

 

 
Figure 7. 1.48b = , ( ) ( )( ) ( )1 20 , 0 1.2,0.8x x = , 1 2 0.1σ σ= = . 
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Figure 8. Enlarged orbit of Figure 7. 

 
Figure 6 1 2 0σ σ= =  
Figure 6 shows an enlarged orbit of Figure 5. The oscillation after passing 

through the pseudo singular point is due to the shape of ( )1 2,x xϕ , which caus-
es jumping by short canards. 

Figure 7 1 2 0.1σ σ= =  
Figure 7 shows an orbit of ( ) ( )( ){ }1 2, , 0 7x t x t t T≤ ≤ =  satisfying the equa-

tion (34) with 1 2 0.1σ σ= = , 1.48b =  and starting from ( )1.2,0.8  near the 
pseudo singular point ( )1.08557,0.921173 . The orbit moves in large steps 
compared with Figure 5 without noise. From Figure 7 we observe that the orbit 
dose not converge the invariant manifold 1 2x x= , but it moves around a neigh-
borhood of 1 2x x=  by random noises.  

Figure 8 1 2 0.1σ σ= =  
Figure 8 shows an enlarged orbit of Figure 7. 

5. Conclusion 

In general, 4-dimensional canards with a bifurcation parameter b have a com-
plicated structure. The system (1) taken up in Section 2 brings us geometrical 
new point of view on structural stability near the pseudo singular points. Be-
cause of constructing the system geometrically simplified, it becomes easy to 
catch up the bifircation structure. “Symmetry” given in this paper makes it clear 
that the slow manifold depends on the parameter b. Especially, near the singular 
point there exists a center manifold. Note that the concrete model in Section 4 is 
basically composed of coupled neuron systems. Using a nonstandard method 
developed in [5], the rigidity for the system having Brownian motions is con-
firmed. They are observed in computer simulations. It means processing of 
quantum computing under the standard method.  
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